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Abstract 

In  automotive  digital  development,  3D  prototype  creation  is  a  team  effort  of  designers  and  

engineers,  each  contributing  with  ideas  and  technical  evaluations  through  means  of  computer  

simulations. To support the team in the 3D design ideation and exploration task, we propose an  

interactive design system for assisted design explorations and faster performance estimations. We  

utilize  the  advantage  of  deep  learning-based  autoencoders  to  create  a  low-dimensional  latent  

manifold of 3D designs, which is utilized within an interactive user interface to guide and strengthen  

the decision-making process. 

Data-driven design, collaborative design, 3D modelling 

1. Introduction 
In automotive digital development designers rely e.g. on sketching for a first ideation as well as 

computer-aided design (CAD) and engineering (CAE) tools to accelerate various tasks, particularly 

through virtual prototyping. These tools enrich the design process by providing a means for altering 

shapes by the designers to create novel variations of the 3D design based on given user requirements or 

by allowing the engineers to estimate technical performances of the 3D design. However, on one hand, 

accurate performance simulations still require excessive computational effort, while on the other hand 

existing additional information would be beneficial to the designer when exploring the design space to 

find novel prototypes or improve existing prototypes, which are more sustainable according to technical 

qualities. Thus, to address the challenge of faster and informed design exploration based on technical 

design quality indications and to support the designer in the creative thinking process, we envision an 

interactive cooperative design system (CDS), which the designer can utilize as an additional tool for 

ideation and easy design exploration in the initial automotive digital development phase. 

Recent advances in artificial intelligence (AI) aim to collect and utilize existing digital design and 

simulation data from past development cycles for the application of machine learning techniques and 

data analytics. In the context of design, two systems have been proposed on a 2D design level, namely 

SketchRNN (Ha and Eck, 2018) (https://magenta.tensorflow.org/sketch_rnn_demo) and ShadowDraw 

(Lee et al., 2011), which provide real-time guidance to human users while drawing online. Both models 

use a deep generative network and are trained on a database of drawing sequences by human users. 

During interaction for sketching, both networks propose potential design directions for the next drawing 

steps. In 3D, Umetani (Umetani, 2017) proposed a system using a deep learning model for faster 

modification of 3D digital vehicles, however, it lacks on explicit assistance for user guidance. Thus, the 

https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html


present paper aims at transferring the idea of guiding the 3D vehicle design process by combining the 

findings from data-driven AI methods and the designer's intuition in an interactive CDS. 

AI systems using deep learning and machine learning techniques learn from existing data and extract 

significant information hidden in the data. Geometric deep learning methods offer a promising approach 

for learning and extracting useful information from existing CAE data to form the foundation of our 

proposed CDS. Deep generative models for design data, like autoencoders (AEs) (Achlioptas et al., 

2018; Rios et al., 2019) and variational autoencoders (VAEs) (Saha et al., 2020), learn and compress 

high-dimensional 3D point cloud data into a low dimensional latent representation in an unsupervised 

fashion. The extracted latent representation acts as a compact shape manifold, representing 3D designs 

with a small number of parameters. This learned latent manifold is suitable for downstream processing 

tasks, like e.g., the generation of novel designs, optimization tasks, and surrogate modeling (Rios et al., 

2019; Saha et al., 2020). Thus, these (V)AEs trained on design representations of CAE models can 

potentially learn enough information in the latent variables, so that these latent variables are applicable 

as control parameters for our proposed interactive CDS. 

In summary, in this paper, we propose an interactive framework for 3D design exploration on the latent 

manifold of a trained (V)AE, which assists in traversing the latent manifold to generate novel 3D 

designs. In the context of automotive design generation, we consider two scenarios from the perspective 

of the designers and formulate different forms of assistance using our CDS. First, in the exploratory 

design concept generation phase, new concepts may often be conceived through rough sketches or 

rudimentary virtual models to identify and explore novel design ideas. Here, our framework aims to 

guide the designer for target-oriented design explorations in the latent manifold. Second, in automotive 

digital development, designers explore concepts and simulate the performance of 3D shapes separately. 

