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Abstract—Dynamic multi-objective optimization problems
(DMOPs) with a changing number of objectives may have Pareto-
optimal set (PS) manifold expanding or contracting over time.
Knowledge transfer has been used for solving DMOPs, since
it can transfer useful information from solving one problem
instance to solve another related problem instance. However,
we show that the state-of-the-art transfer approach based on
heuristic lacks diversity on problem with extremely strong bias
and loses convergence on problems with multi-modality and
variable correlation, after the number of objectives increases and
decreases, respectively. Therefore, we propose a novel transfer
strategy based on learning, called learning to expand and contract
PS (denoted as LEC) for enhancing diversity and convergence
after number of objective increases and decreases, respectively.
It firstly learns potentially good directions for expansion and
contraction separately via principal component analysis. Then,
the most promising expansion and contraction directions are
selected from their candidates according to whether they help
diversity and convergence, respectively. Lastly, PS is learnt to
be expanded and contracted based on these most promising
directions. Comprehensive studies using 13 DMOP benchmarks
with a changing number of objectives demonstrate that our
proposed LEC is effective on improving solution quality, not
only right after changes but also after optimization of different
generations, compared to state-of-the-art algorithms.

Index Terms—Evolutionary algorithms, Multi-objective opti-
mization, Dynamic optimization, Changing objectives, Learning
to optimize, Knowledge transfer

I. INTRODUCTION

In the field of dynamic multi-objective optimization, most
existing work focus on solving dynamic multi-objective opti-
mization problems (DMOPs) with changing position/shape of
Pareto sets (PSs) and/or Pareto fronts (PFs) [1] [2]. However,
DMOPs characterised by changes in the number of objectives
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(NObj) over time [3], also widely exist in project scheduling
[4, 5], resource allocation [6, 7], etc. Such dynamics may
cause the manifold where the Pareto-optimal solutions are
located to expand or contract [3]. For instance, an increase
in the NObj may result in the PS expanding along a given
dimension of the solution space, incorporating new Pareto-
optimal solutions that were not Pareto-optimal before the
number of objectives increased. Similarly, a decrease in the
NObj means that some solutions that were previously in the PS
will not be Pareto-optimal anymore, potentially contracting the
PS along a given dimension in the solution space. Considering
this characteristic, knowledge transfer is a promising direction
for solving DMOPs with a changing NObj [3, 8], since it
can transfer useful information shared by PSs before and after
changes to help the PS expansion or contraction.

Dynamic two archive evolutionary algorithm (DTAEA) [3]
is a recent transfer approach for tackling changes in the NObj.
However, DTAEA was computationally revealed in [8] to lose
diversity when solving problems with complex features. These
features are reflected in PF shapes (convex, discontinues and
mixed shape of convex and concave) and fitness landscapes
(nonseparability and deceptiveness). To address this limitation,
knowledge transfer dynamic multi-objective evolutionary algo-
rithm (KTDMOEA) [8] was proposed to enhance diversity via
explicit heuristic rules for PS expansion or contraction. Com-
putational studies demonstrated that KTDMOEA performed
better than DTAEA on most problems.

However, we show that knowledge transfer via PS expan-
sion in KTDMOEA is unable to increase quickly enough
diversity on problems with extremely strong bias, since the
heuristic used by KTDMOEA for setting the PS expansion
direction fails to work for this kind of problems. We also
show that, when decreasing the NObj, solutions transferred
by KTDMOEA have poor convergence on problems with
multi-modality and variable correlation. One reason is that
the multi-modality and variable correlation cause solutions
previously converged in the old environment to be far away
from the true PF after decreasing the NObj. Another one is
that solutions transferred along heuristically found contraction
directions by KTDMOEA only aim at improving population
diversity without any improvement on convergence.

Utilizing the right directions for expansion and contraction
is essential for such kind of algorithm to perform well right
after a change in the NObj. However, it is almost impossible
to obtain correct expansion and contraction directions directly
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without doing any exploration of the new problem right after
changes, since no prior knowledge about the new problem
is available. Therefore, given the limitation of heuristic rules
in finding PS expansion and contraction directions of KTD-
MOEA, we propose a novel approach that automatically learns
candidate directions for expansion and contraction by mining
the data feature of the PS before the change. Then, it selects the
right expansion and contraction directions according to certain
criteria from these candidate directions after exploration of
the new problem beyond the evaluation of existing candidate
solutions on the new set of objectives.

We aim to answer the following research questions (RQ):

RQ1 How to learn potentially good directions for PS expan-
sion and contraction so as to enhance knowledge transfer
right after changes?

RQ2 How does learned PS expansion and contraction help
the optimization process after the changes?

To answer these RQs, we first propose to conduct Principal
Component Analysis (PCA) on the PS of the previous problem
to get eigenvectors. Then, when increasing the NObj, we
learn candidate expansion directions from those directions per-
pendicular to these eigenvectors; when decreasing the NObj,
we learn candidate contraction directions by regarding these
eigenvectors as the candidate contraction directions. Last, we
select the most promising expansion and contraction directions
based on which candidate expansion helps diversity and which
contraction helps convergence, so as to enhance the diversity
and convergence of expanded and contracted PS, respectively.
Experimental studies based on 13 benchmarks problems and
3 real-world problems for DMOPs with a changing NObj,
demonstrate the effectiveness of our proposed approach in
terms of solution quality both (1) right after changes, and (2)
beyond the changes, after further optimization.

Our novel contributions are summarized as follows:

• Comprehensive experiments have been carried out on rep-
resentative DMOPs with a changing NObj to understand
the limitations of the state-of-the-art transfer algorithm
KTDMOEA. Our analyses reveal that its knowledge
transfer via PS expansion and contraction (1) still lacks
diversity on the problem presenting extremely strong bias
when increasing NObj, and (2) has poor convergence
on problems with multi-modality and variable correlation
when decreasing the NObj.

• A novel knowledge transfer-based strategy, called learn-
ing to expand and contract PS (denoted as LEC), is
proposed, to enhance diversity and convergence for in-
creasing and decreasing NObj, respectively. LEC expands
and contracts PSs after learning promising expansion and
contraction directions under the assistance of PCA.

• Systematic computational studies have been conducted
to compare LEC with 4 algorithms on 13 benchmarks
problems and 3 real-world problems for DMOPs with a
changing NObj under different frequencies and types of
changes in the NObj. Experimental results have shown
that our algorithm is competitive in terms of solution
quality right after changes and after further optimization
against 4 compared algorithms.

The remainder of this paper is organized as follows. Section
II presents related work on DMOPs with a changing NObj and
evolutionary transfer optimization as well as the motivation of
our proposal. LEC is elaborated in Section III. Section IV
describes the experimental setup. The experimental results are
in Section V. Section VI concludes this paper.

II. RELATED WORK AND MOTIVATION

This section first reviews related work on DMOPs with a
changing NObj and evolutionary transfer optimization. Then, a
computational investigation of the existing work KTDMOEA
[8] is conducted to reveal its limitations on solving DMOPs
with a changing NObj.

A. DMOPs with a Changing NObj

1) Problem Formulation: In this paper, we focus on con-
tinuous DMOPs defined as follows:{

min F(x, t) =
(
f1(x, t), . . . , fm(t)(x, t)

)T
,

s.t. x ∈ Ω, t ∈ Ωt,
(1)

where t is a discrete time defined as t = ⌊ τ
τt
⌋, τ and τt

refer to the iteration counter and the frequency of changes,
respectively; x = (x1, ..., xn) is a candidate solution; Ω ⊆ Rn

is the decision (variable) space; Ωt ⊆ R is the time space;
F(x, t) : Ω×Ωt → Rm(t) is the objective function vector that
evaluates a candidate solution x at time t; m(t) is the number
of objectives at time t, where m(t) ̸= m(t+ 1) meaning that
the NObj changes over time.

It is particularly important to obtain new good solutions
right after changes, even though one may also be interested in
good solutions after further optimization is carried out. The
reason is that obtaining good solutions right after changes
enables environmental changes with different frequency of
change to be quickly responded to, especially under very
high frequency of change, such that solutions can be quickly
deployed before the next change.

