
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Evolutionary Optimization for Proactive and
Dynamic Computing Resource Allocation in Open

Radio Access Network
Gan Ruan, Leandro L. Minku, Senior Member, IEEE, Zhao Xu, and Xin Yao, Fellow, IEEE

Abstract—In Open Radio Access Network (O-RAN), intelligent
techniques are urged to achieve the automation of the computing
resource allocation, so as to save computing resources and
increase their utilization rate, as well as decrease the network
delay. However, the existing formulation of this problem as an
optimization problem defines the capacity utility of resource in an
inappropriate way and it tends to cause much delay. Moreover,
the only algorithm proposed to solve this problem is a greedy
search algorithm, which is not ideal as it could get stuck into local
optima. To overcome these issues, a new formulation that better
describes the problem is proposed. In addition, an evolutionary
algorithm (EA) is designed to find a resource allocation scheme
to proactively and dynamically deploy the computing resource
for processing upcoming traffic data. A multivariate long short-
term memory model is used in the proposed EA to predict
future traffic data for the production of deployment scheme.
As a global search approach, the EA is less likely to get stuck
in local optima than greed search, leading to better solutions.
Experimental studies carried out on real-world datasets and arti-
ficially generated datasets with different scenarios and properties
have demonstrated the significant superiority of our proposed EA
over a baseline greedy algorithm under all parameter settings.
Moreover, experimental studies with all afore-mentioned datasets
are performed to compare the proposed EA and two variants
under different parameter settings, to demonstrate the impact of
different algorithm choices.

Index Terms—Evolutionary algorithms, Resource allocation,
Open Radio Access Network (O-RAN), Computational intelli-
gence.

I. INTRODUCTION

Open Radio Access Network (O-RAN) is a newly proposed
wireless network architecture in the fifth generation (5G) or
beyond 5G wireless systems [1], [2] with fundamental aspects:
Openness and Intelligence [3]. It provides open interfaces for
different operators and vendors to deploy their own infras-
tructures and offer tailored services. Despite being beneficial,
these aspects cause the network to become more complex and
heavier than any networks before. It is therefore impossible
for operators and vendors to depend on human intensive
means of optimizing, deploying and operating the O-RAN.
Therefore, novel intelligent technologies are welcome to assist
the automation of the system [3].

Gan Ruan, Leandro L.Minku and Xin Yao are with CERCIA, School of
Computer Science, University of Birmingham, Edgbaston Birmingham B15
2TT, UK (e-mail: GXR847@student.bham.ac.uk, L.L.Minku@bham.ac.uk,
xinyao@ln.edu.hk).

Zhao Xu are with NEC Laboratories Europe, 69115 Heidelberg, Germany.
(email: zhao.xu@neclab.eu)

Xin Yao is also with the Department of Computing and Decision Sciences,
Lingnan University, Hong Kong, China.

O-RAN, as a type of RAN [4], involves two major compo-
nents, i.e. remote radio head (RRH) for radio resources man-
agement and baseband unit (BBU) for signal data processing.
One of the most challenging problems in O-RAN is how to
allocate the computing resources (i.e, BBUs) to different RRHs
such that they can handle traffic data in the network optimally,
which in essence is an NP-hard problem. Furthermore, the
vendors and operators need to save the computing resources to
decrease their capital expenditures and deployment cost. At the
same time, the network should ideally have little delay, helping
them to provide competitive Internet services and increase
user experience. Therefore, it is a significant problem how to
proactively allocate the computing resources in the network
to achieve the optimization goals of decreasing the required
number of computing units, increasing the resources utilization
rate, and decreasing the delay. Note that this problem can be
also seen as a clustering problem with these objectives.

In order to address this problem, a problem formulation was
proposed and a greedy algorithm was suggested to solve it in
[4]. However, both the problem definition and the algorithm
have limitations. Specifically, the problem formulation has one
incorrect factor, since optimizing it has no relation to the three
above-mentioned optimization goals, which will be detailed
in Section III. Besides, the existing problem formulation is
defined in a way that the computing resources may be unable
to cope with high traffic in some hours of the day, while
being underutilized in other hours of the day. Moreover, the
formulation is very likely to induce solutions causing much
network delay. In addition, greedy algorithms are known
to easily get stuck into local optima [5], [6]. Evolutionary
algorithm (EA), as an algorithm with good ability of global
search [7], is an alternative to be selected as the algorithm to
solve the new problem formulation.

Considering that existing EA operators are not applicable
to this resource allocation problem, one of the challenges is
how to design tailored EA operators for solving this problem
with non-greedy algorithms to avoid getting stuck in local
optima. In addition, the RRH traffic data changes from one
day to the next and the existing algorithm [4] optimizes
the problem of each day from scratch. This would cause
redundant computational effort during the O-RAN problem-
solving process. Therefore, tailored operators able to avoid
redundant computational effort would be desirable to improve
allocations for this problem.

To overcome these problems, the following research ques-
tions are answered in this paper:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

1) How to appropriately formulate the computing resource
allocation problem?

2) How to design an EA tailored for solving the new
formulation?

• Does the proposed EA outperform a greedy algo-
rithm? Under what conditions?

• What is the influence of different algorithm’s design
choices on its performance?