To accelerate the process for faster 3D prototype exploration with its performance measures, we provide 

a means to simultaneously generate 3D designs from the latent manifold with accurate performance 

predictions using a surrogate model trained on the latent manifold. Our main contributions are as 

follows: First, we suggest a variational autoencoder (VAE) to construct a low-dimensional latent 

manifold of 3D shapes. Second, we build on the VAE an interactive framework that offers a slider-based 

user interface to explore the latent manifold. Third, the interface provides an indication on exploration 

directions in the latent manifold for changing the topology of 3D designs and at the same time provides 

performance feedback based on the location in the latent manifold, thus supporting the designer for 

streamlined design ideation and informed decision-making processes. 

The remainder of the paper is organized as follows: In Section 2, we review representations in 3D 

vehicle design related to our application as well as deep generative models. In Section 3, we lay out the 

pre-processing steps required for our framework and provide the details of our point cloud variational 

autoencoder architecture (PC-VAE) as well as of the multi-layer perceptron (MLP) as a surrogate model 

for design performance prediction tasks. In addition, we give an overview of the interactive workflow 

embedded in a graphical user interface. In Section 4, we show the application of the interactive 

framework for the above-mentioned two scenarios: First (Section 4.1), target class-oriented topology 

changes of 3D designs, and second (Section 4.2), performance feedback for informed 3D design 

directions. Finally, in Section 5, we present a summary and conclusion of our paper. 

2. Prior Art 
Over the recent years, the advances made in computing power have strengthened the design process. 

Product designers may rely on sketching (tools) for initial design development, while the virtual 

prototyping depends on a variety of (commercial) CAD/E tools for modeling 3D digital designs. These 

digital designs contain enough information to be used as a base representation for shape 

parameterization. The general idea is that parameterizing a design with a series of design variables 

facilitates faster design modification and generation. One popular parameterization technique are 

parameterized splines with control points as modifiers to define the shape. As an alternative, especially 

for digital models represented as surface meshes, deformation methods like free-form deformation 

(FFD) (Sederberg and Parry, 1986) offer effective shape parameterizations. Here, a shape is embedded 

into a tri-variate polynomial volume defined by a lattice of control points that are capable of handling 

large-scale design deformations. FFD allows a significant boost in computer-driven design 



optimizations and shape modifications since the control point updates directly affect the nodes of the 

shape surface mesh and, thus, avoids a time-consuming re-meshing phase. However, for modifying 

complex geometries, this technique may require a large number of variables and if a CAD model of the 

resulting geometry is required, reverse engineering techniques have to be applied for recreating the CAD 

model. 

Recent advancements in AI focus on data-driven deep learning-based methods to abstract information 

from prior data, which has been collected over several past product development cycles, for shape 

parameterization and to build surrogate models as design performance predictors. Among existing deep 

learning methods, the so-called generative models, which are used for automatically abstracting 

information of high dimensional domain without human user bias, generate an efficient low-dimensional 

latent manifold for shape modification. Two families of deep generative models were recently applied 

for shape parameterization: Generative adversarial networks (GANs) and (variational) autoencoder 

((V)AE) models. Existing work on (V)AEs shows that the latent manifold learned by these models can 

not only be used for operations like data compression and classification tasks, but also for engineering 

optimizations in comparison with representations based on an FFD lattice (Rios et al., 2019).  

CAD software mainly represents geometries in a polygonal mesh form, from which several base 

representations can be derived, given their intrinsic amount of information. 3D point clouds are a simple 

and flexible representation, which is extracted from a mesh and consists of a list of nodes contained in 

the mesh and have been explored by researchers due to their suitability for spatial feature processing. 

Popular point cloud-based architectures are PointNet (Qi et al., 2017), PointNet++ (Qi et al., 2017a), 

and point cloud (variational) autoencoders (PC-(V)AEs), which are used to learn and transform high-

dimensional 3D point clouds into compressed low-dimensional representations. Many researchers 

adopted the AE architecture because of its capability to address the permutation invariance of points in 

point clouds with point-wise operators followed by a global operator, e.g. max-pooling. AE architectures 

typically form a bottleneck layer that learns a compact representation of the input data, the so-called 

latent space or latent manifold. However, a lack of regularization in the latent space limits the shape 

generative capabilities of AEs.  