2) Related Work: The possibly earliest work on DMOPs
with a changing NObj is [9]. Even though this topic has been
later mentioned in [10–12], few studies have been done on
it until recently in [3], where a comprehensive investigation
of the challenges of DMOPs with a changing NObj was con-
ducted. Specifically, solutions tend to get crowded in certain
areas, lacking diversity after increasing NObj, and solutions
are not converged and nor diversified after decreasing NObj.

a) DTAEA and KTDMOEA: Facing the challenges, dy-
namic two archive evolutionary algorithm (DTAEA) [3] was
proposed. DTAEA simultaneously maintains two complemen-
tary archives, convergence archive (CA) and diversity archive
(DA), both right after changes and in the evolution process
to focus on population convergence and diversity, respec-
tively.Computational studies in [3] demonstrated that DTAEA
was effective on DMOPs with a changing NObj presenting
simple problem features. However, it has been experimentally
shown in [8] that DTAEA lacks diversity right after changes
when facing complex problem features in PF shape (discon-
tinues, etc) and fitness landscape (nonseparability, etc).
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To overcome DTAEA’s limitation, KTDMOEA [8] was
proposed to enhance diversity via PS expansion and con-
traction. The main idea is first to heuristically find certain
directions for PS expansion and contraction, and then generate
transferred solutions along the directions. KTDMOEA outper-
formed DTAEA on most problems with complex problems
features mentioned before. However, as we will show in
Section II-C, KTDMOEA still lacks diversity on the problem
with extreme bias right after increasing the NObj, and loses
convergence on problems with multi-modality and variable
correlation right after decreasing the NObj. Our analysis in
Section II-C shows that the heuristic rules for PS expansion
and contraction do not work well for these problems.

b) Solution Generation in PS Expansion of KTDMOEA:
This paragraph describes the solution generation method based
on a population and a set of directions from PS expansion of
KTDMOEA [8] after finding the expansion directions. Given
a population Pop with size N and a set of directions D with
size ND, to generate a new population based on Pop and D,
some solutions are firstly selected from Pop as base solutions
(denoted as Pbase) with the number of Nbase. Then, for each
solution x in Pbase and each direction Di in D, generate one
new solution xnew using the following equation:

xnew = x + ss ∗ rand() ∗ Di, (i = 1, ..., ND), (2)

where ss is the step size whose calculation is presented in
the next paragraph and rand() samples a number uniformly
at random from (0, 1].

The calculation of ss should follow the criterion that solu-
tions (i.e., x+ ss ∗Di) generated from any solution x and one
direction Di are within the bound of each decision variable and
they should reach the boundary of the search space. Bearing
this criterion in mind, the calculation of ss was designed in
[8]. Given a solution x and one direction Di, suppose parak is
the value that makes the k-th variable of the generated solution
reach the boundary of this variable. Therefore, each parak can
be calculated according to whether the k-th element of Di is
positive or negative, via the following equation:

parak =


upperk−xk

Dk
i

, Dk
i > 0

lowerk−xk

Dk
i

, Dk
i < 0

(3)

where upperk and lowerk are the upper bound and lower
bound of the k-th dimension of the decision space; xk is the
k-th decision value of x; Dk

i is the value of the direction Di at
the k-th dimension. In order to ensure each generated solution
is located within the region, ss = min

k=1,...,n
parak, where n is

the dimension of the decision space.

B. Evolutionary Transfer Optimization

People have recently exploited the use of knowledge transfer
in evolutionary computation to tackle multitasking optimiza-
tion problems [13–16] and dynamic multi-objective optimiza-
tion problems [17]. Specifically, knowledge transfer is able to
learn useful knowledge from related problem instances to solve
the targeted problem instance [13, 14]. However, evolutionary
multi-tasking optimization (EMT) [13–16] differs from our

scenario here. The reason is that EMT considers solving mul-
tiple tasks simultaneously, while our work considers solving
different problem instances sequentially as the environment,
in particular the NObj, changes over time. At any given time,
we solve only one problem instance, not multiple ones.

For dynamic multi-objective optimization, knowledge trans-
fer was shown to help predicting good solutions for the
next change based on previously optimized solutions and
many outstanding algorithms have beeen proposed [18–21].
However, these knowledge transfer-based DMOEAs have not
considered and cannot tackle DMOPs with a changing NObj,
since they were designed to track the changing position or
shape of PSs or PFs rather than expand or contract PS/PF.
An increase/decrease in the NObj means that new solutions
are added/removed from the PS rather than resulting in the
formation of a trend in the changing position of the PS.
Therefore, algorithms able to expand/contract the PS [8] may
be more suitable, which can be supported by experimental
results of KTDMOEA [8]. In general, it is always very
challenging to decide when and how to transfer in DMOPs
[22, 23], since bad answers to these questions would result in
worse solutions by transfer than without transfer.

C. A Computational Investigation of KTDMOEA

Even though KTDMOEA has been computationally demon-
strated in [8] to be effective on DMOPs with a changing
NObj, it has limitations on some problems. Specifically, we
show in this section that it lacks diversity on the problem
with extremely strong bias right after increasing the NObj,
and loses convergence on problems with multi-modality and
variable correlation right after decreasing the NObj. To analyze
the limitations of KTDMOEA, F4 with extremely strong bias
and F3 with multi-modality and variable correlation, from
the DTLZ suite [3], are selected as examples to conduct an
experimental investigation of how the quality of solutions
transferred by KTDMOEA is after the NObj changes. At the
same time, another problem F2 which has the same PF shape
as F3-F4 and no problem feature in the fitness landscape was
also selected from the DTLZ suite [3] as a base comparison.

Specifically, when increasing NObj, problems F2 and F4
are set as bi-objective problem and then given 1000 gener-
ations by KTDMOEA to make population approximate true
PF well before increasing the NObj from 2 to 3. Similarly,
when decreasing the NObj, problems F2 and F3 are set as
a tri-objective problem and then given 1000 generations by
KTDMOEA to make population approximate true PF well
before decreasing the NObj from 3 to 2. In these two examples,
other parameters are the same as in KTDMOEA paper [8].

1) Analyses of Increasing NObj: Figs. 1 and 2 show the
distribution of approximated population given 1000 genera-
tions on bi-objective problems and solutions transferred by
PS expansion of KTDMOEA at the first generation right after
increasing NObj from 2 to 3 on F4 and F2, respectively. As
shown in Figs. 1(b) and 2(b), the extreme point (‘ExPoint’) is
firstly selected from the old population (‘OldPop’). A detective
population (‘DetePop’) is then randomly generated around the
extreme point in the solution space. Solutions dominated by



IEEE JOURNAL 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 2
True PF
Pop

(a) Approximation on bi-F4

0
00

0.2

0.4

0.2

f 3

0.6

0.4

f1

0.5

0.8

f2

1

0.6
0.8

11

PF
OldPop

ExPoint
DetePop

(b) After increasing one NObj
Fig. 1. (a) Distribution of approximated population on bi-F4; (b) Distribution
of the old population (‘OldPop’), i.e., reevaluating ‘pop’ obtained in (a) on the
tri-F4, the extreme point (‘ExPoint’), the detective population (‘DetePop’), all
used to find the expansion directions. Transferred solutions by KTDMOEA on
F4 are still on the curve of ‘OldPop’, thus not being plotted to avoid solutions
duplication, and failing to spread through the PF.
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Fig. 2. (a) Distribution of approximated population on bi-F2; (b) Distribution
of the old population (‘OldPop’), i.e., reevaluating ‘pop’ obtained in (a) on the
tri-F2, the extreme point (‘ExPoint’), the detective population (‘DetePop’), all
used to find the expansion directions in the objective space, and transferred
population(‘TrPop’) via PS expansion in KTDMOEA.

the old population and solutions located in the same subspace
as any solution of the old population will be deleted from
the detective population. The extreme point and the remaining
solutions in the detective population are connected to form
the expansion directions by regarding the extreme point as the
start of these directions.

However, when observed in the objective space (Fig. 1(b)),
there will be no solution in the detective population after
removing solutions dominated by the old population and
located in the same subspace as any solution of the old
population, resulting in no expansion directions to be found.
As a comparison, there are still two solutions in the detective
population for F2 without the feature of strong bias (Fig. 2(b)),
forming expansion directions together with the extreme point.

The reason is that the feature of strong bias in the fitness
landscape of F4 hinders solutions with diversity to be gener-
ated in the detective population. More specifically, for most
possible values of each variable (xi) within the range [0,1],
the intermediate function (i.e., y = x100

i ) containing the feature
of strong bias which forms the objective function of F4 maps
them to the value of nearly zero. Therefore, most randomly
generated solutions around the extreme point would have the
same objective value as that of the extreme point, appearing
duplicated in the extreme point, as shown in 1(b).