Different from AEs, VAEs form a regularized continuous latent space to facilitate shape-generative 

capabilities (Saha et al., 2020). In our present work, we use a point cloud VAE (PC-VAE) as proposed 

in (Saha et al., 2020), which has been evaluated specifically for the application to engineering problems, 

such as design topology changes (Saha et al., 2020), optimization tasks (Saha et al., 2021) and surrogate 

modelling (Saha et al., 2021a). Our PC-VAE follows the same topology that of AEs but enforces the 

regularization of the latent space by adding the Kullback-Leibler (KL) divergence as a term in the 

training loss function of the network. Hence, by improving the distribution of the latent representation, 

the VAE extends its extrapolation and shape generative capability compared to AEs. Thus, in our 

proposed interactive framework, we intend to learn from existing shape data using a PC-VAE to produce 

a latent manifold for user interaction and data-driven guidance during two tasks: First, to provide 

guidance to explore the latent manifold to generate designs satisfying the designer’s target in mind. 

Second, to train a multi-layer perceptron (MLP) as a surrogate model on the latent manifold for faster 

performance predictions of 3D designs during latent manifold explorations.  

3. Methodology 
To create an interactive system for assisting the decision-making process of the designer in the 

automotive design exploration phase, we first describe necessary preliminary steps for building such a 

framework as shown in Figure 1.a). Based on Figure 1.a) (Step 1), first, we describe the pre-processing 

step for sampling point cloud data from the CAE models (Section 3.1). Second (Step 2 and 3 in Figure 

1.a), we introduce the architectures of the data-driven deep learning models: A point cloud variational 

autoencoder (PC-VAE) for learning the point cloud representations of CAE data and the multi-layer 

perceptron (MLP) as a surrogate model for mapping the CAE data to their performance measures 

(Section 3.2). Finally, we integrate the trained PC-VAE into a graphical user interface (GUI) and 

introduce the workflow of our interactive framework (Section 3.3). 

3.1. Pre-processing 3D Point Clouds 



For 3D car models, we consider the polygonal meshes of the car class of ShapeNetCore (Chang et al., 

2015), which comprises a large dataset of 3D shapes. We use the shrink-wrapping algorithm utilized in 

(Rios et al., 2021) to sample points uniformly from the external surfaces of the 3D car shapes and sample 

3500 shapes from the car class, where each shape consists of 24578 points. 

For the future task of training the MLP as a surrogate model with the performance measures of 3D 

designs, we consider two performance metrics of a 3D car shape: Shape volume (V) and aerodynamic 

drag coefficients (𝐹𝑥). We selected the volume due to its low computational cost since it can be directly 

computed from the geometry, while the drag requires a higher computational effort and is highly non-

linear with respect to the latent representation. The drag is calculated by performing computational fluid 

dynamics (CFD) simulations on the shrink-wrapped meshes using the OpenFOAM toolbox 

(https://www.openfoam.com). From 3500 shapes in the original data set, we considered a sub-set of the 

data with converged CFD calculations, which consisted of 600 shapes and performance measures.  

 
 a) Pre-processing steps and workflow for training the PC-VAE and MLP                       

b) PC-VAE architecture. 

3.2. Learning the Point Could Variational Autoencoder  

In step 2 of Figure 1.a) we trained the PC-VAE proposed in (Saha et al., 2020). The detailed PC-VAE 

architecture is shown in Figure 1.b) where the encoder comprises five 1D convolutional layers, followed 

by a max-pooling layer that is divided into two parts: A mean vector µ and a standard deviation vector 

𝜎 with a sigmoid activation function (Figure 1.b). The latent representation 𝑧 (Eq. 1) is sampled from 

the encoder's output distribution with mean µ and standard deviation 𝜎, from which the decoder 

generates a 3D point cloud. The network is trained by minimizing two loss functions (Eq. 2), where 

𝑆𝑖, 𝑆𝑜 ⊂ 𝑅𝟛 are the input and output point clouds with points 𝑥𝑖, 𝑥𝑜 respectively. The first term in the 

loss function is the reconstruction loss between the input and reconstructed point cloud calculated using 

the mean-square distance (MSD) as loss function (Eq. 3), and the second term is the KL-divergence loss 

between the learned latent distribution and an assumed prior normal distribution. 

z = [zi], 𝑧i ∼ μi + σi ⊙ ϵ, ϵ ∼ 𝑁(0,1) and i = 1,2, . . ,5 
(1) 

ℒVAE(𝑥𝑖 , 𝑥𝑜) = 𝛼 𝐿𝑟𝑒𝑐𝑜𝑛 +  𝛽 𝒟𝐾𝐿 , 𝛼 =  1000, 𝛽 = 0.001 
(2) 

𝐿𝑟𝑒𝑐𝑜𝑛(𝑀𝑆𝐷) =
1

𝑁
∑|𝑥𝑖,𝑗 − 𝑥𝑜,𝑗|2

2

𝑁

𝑗=1

 

 

(3) 

We trained the PC-VAE architecture in Figure 1.b) with a 5D latent vector using the Adam optimizer 

with a learning rate of 5𝐸−03. The network was trained on a single GPU Nvidia®GeForce ®RTX8000 

with 48 GB. Further, for training a surrogate model from the learned 600 latent representations 𝑧 to their 

desired properties, here, volume and drag coefficients (Step 3 in Figure 1.a), we trained a 2-output multi-

layer perceptron (MLP) to map the latent representations 𝑧 to the two output variables: Normalized 

volume (V) and normalized drag coefficients (𝐹𝑥). To train the MLP, we divided the 600 shapes with 

their performance metrics into 85% training and 15% test set. We trained the MLP on the training set 

and achieved an R-square (R2) score of 0.86 on the training set and 0.75 on the test set. Since training 

https://www.openfoam.com/


the MLP with 600 shapes show comparable R2 score for training and test set, we considered the trained 

MLP for perfromance prediction of 3D car shapes as adequate. However for improving the accuracy of 

the MLP, we augmented the performance data to improve prediction accuracy. For further details on the 

PC-VAE and the MLP, please refer to (Saha et al., 2021a). 

                 
 a) Distribution of latent variables of the training set shapes. b) Visualization of the 

displacement sensitivity of points in a 3D point cloud of the initial design (𝑺𝒊𝒏) to the 5 latent 
variables. 

In our application examples, we used the learned 5D latent variables as interactive elements for 

modifying 3D designs. To analyze the range of the distributions of the latent variables, we plotted a 

boxplot of the latent variables (𝑧𝑖 , 𝑖 = 1,2, . . ,5) from the training data set in Figure 2.a). Ideally, we 

considered the lower (𝑧𝑙𝑖
, 𝑖 = 1,2, . .5) and upper limit (𝑧𝑢𝑖

, 𝑖 = 1,2, . .5) of each latent variable to 

determine the lower and upper limits (min and max values) of the sliders, which we use in the GUI 

(Section 3.3). We observed that the latent variables have values of different magnitudes, which is due 

to the latent values generated by sampling from the latent distribution of PC-VAE. Further, to analyze 

the impact of each latent variable modification on the generated shape, we performed a sensitivity 

analysis to determine the regions of the shapes mapped by each latent variable 𝑧𝑖. We calculated the 

total sensitivity of the displacement of each point of 30 point clouds sampled from the training dataset 

and estimated the association with each latent variable 𝑧𝑖. For that, we used the Sobol method with 

Satelli's sampling (Saltelli et al., 2010), where samples are generated as 30(L+2) variations in a range 

of ±30% of each latent variable, considering L=5. Next, we calculated the sensitivity values of each 

point of the point cloud representation associated with each latent variable (𝑧𝑖). In Figure 2.b) we 

projected the sensitivities obtained from the 5 latent variables onto a 3D point cloud selected for the 

analyses. We observed that each latent variable 𝑧𝑖  is associated with changes in larger and different 

regions in the output point cloud. However, the impact of change on the design topology of the output 

point cloud is different for each latent variable 𝑧𝑖, e.g, the sensitivity of displacement concerning 𝑧5 is 

higher compared to other latent variables. The sensitivity analysis is presented to the user when the user 

starts the GUI interface.  

 
 Schematic overview of the interactive framework. 



In the GUI, interacting with the sliders updates the new values of the latent variables, and the PC-VAE 

decoder automatically calculates and displays the updated 3D car point cloud based on the modified 5 

latent parameters. To support the human user in the decision-making process, the framework aims to 

provide support in two different ways for two different scenarios: First, the system aims to guide the 

designer for target-oriented design exploration in the latent manifold of the PC-VAE (Section 4.1). For 

this application, our framework suggests a personalized range of the latent variable sliders to generate a 

target design. Second, the system aims to provide performance predictions of the generated 3D design 

simultaneously, to fasten the separate process of design generation and expensive performance 

simulations (Section 4.2). Thus, for the second scenario, the framework provides feedback on the 

estimated performance measure of the generated 3D point cloud design by projecting the performance 

value onto the 3D point cloud representation as color maps (Figure 6). Note that depending on the type 

of application requested by the designer, the framework uses only the trained PC-VAE (Section 4.1) or 

both, the trained PC-VAE and the MLP as a surrogate model (Section 4.2). 