2) Analyses of Decreasing NObj: Figs. 3 and 4 show the
distribution of approximated population given 1000 genera-
tions on tri-objective problems and solutions transferred by
PS contraction of KTDMOEA at the first generation right after
decreasing NObj from 3 to 2 on F3 and F2, respectively. We
can find (1) from Fig. 3(a) that the population is converged on
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Fig. 3. Distribution of approximated population on tri-F3 and solutions
transferred by PS contraction of KTDMOEA at the first generation right after
decreasing NObj from 3 to 2 on F3.

0

0.2

0

0.4

0.6

0.8

0

f 3

1

1.2

0.20.40.5

f2 f1

0.60.81 1

True PF
Pop

(a) Approximation on tri-F2

0 0.2 0.4 0.6 0.8 1 1.2

f1

0

0.2

0.4

0.6

0.8

1

1.2

f 2

True PF
TrPop
OldPop

(b) After decreasing one NObj
Fig. 4. Distribution of approximated population on tri-F2 and solutions
transferred by PS contraction of KTDMOEA at the first generation right after
decreasing NObj from 3 to 2 on F2.

F3 when NObj = 3; and (2) from Fig. 3(b) that the population
is far away from the true PF after decreasing the NObj from
3 to 2. This phenomenon does not occur on F2 (Fig. 4). The
comparison between F2 and F3 shows that it is the problem
feature difference of F2 and F3 (multi-modality and variable
correlation) that causes the phenomenon difference.

To simplify presentation, in Fig. 3(b) and Fig. 4(b), the
non-dominated set of the old population (black diamonds) is
denoted as NDSO; red circles near the f2 axis are denoted as
SpTrS; red circles between two black diamonds are denoted as
EvTrS. The heuristic rule used in KTDMOEA’s PS contraction
only aims at improving population diversity in terms of spread
and even distribution. For spread, KTDMOEA first (1) selects
one extreme point and its nearest solution from NDSO, and
(2) generates spread solutions (i.e., SpTrS) along the inverse
direction from the extreme point and its nearest solution. For
even distribution, evenly distributed solutions (i.e., EvTrS) are
generated by selecting any two solutions from NDSO.

We can find from Fig. 3(b) that transferred solutions (i.e.,
red circles) do not have better convergence than the old
population (i.e., black diamonds). Therefore, the heuristic rule
in the PS contraction of KTDMOEA is unable to increase
population convergence when decreased NObj degenerates
population convergence on problems with multi-modality and
variable correlation.

III. LEARNING TO EXPAND AND CONTRACT PSS (LEC)

Given the limitations of heuristic rules in KTDMOEA when
expanding and contracting PS regarding unable to (1) deter-
mine expansion directions for problems with extremely strong
bias and (2) improve population convergence for problems
with variable correlation and multi-modality, it is essential to
learn how to expand and contract the PS. Therefore, in this
section, we present our proposed knowledge transfer-based
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Fig. 6. Method of learning the candidate expansion and contraction directions
for increasing and decreasing NObj, respectively: (a), ev is the eigenvector
of the found PSm=2 (converged) and d1 to d3 are three directions that are
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the three candidate expansion directions (b), ev1 and ev2 are two eigenvectors
of found PSm=3, which are also the candidate contraction directions.

strategy, i.e., learning to expand and contract PSs (LEC), an-
swering RQ1. This strategy contains three procedures that need
to be carried out sequentially: (1) learning candidate expansion
or contraction directions under the assistance of PCA (Section
III-A), (2) selecting the most promising directions among these
candidate expansion or contraction directions according to
which candidate expansion direction improves diversity and
which contraction direction improves convergence (Section
III-B), and (3) PS expansion or contraction (Section III-C).

Note that our proposed LEC is conducted right after
changes. After LEC is conducted, the population can be further
optimized by any existing algorithm. Fig. 5 illustrates the
flowchart of a DMOEA using our proposed LEC strategy.

A. Learning Candidate Expansion and Contraction Directions

1) Learning Candidate Expansion Directions: This section
aims at learning candidate expansion directions from PS before
the change under the assistance of PCA, as illustrated in Fig.
6(a). Note this figure is just drawn to illustrate the process of
learning the expansion directions; the specific solutions in real
problems may be different. As shown in the figure, suppose
the red circle points are the found PSm=2 before the change,
and ev is the eigenvector obtained by conducting PCA on
PSm=2. Then, d1 to d3 are three of many candidate expansion
directions, which are perpendicular to PSm=2.

We assume that PSt is a subset of PSt+1 when the NObj
increases, by following Theorem 1 of [3]. Hence, PSm=2

manifold is a subset of PSm=3. Assume PSm=3 manifold is
a plane, then PSm=2 manifold could be a segment line in this
plane, where the PS manifold is the location of Pareto-optimal
solutions in the solution space. However, we acknowledge that
in the most generic case the relationship between PS and PF
may change when the NObj changes, such that PSt is not
always a subset of PSt+1 when the NObj increases.

It is well-known in geometry that two intersecting lines in
space determine a plane. Therefore, there are infinite lines in

Algorithm 1: Learning Candidate Expansion Direc-
tions
Input: PS at time step t before the change (PSt);

re-evaluated solutions of PSt on the new
problem after the change (i.e., time step t+ 1)
OldP; population size N ; the NObj for the old
problem before the change m(t); dimension of
the problem n;

Output: Set of candidate expansion directions Dp or
NULL.

1 Conduct principal component analyses on PSt to get
m(t)-1 eigenvectors evs;

2 Initialize a set of N vectors Dp = (D1
p, ...,Dj

p, ...,DN
p )

with all elements (d1j to dnj ) in Dj
p as null value;

3 Form N system of n-variable homogeneous linear
equations: Dj

p ∗ evi = 0 (i = 1, ...,m(t)− 1);
4 Sample N (n−m(t) + 1)-d vectors as Vec using Latin

hypercube sampling with all elements within [0,1] ;
5 for j = 1 to N do
6 Assign Vecj to the first n−m(t) + 1 elements of

Dj
p, i.e., dkj = Veckj (k = 1, ..., n−m(t) + 1) ;

7 Solve the (m(t)− 1)-variable equation set in line 3
and get value of dn−m(t)+2

j to dnj in Dj
p ;

8 Convert Dj
p to a unit vector;

end
Return Dp.

the PS manifold of tri-objective problem that have intersec-
tions with the eigenvector of the PSm=2, since PSm=3 mani-
fold is the expansion of PSm=2 manifold along certain direc-
tions. However, there is only one unit vector and its inverse
vector on PSm=3 that are perpendicular to the eigenvector of
the PSm=2. Therefore, only the directions perpendicular to
the PSm=2 are selected as the candidate expansion directions,
reducing the number of candidate expansion directions.

LEC will create a set of size N containing evenly sampled
perpendicular vectors to the PS of the previous environment
as the candidate expansion directions. The framework of
learning candidate expansion directions is in Algorithm 1.
Given the Pareto optimal solution set at the time step t (PSt)
before the change, the first step of learning the candidate
expansion directions is conducting PCA on PSt, to get the
eigenvectors (evs), as shown in line 1 of Algorithm 1. The
number of the eigenvectors is m(t) − 1, as the PS of a
continuous multiobjective optimization problem with m(t)−1
is a piecewise continuous m(t) − 1-D manifold [3] [24]. In
line 2, suppose Dp = (D1

p, ...,Dj
p, ...,DN

p ) is a set of N
vectors, which are perpendicular to these eigenvectors (i.e.,
evi), where each vector in Dp is initialized with null values,
i.e., Dj

p = (d1j , ..., d
n
j ) = (null, ..., null), where d1j to dnj are

the variables we want to obtain from steps 3 to 7.
Afterwards, a system of homogeneous linear equations is

constructed in line 3 by the fact that the product of two
orthogonal vectors (i.e., ev and candidate expansion directions
Dj

p) is zero. Note the number of homogeneous linear equations
is m(t)− 1, since there are only m(t)− 1 eigenvectors (i.e.,
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Algorithm 2: Learning Candidate Contraction Di-
rections

Input: PS at time step t before the change (PSt)
Output: Set of the learnt candidate contraction

directions Ccon or NULL.
1 Conduct principal component analyses on PSt to get

m(t)-1 eigenvectors as evi, where i = 1, ...,m(t)− 1;
2 Put these eigenvectors, i.e., ev1, ..., evm(t)−1 in Ccon;

Return Ccon.

evis, i = 1, ...,m(t) − 1). Now, there are only m(t) − 1
homogeneous linear equations while n variables (i.e., d1i to
dni ) to get. It is known that there are infinite solutions for this
set of linear equations. To support the creation of directions
that evenly cover the space, we create a set Vec containing
N evenly sampled vectors with dimension n − m(t) + 1
within a unit hypercube. To make solutions of the m(t) − 1
homogeneous linear equations with n variables finite, the
values of n−m(t)+1 variables must be assigned beforehand,
which are from Vec.

The ‘for’ loop from lines 5 to 8 calculates values of d1j to dnj
for Dj to construct N vectors (D1

p to DN
p ) and converts them

to unit vectors as candidate expansion directions. Specifically,
line 6 puts the values of the j-th sampled vector (Vecj) into the
first n−m(t)+1 positions of the j-th vector of Dp (i.e., Dj

p).
Then, line 7 calculates values of dn−m(t)+2

j to dnj after putting
d1j to d

n−m(t)+1
j in the system of m(t)−1 homogeneous linear

equations. Now, all values of d1j to dnj in Dj
p are obtained.

Then line 8 converts Dj
p to a unit vector. Once all N vectors

in Dp are created, they are returned as the candidate expansion
directions.

2) Learning Candidate Contraction Directions: This sec-
tion aims at learning candidate contraction directions from the
PS that was available right before the change based on PCA,
as illustrated in Fig. 6(b). Note this figure is just drawn to
demonstrate the process of learning PS contraction directions,
the specific cases in real problems may be different. As shown
in Fig. 6(b), black points are the found PSm=3 before the
change; ev1 and ev2 are two eigenvectors of PSm=3, which
are regarded as the candidate contraction directions.

The method for learning candidate contraction directions
is described in Algorithm 2. Given a set of Pareto optimal
solutions at the time step t (PSt) before the change, the
first step of learning the candidate contraction directions is
conducting PCA on PSt, to get the eigenvectors (evs), as
shown in line 1 of Algorithm 2. Then, in line 2, regard these
eigenvectors as the candidate contraction directions and put
them in Ccon to return.

B. Selecting Most Promising Expansion and Contraction Di-
rections Among the Generated Candidate Directions

1) Selection of Expansion Directions to Improve Diversity:
The selection criterion of the most promising expansion di-
rections is to see which candidate direction does not result in
dominated solutions by any solution in reevaluated PS of the

Algorithm 3: Most Promising Expansion Directions
Selection
Input: Candidate expansion directions Dp;

re-evaluated solutions of PSt on the new
problem after the change (i.e., time step t+ 1)
OldP; population size N ;

Output: Set of the most promising expansion
directions Dexp or NULL.

1 Randomly sample a solution x from OldP;
2 for i = 1 to N do
3 Generate a solution y based on x and Di

p using
Equation (2);

4 Evaluate y and compare it to all solutions in OldP;
5 if no solution in OldP dominating y then

Put Di
p into Dexp;

end
end
Return Dexp.

previous environment on the new problem. Since increasing
the NObj may lead to the expansion of PF [3], it is intuitive
that population diversity increases after the expansion of
PF. Therefore, solutions generated along the most promising
expansion directions will improve population diversity.

The process of selecting most promising expansion direc-
tions from their candidates is in Algorithm 3. Given the set of
candidate expansion directions Dp and re-evaluated solutions
of PSt on the new problem after the change (i.e., time step
t + 1) OldP, a solution x is firstly randomly sampled from
OldP in line 1. For each candidate direction in Dp, generate
a solution y based on x and Di

p using Equation (2). Then,
evaluate y and compare it to all solutions in OldP; if y is not
dominated by any solution in OldP, then add this candidate
direction to the set of expansion directions Dexp.

2) Selection of Contraction Directions to Improve Conver-
gence: The selection criterion of the most promising con-
traction directions is to see which candidate direction results
in solutions with better convergence. Since decreasing the
NObj may lead to the contraction of PF/PS [3], solutions
used to be optimal may not be optimal after the change.
Therefore, solutions moving from positions of past optimal
solutions to the positions of new optimal solutions along the
most promising contraction direction will improve population
convergence to help them reach the new, contracted PS/PF.

The process of selecting the most promising expansion
directions from their candidates is in Algorithm 4. Given the
set of candidate expansion directions Cexp and re-evaluated
solutions of PSt on the new problem after the change (i.e.,
time step t + 1) OldP, a solution x is firstly randomly
sampled from OldP in line 1 of Algorithm 4. Since PS of a
continuous m(t)- objective MOP is an (m(t) - 1)-dimensional
piecewise continuous manifold in the decision space, there
are (m(t) - 1) candidate expansion directions in Cexp. In
order not to consume too much function evaluations, we make
total generated solutions to find the most promising contrac-
tion directions not exceed the population size N . Therefore,
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Algorithm 4: Most Promising Contraction Direc-
tions Selection

Input: Candidate contraction directions Ccon;
re-evaluated solutions of PSt on the new
problem after the change (i.e., time step t+ 1)
OldP; population size N ; the NObj for the old
problem before the change m(t)

Output: Set of the most promising contraction
directions Dcon or NULL.

1 Randomly sample a solution x from OldP;
2 for i = 1 to m(t)− 1 do
3 Generate ⌊N/(m(t)− 1)⌋ solutions yj

(j = 1, ..., ⌊N/(m(t)− 1)⌋), based on x and
Ci

con, using Equation (2);
4 Put these generated solutions (yj) into Y ;
5 Evaluate these generated solutions and compare

them to x;
6 if ∃yj ∈ Y dominates x then

Put Ci
con into Dcon.

end
end
Return Dcon.

for each candidate contraction direction in Ccon, generate
⌊N/(m(t) − 1)⌋ solutions yj based on x and Ci

con using
Equation (2). Later on, in line 4, these generated solutions
(i.e., yj) are put into the set Y. These generated solutions are
evaluated and compared to x; if there exist one solution yj ∈ Y
dominating x, then put evi into Dcon.

C. PS Expansion and Contraction

After determining the most promising expansion and con-
traction directions, the next step is to expand and contract
PSs for enhancing diversity and convergence when increasing
and decreasing NObj, respectively. Note that the enhanced
diversity and convergence by our proposed PS expansion and
contraction are in the objective space rather than the decision
space. In particular, whenever we use the term diversity in this
paper, we are referring to population diversity in the objective
space. If no expansion or contraction directions are found
based on the procedures from Sections III-A and III-B2, the
population from the old environment is directly copied as the
initial population of the new environment.

1) Diversity-Enhancing PS Expansion: The process of ex-
panding PS to enhance diversity after determining the most
promising expansion directions is the same as that of KTD-
MOEA [8]. The main idea is to evenly select some solutions
from the PS before the change as the base solutions, and then
generate a new population based on these base solutions and
the learnt expansion directions. Specifically, after determining
the expansion directions Dexp, we generate θ (a parameter
set by the user) solutions based on each evenly selected
solution from OldP along each direction from Dexp, following
Equation (2). If Pexp is not full, just evenly select solutions
from PSt in the objective space. Note that in our proposed
LEC, the learning-based PS expansion is conducted right after

increasing the NObj. The expanded PS Pexp is regarded as the
initial population for the optimization of the new problem.

2) Convergence Enhancing PS Contraction: The process
after determining the most promising contraction directions is
to contract the PS along these learnt contraction directions for
enhancing convergence. The main idea is to randomly select
some solutions from the PS before the change as the base
solutions, and then generate a new population based on these
base solutions and the learnt contraction directions. In partic-
ular, we randomly select λ solutions from PSt and put them
in the set Pbase. The size of the learnt contraction directions
Dcon is Ncon. Then, to make the number of generated solutions
from each selected solution along each contraction direction
equal and generated solutions not exceed the population size
N , we generate Ng = ⌊ N

Ncon∗λ⌋ solutions based on each
solution in Pbase along each contraction direction in Dcon,
following Equation (2) in Section II-A2b, and put them into
Pg . Afterwards, we combine evaluated Pg and PSt, and
select solutions with the number of N as the contracted PS
Pcon using nondominated sorting and decomposition-based
density estimation from [8]. Note that in our proposed LEC,
the learning-based PS contraction is conducted right after
decreasing the NObj. The contracted PS Pcon is regarded as
the initial population for the optimization of the new problem.