4. Evaluation of the Interactive Framework 
We performed two different experiments to illustrate the evaluation of our interface for the above-

mentioned two scenarios. The initial setup for the experiments is the same, where at the beginning the 

GUI loads the initial design (𝑆𝑖𝑛) in the form of a 3D point cloud representation with the current position 

of the sliders representing the latent variables of 𝑆𝑖𝑛 (Figure 3).  

4.1. Target-oriented Design Exploration 

This experiment demonstrates the applicability of the framework for providing assistance in the form of 

personalized ranges of the latent variable sliders to guide the user for target-oriented design generation 

on the learned latent manifold of the PC-VAE (Section 3.3, first scenario). Often the designer in the 

concept generation phase has some idea of a potential design target. Here, we considered a design target 

to be defined by the user as one of the car classes from the following car classes: "SUV", "Sedan", 

"Convertibles" and "Sportscar" as provided with labels by the ShapeNetCore data set. For example, if 

the user's target is to explore sports car designs, the user chooses "Sportscar" as the target car class from 

the above-mentioned car classes. Based on the selection of a target class (Sportscar) we need to estimate 

the region (cluster) in the latent manifold of the PC-VAE that represents the target sportscar designs to 

provide a personalized range of the latent sliders to the users. The user modifies the personalized latent 

sliders for changing the initial design (𝑆𝑖𝑛) to a 3D shape representing a sportscar design. 

However, many shapes from ShapeNetCore car classes are not labeled correctly. Thus, we used the 

shape generative capability of the PC-VAE to generate a cluster of similar yet different sportscar shapes 

from the 10 correctly labeled sportscar templates selected from the ShapeNetCore car dataset. We 

considered 10 distinct sportscar templates from the dataset with the "Sportscar" label after visual 

verification since various categories of sportscar exist in the dataset. From the 10 chosen sportscar 

template shapes, we estimated the latent distribution of these 10 shapes (𝜇𝑗, 𝜎𝑗, 𝑗 = 1,2, . .10) using the 

encoder of PC-VAE and sampled 10 latent representation 𝑧 (Eq. 1) from each of these 10 distributions 

(𝜇𝑗, 𝜎𝑗). Thus, exploiting the generative capability of the PC-VAE assists in generating a cluster of 100 

latent representations 𝑧 for the sportscar class. We analyze the latent variables of these 100 samples 

representing different types of sportscar designs and estimate the lower and upper limits (min and max 

values) of these 100 latent variables (𝑧𝑖 , 𝑖 = 1,2, . . ,5) to approximate the personalized ranges of the 

sliders in our framework. We use a similar template-based sampling approach to generate a cluster of 

100 latent variables for other target classes (SUV, sedan, and convertibles). 

In Figure 4.b), we show the latent distributions of the 100 samples from the target sportscar cluster and 

the initial design (𝑆𝑖𝑛) to determine the lower (𝑧𝑙𝑖
, 𝑖 = 1,2, . .5) and upper value (𝑧𝑢𝑖

) of each of the 5 

sliders. Next to customize the slider ranges before starting the GUI interface, we consider the latent 

variables of 𝑆𝑖𝑛 as one of the lower (𝑧𝑙𝑖
) or upper limit (𝑧𝑢𝑖

) of the slider and the other limit is determine 

from the latent variables of the target sportscar class (similar to the range of 𝑧2 , 𝑧3 , 𝑧4 𝑎𝑛𝑑 𝑧5 in Figure 

4.b). However, if a latent variable of 𝑆𝑖𝑛 is within the range of the target class latent range (similar to 

the range of 𝑧1 in Figure 4.b), we consider both the upper (𝑧𝑢1
) and lower limits (𝑧𝑙1

) of the target class 



as the personalized range of the slider 𝑧1. Thus, based on the selection of a target car class by the user, 

the templates of the selected target class are used to determine the personalized ranges of the latent 

variables (Figure 5.a).  

            
 a) 2D representation of the 5D latent variables of the training dataset and the target 

car class shapes. b) Distribution of the latent variables of the initial design (𝑺𝒊𝒏) and the 
selected target class templates.    