D. Time Complexity Analysis

The time complexity of LEC is discussed in this subsection
for one generation. When increasing or decreasing the NObj,
the PS expansion or contraction is evoked. In the case of
increasing NObj, the main complexity of PS expansion is the
cost of PCA (line 1 of Algorithm 1) and of solving systems
of homogeneous linear equations with m(t)−1 variables (line
7 within the ‘for’ loop of Algorithm 1) for learning candidate
expansion directions. The former consumes O(m(t)2) and
the latter costs O(Nm(t)2), where m(t) is the number of
objectives at time step t. As for the case of decreasing the
NObj, the PCA in line 1 of Algorithm 2 cost O(m(t)2);
while the nondominated sorting and density estimation (Sec-
tion III-C2)) consume O(N2) and O(N |W (t)|), respectively,
where W (t) is the number of weight vectors at time step t.
As LEC utilizes the CA update mechanism from DTAEA to
update the population, the population update in LEC costs
O(N2) comparisons. In summary, assuming that N > W (t)
and N > m(t), complexity of LEC in one generation is
max(O(Nm(t)2), O(N2)).

IV. EXPERIMENTAL SETUP

This section shows the experimental design to verify
whether LEC successfully answers RQ1, to answer RQ2, and
to reveal whether existing DMOEAs for DMOPs are able to
deal with a changing NObj despite not being designed to do
so (these are important baselines).

A. Benchmark Problems

Two suites of multi-objective optimization test problems
DTLZ [25] and WFG [26] are modified to be DMOPs with
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a changing NObj. Four DMOPs with a changing NObj from
DTLZ1-DTLZ4 are renamed as F1-F4 following [3]. These
two suites are used to verify LEC’s ability to deal with
problems with different problem features. Descriptions of such
features can be found in Section I of our Supplementary File.

The sequence of changes for these benchmark problems is:
the NObj firstly increases from 2 to 7 one by one and then
decreases from 7 to 2 one by one as [3], which is shown
below:

m(t) =

 3, t=1
m(t− 1) + 1, t ∈ [2,5]
m(t− 1)− 1, t ∈ [6,10]

(4)

B. Compared Algorithms

Four algorithms are selected for the comparison, so as to
verify the performance of our proposal against the state-of-
the-arts. Two popular and state-of-the-art DMOEAs including
DNSGA-II [27] and MOEA/D-KF [28] specifically designed
for DMOPs with changing shapes and/or positions of PS
and/or PF are selected as the baselines. These two algorithms
are selected as the baselines due to their popularity and good
performance on solving DMOPs with changing shapes and/or
positions of PS and/or PF. To verify whether LEC answers the
research questions mentioned in Section I, as two of recently
developed algorithms targeted for handling changes in the
NObj, DTAEA [3], and KTDMOEA [8] are also chosen to
be compared. Note that the optimization algorithm used within
our LEC is the same as the one used in KTDMOEA due to its
competitive results obtained in [8] on these problem instances.
Section II of the Supplementary File presents detailed descrip-
tions of these algorithms.

C. Parameter Settings

The parameters of the algorithms are set as follows:
• Population size: popsize = 300, the same as that of

DTAEA and KTDMOEA, θ in KTDMOEA [8] is set
as 2. The impact of θ on KTDMOEA’s performance was
analyzed in KTDMOEA paper [8].

• Number of solutions λ selected from the PSt in learning
to contract PS is set as popsize/20 based on experience.

• Several different frequencies of change (τt) are investi-
gated to understand their effect on the algorithm: τt is set
as 50 and 100 and 200; note a small value of τt means
high frequency of change.

• When a change occurs, we may need a solution to be
adopted as quickly as possible. So, one may wish to adopt
the transferred solutions right after the change happens.
However, while this solution is being adopted in practice,
it is possible to continue running the optimization for a
number of generations (i.e., τts), so that the population
can converge before the next change happens, enabling
good knowledge transfer for the next change. Therefore,
we could output the optimized solutions before the end
of running the optimization to see which algorithm is
able to quickly output optimized solutions with better
quality. Following this line, we set different generations
of outputting optimized solution (denoted as gap) for

different τts: 5, 25 and 50 for τt = 50; 5, 25, 50 and
100 for τt = 100; 5, 25, 50, 100 and 200 for τt = 200;

• All algorithms run 31 times independently, also the same
as in DTAEA’s work [3].

• 1000 generations are given to each algorithm before the
first change so that the population before the change can
converge.

• The crossover probability is pc = 1.0 and its distribution
index is ηc = 20. The mutation probability was pm = 1/n
(where n denotes the number of decision variables) and
its distribution ηm = 20. These parameters were chosen
because of their good performance on solving continuous
problems, which have been analyzed in [29] and [25].

• The neighbourhood size and the number nr of solutions
allowed to replace in MOEA/D were set to 20 and 2,
respectively, as in the original paper [30].

D. Performance Metrics

• Mean Hypervolume (MHV) [3] is the mean Hypervolume
(HV) [31] of obtained solution sets by an algorithm at a
set of discrete time steps. HV comprehensively measures
the convergence and diversity of solution sets; the larger
the better.

• Mean Generational Distance (MGD) [32] [2] is the mean
Generational Distance (GD) [33] of obtained solution
sets by an algorithm at a set of discrete time steps. GD
evaluates the convergence of obtained solution sets; the
smaller the better.

V. EXPERIMENTAL RESULTS AND ANALYSES

This section presents the experimental results to answer
RQ1–2 and verify whether the existing DMOEAs for solving
DMOPs with fixed NObj are able to tackle DMOPs with a
changing NObj. We also investigate the impact of different
NObj changing sequences and algorithm parameters.

The metrics MHV and MGD are used to measure the quality
of the solutions at the first generation after the change and
in the last generation before the next change by the five
algorithms. MHV (MGD) is the mean HV (GD) of obtained
solution sets by an algorithm at a set of discrete time steps. To
check if there is significant difference between the proposed
LEC and other algorithms across all problem instances in
general, Friedman and Nemenyi statistical tests [34] with
a significance level 0.05 are adopted across all benchmark
problems regarding the MHV and MGD of the five compared
algorithms. The larger (smaller) the Friedman ranking of MHV
(MGD), the better the algorithm. The Wilcoxon rank sum test
at the 5% significance level is utilized to check if there is
significant difference between the LEC and other algorithms
on each individual problem and frequency of change.

For Friedman and Nemenyi statistical tests, the MHV and
HGD that each algorithm gets on one problem at each inde-
pendent run is regarded as an observation of the test, for all
frequencies of change. Therefore, there are 403 (13 problems,
31 independent runs) observations for each algorithm for these
tests. For Wilcoxon rank sum test, it is implemented on each
benchmark problem regarding each metric of five compared
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Fig. 7. Friedman ranking among MHV of obtained solutions at the first
generation by 5 algorithms when τt = 50, 100 and 200, respectively.
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Fig. 8. Friedman ranking among MGD of obtained solutions at the first
generation by 5 algorithms when τt = 50, 100 and 200, respectively.

algorithms at each parameter setting. Therefore, there are
31 observations obtained from 31 independent runs for each
algorithm on each problem with one parameter setting.

Due to the space limitations, only the results of the Fried-
man and Nemenyi statistical tests are presented here. Mean
and standard deviation values of MHV and MGD of obtained
solutions in the first generation after changes and the last
generation before the next change averaged across 10 envi-
ronmental changes are presented in the Supplementary File.

A. Initial Effectiveness of Learnt PS Expansion / Contraction

To verify whether (1) the proposed LEC is able to increase
solution quality regarding convergence and diversity right
after the change compared to KTDMOEA and DTAEA, and
(2) LEC obtains better solution quality over other baselines
after the change, the quality of the solutions obtained by all
algorithms in the first generation after changes is compared.

1) Overall Statistic Results: Figs. 7 and 8 present the
Nemenyi post-tests results among MHV and MGD of obtained
solutions at the first generation after changes by 5 algorithms,
when τt = 50, 100 and 200, respectively. Table I shows the
number of win/loss/ties in terms of MHV and MGD for LEC
compared to the other algorithms based on Wilcoxon rank
sum tests at the first generation, for the set of discrete time
steps across all 10 changes (‘Overall’), 5 changes of increasing
NObj from 2 to 7 one by one (‘InNObj’) and 5 changes
of decreasing NObj from 7 to 2 one by one (‘DeNObj’),
respectively.

Overall, it can be seen from Fig. 7 that when comparing
all algorithms, LEC significantly outperformed all others at
all frequencies of changes in terms of MHV. In addition, it
can be observed from Fig. 8 that LEC was the best, together
with DTAEA, regarding MGD at all frequencies of changes.
This implies that the proposed LEC indeed obtained the best
quality of transferred solutions right after changes among all
compared algorithms, under all frequencies of changes. This
observation is also confirmed by the ‘Overall’ row of Table
I. This implies that the proposed LEC indeed improves the
quality of transferred solutions regarding convergence and
diversity directly after changes.

It can be seen from the ‘InNObj’ row of Table I that
LEC got significantly better MHV than and similar MGD to
KTDMOEA when increasing NObj from 2 to 7. This implies
that LEC indeed increases the diversity of KTDMOEA when
increasing NObj right after changes. In addition, it can be
found from the ‘DeNObj’ row of Table I that LEC got better
MGD than all other algorithms when decreasing NObj from 7

TABLE I
NUMBER OF WIN/LOSS/TIES IN TERMS OF MHV AND MGD FOR LEC
AGAINST OTHER ALGORITHMS AT THE FIRST GENERATION BASED ON
WILCOXON RANK SUM TESTS, FOR THE SET OF DISCRETE TIME STEPS
ACROSS ALL 10 CHANGES (‘OVERALL’), 5 CHANGES OF INCREASING

NOBJ FROM 2 TO 7 ONE BY ONE (‘INNOBJ’) AND 5 CHANGES OF
DECREASING NOBJ FROM 7 TO 2 ONE BY ONE (‘DENOBJ’),

RESPECTIVELY.

Win/Loss/Tie Metrics DNSGA2 MOEAD-KF DTAEA KTDMOEA

Overall MHV 34/2/3 36/3/0 36/2/1 31/8/0
MGD 39/0/0 32/7/0 18/21/0 24/8/7

InNObj MHV 35/4/0 36/3/0 35/1/3 5/0/34
MGD 36/0/3 27/12/0 11/21/7 3/3/32

DeNObj MHV 34/3/2 36/2/1 28/8/3 31/8/0
MGD 37/2/0 31/8/0 26/13/0 27/9/3
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Fig. 9. Transferred solutions by KTDMOEA and LEC on two problem F2
and F4 right after increasing the NObj from 2 to 3. The GD and HV values
of both approaches are also put in the title of each subfigure.

to 2, which implies that LEC indeed increases the convergence
when decreasing NObj right after changes. The comparison
results of LEC and KTDMOEA regarding MGD on cases of
‘InNObj’ and ‘DeNObj’ explain the result that LEC got overall
better MGD than KTDMOEA.

For readers who want to examine the details, results of
mean and standard deviation values for MHV and MGD are
presented in Tables 1-6 of the Supplementary File.

2) How and Why Does LEC Get Better Solution Quality
Right After Changes?: In this section, examples are presented
to testify how LEC got overall better solutions on most
problems than KTDMOEA. The reasons behind are then elab-
orated. Since learning the expansion and contraction directions
is one of the essential and key steps to expand and contract
PSs, the specific process of learning the directions will be
particularly detailed.

a) When Increasing NObj: Fig. 9 presents transferred
solutions by KTDMOEA and LEC on problems F2 and F4
right after increasing the NObj from 2 to 3. The GD and HV
values of both approaches are also listed above each subfigure.
It is clear that KTDMOEA and LEC got equally good solutions
on F2 while LEC got better solutions than KTDMOEA on F4.
This result demonstrates that our proposed strategy of learning
to expand PS indeed overcomes the limitation of KTDMOEA
in solving problems with strong bias in the fitness landscape.

Note that transferred solutions by LEC were still not so well
spread throughout the true PF of F4. The reason is that even
though LEC is able to determine the most promising expansion
directions, the strong bias of F4 hinders most transferred
solutions generated along the directions spread on the true
PF, since only a small portion of x values within the range of
[0,1] would make y = x100 in F4 cover most values of [0,1]
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Fig. 10. Transferred solutions by KTDMOEA and LEC on two problem F1
and F3 right after decreasing the NObj from 3 to 2. The GD and HV values
of transferred solutions by both approaches are also put in the title of each
subfigure.

with all other values of x resulting in y equal to 0.
For problems with either strong bias or no bias in the

fitness landscape, as long as solutions are converged before
the change, LEC was able to learn the correct expansion
directions. As described in Section II-C, for problems with
strong bias like F4, KTDMOEA is unable to find the expansion
directions. However, in our proposed LEC, the expansion
direction is learnt from the candidate directions that are per-
pendicular to the previous PS. Therefore, as long as solutions
are converged before the change, as shown in Fig. 6(a),
the eigenvectors can be obtained via PCA for learning the
candidate expansion directions. After learning these candidate
directions, the most promising expansion directions can be
naturally selected according to which direction helps diversity.

b) When Decreasing NObj: Fig. 10 presents transferred
solutions by KTDMOEA and LEC on problems F1 and F3
right after decreasing the NObj from 3 to 2. The GD and HV
values of both approaches are also shown above each subfig-
ure. It is clear that LEC got better solutions than KTDMOEA
on both F1 and F3 regarding both convergence and diversity.
This result demonstrates that our proposed learning to contract
PS indeed overcomes the limitation of KTDMOEA in solving
problems with multimodality and variable correlation and
improves population convergence.

When decreasing the NObj, the manifold of PS after the
change is a subset of that before the change [3]. Therefore,
there are certain directions along which solutions move from
the manifold of PS after the change to that before the change.
In this case, these directions locate in or across the PS mani-
fold before the change. Considering these facts, our proposed
method of learning contraction directions using PCA exactly
captures these potential contraction directions, which are ev1
and ev2, as shown in Fig. 6(b). Then, based on which candidate
direction results in solutions with better convergence, the
most promising contraction directions can be chosen from the
candidate directions. Therefore, the contracted PS in LEC can
have better convergence than that of KTDMOEA, which does
not have any mechanism for improving convergence.

B. How Does Learnt PS Expansion and Contraction Help
Optimization Process after the Changes?

To verify whether LEC can find solutions with better
convergence and diversity after gap generations of running the
optimization against all other algorithms, the solution quality
of all compared algorithms after gap generations’ optimization
for different frequencies of changes is compared.
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Fig. 11. Friedman ranking among MHV of optimized solutions after gap
generations by 5 algorithms when τt=50.
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Fig. 12. Friedman ranking among MGD of optimized solutions after gap
generations by 5 algorithms when τt=50.

1) Overall Statistic Results: Figures 11-12, 13-14 and 15-
16 present the Nemenyi post-tests results among HV and GD
of obtained solutions after gap generations’ optimization by
5 algorithms, when τt = 50, 100 and 200, respectively. Table
II shows the number of win/loss/ties in terms of MHV and
MGD for LEC against other algorithms based on Wilcoxon
rank sum tests after optimization of different generations
under each different frequency of changes (i.e., τt=50, 100
and 200), for the set of discrete time steps across all 10
changes (‘Overall’), 5 changes of increasing NObj from 2 to
7 (‘InNObj’) and 5 changes of decreasing NObj from 7 to 2
‘DeNObj’, respectively.

Overall, the statistical test results show that LEC performed
significantly better than or similar to the other approaches
at all settings of gap under different frequencies of change,
regarding MHV and MGD. Additionally, it can be seen from
the ‘InNObj’ row of Table II that LEC got slightly better MHV
and slightly worse MGD than KTDMOEA when increasing
NObj from 2 to 7. This implies that LEC also increases the
diversity of KTDMOEA after optimization when increasing
NObj. In addition, it can be found from the ‘DeNObj’ row
of Table II that LEC got significantly better MHV and MGD
than all other algorithms when decreasing NObj from 7 to
2, which implies that LEC increases both convergence and
diversity after optimization when decreasing NObj.

From Figures 11-16, it is also clear that LEC got signifi-
cantly best results among all compared algorithms regarding
MHV and MGD values when gap is smaller for all frequencies
of changes, whereas some ties occur when gap is larger. In
addition, LEC was superior to KTDMOEA regarding MGD in
almost all cases, which shows that our proposed approach is
also able to maintain its superiority over KTDMOEA regard-
ing convergence in the optimization process. Note that for all
frequencies of changes, when gap is smaller, solution quality
obtained by LEC was significantly better than DTAEA in most
cases. This implies that our proposed LEC is more suitable for
dynamic optimization, as better solutions are urged to be found
given limited budgets in real-word dynamic scenarios.