In addition, to visualize the distinct locations of these target car class designs in the latent manifold, we 

embedded the 5D latent space of the training dataset and 100 shapes from each cluster of the two-car 

classes (sedan and sports car) into a 2D representation using UMAP (Figure 4.a). We observed that the 

designs from the two target classes are located in a distinct region of the latent space, showing that the  

reliability of the latent representation since the sedan designs are very different from sports car designs.   

     
 Visualization of the interactive framework with personalized slider ranges to change 

the design topology from the initial design to a sportscar design. a) Initial design with 
customized slider ranges derived from Figure 4.b). b) First point cloud design (𝑺𝟏) generated 

with 𝒛𝟏 latent variable modification. c) Final design (𝑺𝒏) generated by moving the sliders. 

The framework loads the initial design (𝑆𝑖𝑛) with personalized slider ranges provided at the bottom of 

the GUI (Figure 5.a), where the current position of each slider reflects the value of the latent variables 

of 𝑆𝑖𝑛. The user is able to move each slider to generate new designs, where each design is automatically 

calculated by the PC-VAE decoder. The first design (𝑆1) is generated by changing only the latent 

variable 𝑧1 from the initial design (𝑆𝑖𝑛) (Figure 5.b). Modifying each latent variable modifies a region 

of the point cloud, and thus we measured the mean square distance (MSD) between the current and the 

previous design. The MSD value between each point of the current shape 𝑆1 and the previous design 

𝑆𝑖𝑛 is projected on each point onto the current 3D point cloud representation 𝑆1 as color maps (Figure 

5.b) to make it comprehensible to the user to display the region of modification in the generated point 

cloud concerning the current latent variable modification. Likewise, after a 𝑛 number of latent variable 

modifications the final design of the sports car class is generated (Figure 5.c). The color map in the final 

design (𝑆𝑛) shows the MSD difference between the point in the shape 𝑆𝑛 and previous shape 𝑆𝑛−1 (not 

shown in the Figure). Other than visually verifying that the final design 𝑆𝑛 is representing a sports car, 

we estimated the similarity of the final design with regards to the user target (selected 5 sports cars 

templates). We measured the pairwise similarity in the latent manifold between the final design and the 

selected templates from the sports car class and observed that these Euclidean distances are always lower 

than the maximum pairwise similarity between the sports car templates, demonstrating that the final 

generated shape (𝑆𝑛) belongs to the sports car cluster. Thus, this example illustrates the usability of our 



framework for guiding design exploration by suggesting personalized latent variable slider ranges to 

navigate in the latent manifold for modifying the initial shape to a 3D shape representing the target class. 

4.2. Performance Predictions of 3D Designs  

The second experiment demonstrates the applicability of our framework to provide real-time structural 

or functional performance estimation of the 3D designs by projecting the performance measure value 

onto each point of the 3D point cloud as color maps (Section 3.3, second scenario). Figure 6 illustrates 

the workflow of the framework combining both, the trained PC-VAE and the MLP as a surrogate model. 

In our experiment, we considered the MLP (Section 3.2) trained on the latent manifold of the PC-VAE 

for predicting performance measures of 3D designs. The two outputs of the MLP are normalized volume 

(V) measures and normalized drag coefficients (𝐹𝑥) between 0 and 1. Based on the selection of 

performance of interest by the designer, the pre-trained models provide a performance measure (V or 

𝐹𝑥) feedback to the designer through our user interface (Figure 6). 

    
 Schematic overview of the interactive framework for 3D shape volume prediction. 

Additionally, to visualize the organization of the latent manifold concerning performance measures, we 

considered 600 shapes from the dataset along with their performance metrics. We embedded our 5D 

latent representation of 600 shapes into a 2D representation using UMAP (Figure 7) and observed that 

the 2D latent representation is organized with respect to the performance measures, showing that 

exploring the distinct regions in the latent manifold provides designs with target performance measures. 

       
 2D latent representation of 3D car shapes organized with respect to two performance 

measures: a) Volume and b) Drag coefficient. 