2) Why do the Learnt PS Expansion and Contraction Help
Optimization Process after the Changes?: As shown in Sec-
tion V-A, LEC obtained competitive solution quality compared
to other state-of-the-arts in the first generation after changes.
This means that LEC was able to quickly find solutions with
good convergence and diversity at all frequencies of change.
LEC also managed to obtain good solutions at the initial stage
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TABLE II
NUMBER OF WIN/LOSS/TIES IN TERMS OF MHV AND MGD FOR LEC

AGAINST OTHER ALGORITHMS BASED ON WILCOXON RANK SUM TESTS
ACROSS ALL DIFFERENT VALUES OF gap, FOR THE SET OF DISCRETE TIME

STEPS ACROSS ALL 10 CHANGES (‘OVERALL’), 5 CHANGES OF
INCREASING NOBJ FROM 2 TO 7 (‘INNOBJ’) AND 5 CHANGES OF

DECREASING NOBJ FROM 7 TO 2 ‘DENOBJ’, RESPECTIVELY.

Win/Loss/Tie τt Metrics DNSGA2 MOEAD-KF DTAEA KTDMOEA

Overall

50
MHV 33/6/0 36/3/0 30/4/5 30/2/7
MGD 36/3/0 25/14/0 25/11/3 21/7/11

100
MHV 44/8/0 48/4/0 41/10/1 45/5/3
MGD 48/4/0 32/20/0 31/16/5 26/11/15

200
MHV 55/10/0 57/5/3 42/5/18 42/1/22
MGD 60/0/5 42/23/0 44/15/6 34/10/21

InNObj

50
MHV 34/5/0 36/3/0 26/7/6 3/3/33
MGD 38/1/0 23/15/1 23/6/10 0/3/33

100
MHV 44/7/1 47/5/0 35/12/5 4/0/48
MGD 52/0/0 31/19/2 25/13/14 1/7/44

200
MHV 55/5/5 56/5/4 39/13/13 6/0/59
MGD 65/0/0 39/23/3 30/20/15 0/8/57

DeNObj

50
MHV 32/5/1 36/3/0 23/12/4 30/4/5
MGD 36/3/0 26/11/2 27/11/1 22/5/12

100
MHV 43/8/1 48/4/0 32/16/4 38/6/8
MGD 48/4/0 34/18/0 41/9/2 34/10/8

200
MHV 55/10/0 60/0/5 43/2/20 43/2/20
MGD 60/3/2 42/21/2 59/1/5 46/13/6
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Fig. 13. Friedman ranking among MHV of optimized solutions after gap
generations by 5 algorithms when τt=100.

of the evolution (i.e., when gap is small), which is supported
by the Friedman test results in Section V-B1. This means
that LEC is robust to different gaps of outputting optimized
solutions under different frequencies of change.

Because the transferred solutions are better distributed and
converged in the new environment, LEC is able to find better
solutions across different frequencies of change. This is also
the reason why LEC is able to quickly respond to the changes
in the NObj, since finding good solution under high frequency
of change means fast response to changes. When gap is large,
there is less need for obtaining a good initial population right
after the changes, because more time can be spend searching
for good solutions through the optimisation process. There are
some specific problem instances where LEC did not perform
best when the frequency of changes is high. The specific
results and analyses are presented in Section III.B.3) of the
Supplementary File.

C. Performance Comparison on Other Changes in the NObj

In the previous experiments, the NObj only increases or
decreases one by one. This section aims to verify the per-
formance of the proposed algorithm in the scenario where
the NObj increases or decreases by more than one. The new
changing sequence where the NObj increases or decreases by
two each time is designed as follows: NObj increasing from
2 to 4 and then from 4 to 6; then NObj decreases from 6 to 4
and then from 4 to 2, i.e., ‘2-4-6-4-2’. Experimental settings
including test problems and compared algorithms are set as
the same to those in Section IV-C. Here, both the frequency
of change and gap are set as 200. Besides, only MHV is
used to measure the quality of optimized solutions at the last
generation to save space. The used statistical tests are the same
as those in paragraphs above Section V-A.

Fig. 17 presents the Nemenyi post-tests results among MHV
values of solutions at the first generation after changes and
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Fig. 14. Friedman ranking among MGD of optimized solutions after gap
generations by 5 algorithms when τt=100.
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Fig. 15. Friedman ranking among MHV of optimized solutions after gap
generations by 5 algorithms when τt=200.

optimized solutions at the last generation by all compared
algorithms. Overall, LEC performed significantly best among
all compared algorithms at the first generation right after
changes in the scenario where NObj changes by more than
one. More details can be found in Tables 141 and 142 in the
Supplementary File.

To explore the reason why LEC got significantly worse
results than DTAEA after optimization when the NObj changes
two-by-two, the HV trajectory of sampled generations over
evolution on problem F3 is drawn in Fig. 18 to see in
which stage LEC performed worse. We can see that, when
decreasing the NObj, LEC got worse HV results than DTAEA.
The contracted solutions by LEC were also worse than the
reconstructed solutions by DTAEA. The reason might be that
even though LEC finds most promising contraction directions,
it is still almost impossible for some solutions to reach the
true PS after decreasing the NObj. For example, suppose the
true PS of a problem with four objectives is a 3-dimension
cube and the true PS of a problem with two objectives is a
1-dimension line segment in the cube. When decreasing the
NObj from 4 to 2, solutions filled in the cube need to move
along different directions from their original position to reach
the line segment.

D. Impact of LEC Strategy Parameter

In the process of generating solutions along the learnt
contraction directions when decreasing NObj, there is a pa-
rameter λ to set which is the number of selected solutions
to generate an initialized population. Different values of λ
will be set to verify whether different parameter settings affect
the performance of LEC against other compared algorithms.
Experimental settings including test problems and compared
algorithms are set as the same to those in Section IV-C. Here,
both the frequency of change and gap are set as 200. Besides,
only MHV is used to measure the quality of optimized
solutions at the last generation to save space. The changing
sequence is to decrease NObj from 7 to 2 one by one. There
are three LECs (denoted as LEC-10, KTDMOEA-20 and
KTDMOEA-30), which have the value of λ as popsize/10,
popsize/20 and popsize/30, respectively.

In order to verify whether different parameter settings
affect the performance of LEC, the Friedman and Nemenyi
tests on 4 state-of-the-arts and 3 LECs were conducted to
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Fig. 16. Friedman ranking among MGD of optimized solutions after gap
generations by 5 algorithms when τt=200.
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Fig. 17. Friedman ranking among MHV of obtained solutions in the first
generation and solutions after τt generations’ optimization by 5 algorithms
when τt=200.

indicate the significant differences among them. The setting
of the Friedman and Nemenyi tests are the same as those in
paragraphs above Section V-A. The results are in Fig. 19. The
three LECs got the best or equally best MHV values among all
algorithms. There is no significant difference among the three
LECs with different setting of the parameter λ. These results
show that the performance of the proposed LEC approach
was not sensitive to these setting of the parameter λ. The
performance of LEC against the existing algorithms was not
affected by the setting of different parameter values.

E. Sensitivity Analysis of LEC to Evolutionary Algorithm
Parameters

This section aims to analyze the sensitivity of LEC to evo-
lutionary algorithm parameters, i.e., probability of crossover
and mutation, and population size. To save space, we let our
proposed LEC run on six selected representative problems
with different problem features under different settings of
probability of crossover and mutation, and population size.
Note that when analyzing the sensitivity of one parameter, the
other parameters are fixed to the ones used in Section IV-C.

Table III presents the MHV of LEC with different settings
of crossover and mutation probability on six problems. LEC
with the setting of Pc = 1 performed the best when comparing
the last column and the first three columns where the setting of
the mutation probability is the same. When comparing the last
three columns where the setting of the crossover probability
is the same, we can find that the setting of Pm = 0.05
performed best on five problems. However, LEC with this
setting performed the worst on F4 with strong bias. The reason
is that much diversity is required when solving problems with
strong bias. Therefore, the setting of Pm = 0.1 is the most
compromising one on all investigated problems.

Table IV presents the MHV of LEC with different settings
of population size on six problems. Note that LEC with
popsize = 500 costs the most function evaluations, since all
algorithms run the same number of generations. It is intuitive
that an algorithm with more function evaluations would obtain
better solution quality. It can be found from Table IV that LEC
with the setting of popsize = 500 got the best MHV value on
5 out of 6 problems. However, the MHV value improvement
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Fig. 18. HV trajectory of sampled generations (1, 5, 25, 100 and 200) after
each change over evolution on one problem F3.
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Fig. 19. Friedman ranking among MHV of optimized solutions at the last
generation by 6 state-of-the-arts and 3 KTDMOEAs with different values of
parameters theta (1, 2 and 4) in the changing sequence of Equation 4.

of LEC with popsize = 500 was not much, compared to LEC
with popsize = 300. Therefore, the setting of population size
as 300 in our paper makes a compromise between solution
quality and number of function evaluations.

F. Running Time Analysis

To investigate how efficient our proposal is compared to
other algorithms, we recorded the running time (in seconds)
of all compared algorithms on all benchmark problems with
the changing sequence of Equation (4) when τt = 50 under
the same hardware configuration 1. Also, we used Friedman
and Nemenyi statistical tests [34] with a significance level 0.05
across all benchmark problems to compare the running time
of the five compared algorithms. The running time obtained
by all algorithms on one problem under one run is regarded
as an observation of the test.

Fig. 20 presents the Nemenyi post-tests results among
running time of all compared algorithms. The specific mean
values of running time (in seconds) obtained by all compared
algorithms are presented in Table 28 of the Supplementary
File. It is clear from Fig. 20 that our proposed LEC achieved
competitive efficiency compared to algorithms tailored for
changing NObj (KTDMOEA and DTAEA). In addition, our
intuition is right that algorithms with one archive (LEC and
KTMOEA) cost significantly less running time than that
with two archives (DTAEA). Meantime, algorithms without
specific strategies to cope with changing NObj (DNSGA2 and
MOEAD-KF) ran faster.

G. How Does the HV Change as the NObj Changes?

To investigate how the HV changes when the NObj changes
over time, we plot the HV trajectory of sampled generations
after each change over evolution on problems F1, F4, WFG3,
WFG4, WFG6 and WFG9 for all τts. To save space, only the
figures for problems F1 and F4 when τt = 50 are presented in
Fig. 21. The figures for all other cases are presented in Figs. 1-
3 of the Supplementary File. It is clear from Fig. 21 that LEC

1The implementation environment is as follows: 2.20-GHz Intel Core i7,
8-GB DDR4 2666MHz.
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TABLE III
MHV VALUE OF LEC WITH DIFFERENT SETTINGS OF CROSSOVER

PROBABILITY (PC) AND MUTATION PROBABILITY (PM) UNDER 31 RUNS.
THE BEST AND SECOND BEST FOR EACH PROBLEM ARE SHOWN WITH

DARK BACKGROUND AND BOLD FACE, RESPECTIVELY.
Pc/Pm 0.2/0.1 0.5/0.1 0.8/0.1 1/0.05 1/0.2 1/0.1

F1 9.442E-01 9.905E-01 9.944E-01 9.960E-01 7.599E-01 9.949E-01
F2 9.577E-01 9.581E-01 9.582E-01 9.585E-01 9.579E-01 9.584E-01
F4 9.452E-01 9.390E-01 9.080E-01 8.747E-01 9.546E-01 9.491E-01

WFG2 9.622E-01 9.641E-01 9.645E-01 9.679E-01 9.668E-01 9.678E-01
WFG5 7.794E-01 7.886E-01 7.930E-01 7.951E-01 7.895E-01 7.938E-01
WFG8 8.286E-01 8.312E-01 8.320E-01 8.325E-01 8.302E-01 8.322E-01

TABLE IV
MHV VALUE OF LEC WITH DIFFERENT SETTINGS OF POPULATION SIZE
UNDER 31 RUNS. THE BEST FOR EACH PROBLEM IS SHOWN WITH DARK

BACKGROUND.
Popsize 100 500 300

F1 8.663E-01 9.958E-01 9.954E-01
F2 9.441E-01 9.590E-01 9.584E-01
F4 7.360E-01 8.941E-01 9.480E-01

WFG2 9.574E-01 9.684E-01 9.678E-01
WFG5 7.201E-01 7.982E-01 7.936E-01
WFG8 7.659E-01 8.372E-01 8.322E-01

performed better than KTDMOEA on F4 when increasing the
NObj. In addition, LEC got better HV results when decreasing
the NObj on these two problems. This observation is similar
for most other problems in the Supplementary File. These
results show that our proposed LEC indeed overcomes the
limitations of KTDMOEA.

H. Results on Real-world Problems

In this section, we utilize three widely used multi-objective
optimization real-world problems to simulate the scenario of
changing the NObj to test LEC’s performance. These three
problems are water problem [35], Car-Side Impact Problem
[36] and Crash Worthiness in Design of Vehicles [37]. The
water problem has five objectives and the others have three
objectives. The NObj of these problems is originally set as 2
and then increases to their own maximal NObj one by one
and then decreases to 2 one by one. The frequency of changes
is set as 25. All the experimental settings for all compared
algorithms are the same to those in Section IV-C. The same
significant tests were also used. The MHV values of each
compared algorithm on one problem at each run were regarded
as one observation for the Friedman ranking and Nemenyi test.
The Friedman ranking to compare the MHV of the obtained
solutions in the first generation and at the last generation after
optimization on the three real-world problems are presented
in Fig. 22. Specific MHV values of obtained solutions for
all compared algorithms on these problems can be found in
Table 29 of the Supplementary File. It is clear from these
figures that LEC achieved competitive performance regarding
solution quality on the real-world problems.

VI. CONCLUSION AND FUTURE WORK

This paper showed that the state-of-the-art transfer approach
(KTDMOEA) still has some limitations when solving DMOPs
with a changing NObj. Specifically, when increasing NObj,
transferred solutions by KTDMOEA lacks diversity on the
problem with extremely strong bias, since the heuristic PS
expansion of KTDMOEA is unable to find expansion direc-
tions on this kind of problem. In addition, KTDMOEA loses
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Fig. 20. Friedman ranking among running time obtained by all compared
algorithm in changing sequence of Equation (4). Here, larger ranks mean
larger running time.
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Fig. 21. HV trajectory of sampled generations (1, 5, 25 and 50) after each
change over evolution on problems F1 and F4, when τt = 50.

convergence on problems with multi-modality and variable
correlation when decreasing NObj, because solutions gen-
erated along the found contraction directions only aim at
enhancing diversity rather than convergence.

To overcome the limitations of KTDMOEA, we proposed
a novel knowledge transfer strategy, LEC, so as to enhance
diversity and convergence for increasing and decreasing the
NObj, respectively. LEC conducts PCA on the PS of the
problem before the change to get eigenvectors and uses
the concept of dominance to select promising expansion
and contraction directions. Experimental investigations have
demonstrated the effectiveness of the proposed LEC strategy
in improving the diversity and convergence right after changes
and after optimization is run for a number of generations. Such
improvements were observed for all frequencies of change.

As expected, no algorithm would be the best on all possible
problems. According to the details in the Supplementary File,
there are some problems on which LEC did not outperform
existing algorithms. Moreover, we found that LEC still lacks
convergence when the NObj is decreased by more than one.
Future work could improve the algorithm for these kind of
problems. Testing and improving our proposed algorithm on
problems with large and random changes is also a possible
direction of our future work. For that, more advanced learning
methods could be proposed to learn as many expansion or
contraction directions as possible right after the changes,
whereas approaches with stronger diversity enhancement and
converging capability could be proposed for further evolving
the population after the changes. Future work could also relax
the assumption made by LEC that the PS with less NObj is a
subset of that with more NObj.

LEC has been evaluated and compared extensively to other
methods on a number of problems. While such experimental
studies help to evaluate and understand how, why and when
LEC works, they do leave room for its further evaluation on
other problems. In practice, if a real-world problem shares the
same or similar characteristics as the problems used in this pa-
per, LEC is expected to work well. Otherwise the performance
of LEC needs to be further tested. In short, there are three
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Fig. 22. Friedman ranking among MHV of obtained solutions in the first
generation and solutions after τt generations’ optimization by 5 algorithms.
Here, larger ranks mean higher MHV.

main areas in practice that may pose threats to the validity of
our work. First, the underlying problem structure in practice
may be very different from those considered in the problems
investigated in our paper. Second, the dynamics, including
the frequency and magnitude of changes, in practice may be
very different from those considered in our study. Third, the
problem scale, including both numbers of decision variables
and objectives, may be much larger than that considered in
our paper. Last but not least, the computational cost of LEC
might be an issue for some real-world applications that need
near real-time responses. These are all future directions of our
research.
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