After starting the GUI interface, the user observes the point cloud representation of the initial chosen 

design (𝑆𝑖𝑛), in which the normalized volume (V) is projected as color-map, along with sliders at the 

bottom of the GUI, which represent the latent variables of 𝑆𝑖𝑛. To illustrate the assistance of our 

framework not only for faster shape exploration on the latent manifold but also to predict the 

performances of the 3D designs from the latent manifold, we modify only one latent variable (𝑧2) of the 

initial design (𝑆𝑖𝑛) gradually to generate the updated shape 𝑆1 and 𝑆2 (Figure 8). We observe the 

maximum shrink in the back of the car roof in 𝑆1 and 𝑆2 (Figure 8. b) and c), indicating that the volume 

of 𝑆1 reduced from 𝑆𝑖𝑛, with further reduction in 𝑆2. We visualized the position of the 3 shapes (𝑆𝑖𝑛, 𝑆1 

and 𝑆2) in the 2D latent representation (Figure 7.a), and observed that all 3 shapes are in distinct regions 



in the 2D latent representation verifying the difference in volume color maps for the shapes. Thus, based 

on the real-time performance feedback, the designer can explore any region of the latent manifold to 

achieve a targeted performance design, which indicates that the system not only predicts the 

performance of the learned dataset but also predicts the performances of extrapolated designs from the 

latent manifold. 

          
 Visualization of the interactive framework for predicting volume (V) value and its 

projecting onto the 3D point cloud representation as color-maps: a) Initial point cloud design 𝑺𝒊𝒏 

with V= 0.58. b) First design 𝑺𝟏 generated by moving the latent variable 𝒛𝟐, with V = 0.4.          

c) Second design 𝑺𝟐 generated by further moving the latent variable 𝒛𝟐, with V=0.28.  

We also evaluated the framework for drag coefficient estimation (𝐹𝑥), which has higher significance for 

critical decision-making in computational design studies. Figure 9 shows the initial design (𝑆𝑖𝑛) color-

coded with normalized drag (𝐹𝑥), and 𝑆1 and 𝑆2 generated by modifying only the 𝑧2 latent variable, 

while keeping other latent variables similar to the initial design (𝑆𝑖𝑛). Additionally, to verify the 

accuracy of the MLP, we calculated the R-square (R2) score of the true and predicted volume (V) and 

drag coefficient (𝐹𝑥) measures for shapes (𝑆𝑖𝑛, 𝑆1 and 𝑆2). We observed a higher R2 score for volume 

(0.82) compared to that of drag estimation (0.70), suggesting that volume estimation is an easier task 

compared to predicting non-linear drag coefficient, which is in line with our finding in (Saha et al., 

2021a). Thus, this experiment illustrates the usability of our framework for performance-guided design 

exploration for generating shapes with target performance measures.  

          
 Visualization of the interactive framework for predicting normalized aerodynamic 

drag (𝑭𝒙) value and projecting onto the 3D point cloud representation as color-maps: a) Initial 

point cloud design 𝑺𝒊𝒏 with 𝑭𝒙= 0.72. b) First design 𝑺𝟏 generated by moving the latent variable 

𝒛𝟐, estimating 𝑭𝒙 = 0.51. c) Second design 𝑺𝟐 generated by further moving the latent variable 

𝒛𝟐, estimating 𝑭𝒙 = 0.38.   

5. Conclusion 
In automotive design development, CAD/E tools provide a means for altering shapes and simulating 

performance measures of 3D designs. However, these tools do not follow a data-driven approach to 

assist and guide the designer in a digital design development process. In this paper, we address this 

challenge by proposing a basic data-driven-based cooperative design system (CDS) that serves as an 

assistance system for the designers to explore design ideas. We use the advantage of data-driven 



generative models to create a low-dimensional data-manifold (latent manifold) for easy explorations of 

3D designs through our proposed framework. Further, the CDS provides assistance in two forms: First, 

it provides direction indications for exploring the latent manifold to generate target-oriented designs. 

Second, it predicts performance measures of the generated shape based on the position in the latent 

manifold, enabling the designers to explore designs taking into account the estimated performances of 

different domains. However, it is not necessary to follow the recommendation at each step of the design 

modification and the designer can explore any region of the latent manifold. 

Thus, the present results show a promising step toward using geometric deep learning-based systems as 

an additional tool in the automotive design exploration phase, which provides the benefit of combining 

knowledge from data-driven AI models and human experience. However, there are open 

challenges that need to be addressed. From a representation point of view, designers may need to 

recreate CAD/E models from the point cloud representation which is a reverse engineering process, e.g. 

through shrink-wrapping methods, but still may require manual work. Also, it is important to consider 

that data-driven methods rely on existing past data and as a consequence limit the space of exploration. 

Here, transfer learning methods may offer further options to allow for optimizing in a wider design 

search space. 
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