To answer the first research question, a new problem for-
mulation is firstly proposed to overcome the weaknesses of
the existing formulation. Specifically, the proposed problem
formulation is defined in a way that an optimal solution
would not lead to delays in certain periods of the day while
other periods may have resources underutilized. In addition,
it equally considers the effect of the delay and computing
resource utilization rate on the fitness value of solutions.
Besides, the new problem formulation removes the incorrect
metric in the existing formulation. A mathematical analysis of
the reasons why the proposed problem formulation is more
adequate than the existing one will be presented in Section
III.

Considering the characteristics of the problem, existing EAs
are not suitable for the computing resource allocation problem
in this paper, as their representation and evolutionary operators
are not directly applicable. Therefore, we propose an EA
(called SplitEA) tailored for solving the resource allocation
problem in this paper. SplitEA includes problem-specific so-
lution representation, initialization to randomly generate a set
of feasible solutions, mutation operator to produce feasible
solutions and random cluster splitting to transfer [8], [9] O-
RAN resource allocation knowledge and generate feasible
solutions so as to speed up optimization.

To simplify the problem, we assume traffic data of all RRHs
come in a daily manner. Same to [4], given the traffic data of
all RRHs in 24 hours of current day in the network, we use
a multivariate Long Short-Term Memory (LSTM) model to
predict their traffic data in 24 hours of the next day, such
that optimal solutions can be found and deployed beforehand
based on the predicted traffic data. We use LSTM following
[4] because it can effectively learn the temporal dependency
and spatial correlation among base station traffic patterns, and
make accurate traffic forecast [4].

Since the RRHs position does not change over time, the
problems of two days are similar, only with the traffic data
of these RRHs different. Therefore, in SplitEA, except for the
problem at the first day where the random initialization is used,
we propose a knowledge transfer-based strategy specifically
designed for the computing resource allocation problem, called
random cluster splitting, which transfers the optimal solutions
found for the problem of the previous day to produce an initial
population for the problem of the next day.

Given that optimal solutions in the population for the
problem of the previous day have converged, the population
may have few diversity on the problem of the next day if we
directly transfer all of them without any mechanism on them.
Therefore, our proposed random cluster splitting also needs to
enhance population diversity for the problem of the next day,

except for transferring optimal solutions of the old problem.
Specifically, it randomly selects a cluster from a solution in the
optimized population of the previous day and randomly split
it into two clusters (note a solution is a clustering scheme with
a set of clusters). Our research hypothesis is that our proposed
SplitEA would perform better than the approach based on
the greedy search. Experimental studies have been carried
out on a series of real-world and artificial datasets to answer
two sub-questions of the second research question, which
successfully validates the superiority of our proposed SplitEA
over the greedy algorithm and also validates the effectiveness
our proposed knowledge transfer technique.

The novel contributions of this paper are as follows:

1) A novel problem formulation that better describes the
computing resource allocation problem than existing
work [4], [10]–[12].

2) A new EA (called SplitEA) specifically designed to solve
the new problem formulation, which includes a novel
population initialization, mutation operator and random
cluster splitting, so as to tackle the challenge of the
greedy search regarding easily getting stuck into local
optima. Note that all SplitEA operators directly generate
feasible solutions via iteratively grouping point(s) into
cluster(s) and/or breaking up existing cluster(s) after
considering the characteristics of the clustering problem
tackled in this paper, unlike most existing EAs that use
generic operators to generate solutions without consider-
ing constraints and then rely entirely on penalties in the
objective functions to eliminate infeasible solutions. The
novelties of our proposed SplitEA can be summarized as
follows:
• A novel population initialization: this operator ran-

domly generates feasible solutions via iteratively
grouping point(s) into cluster(s), after considering the
characteristics of the clustering problem that any two
points in a cluster should be no larger than a distance
parameter;

• A novel mutation operator: this operator generates
a feasible offspring solution mutated from a parent
solution via breaking up existing cluster(s) and/or
iteratively grouping point(s) into cluster(s), after con-
sidering the characteristics of the clustering problem
that any two points in a cluster should be no larger
than a distance parameter;

3) More importantly, a novel operator of random cluster
splitting is proposed and used in our SplitEA to reduce re-
dundant computational effort during the O-RAN problem-
solving process. This operator innovatively makes use of
knowledge from previous optimization rounds to generate
feasible solutions. It benefits from knowledge gained in
the previous optimization process, being able to improve
optimization, compared to optimizations from scratch and
completely copying all previous solutions.

The rest of this paper is organized as follows: Section 2
introduces the background on the computing resource alloca-
tion problem in O-RAN and general approaches to resources
allocation problems. Section 3 presented the proposed problem

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

formulation. Section 4 describes the details of the proposed
evolutionary algorithm. Experimental studies are presented
in Section 5. Section 6 summarizes this paper and gives an
outlook of the future work.

II. BACKGROUND

A. Related Work on the Computing Resource Allocation Prob-
lem

Considering that computing resources are required to be
deployed beforehand to tackle the future coming data in O-
RAN, it is significant to proactively allocate the computing
resources in the network to decrease required number of
BBUs, increase the resources utilization rate, and decrease the
delay. In order to solve this problem, it is firstly necessary to
predict the traffic data of a set of RRHs in the network. The
authors in [4] designed a sequence to sequence model that
uses unified multivariate LSTM model. The model receives
the traffic data of all RRHs in the network at 24 hours of the
previous day as the input and outputs the traffic data of all
RRHs at each of the 24 hours of the next day.

The authors in [4] also created a problem formulation. They
clustered RRHs with complementary traffic patterns together
and assigned each cluster to one BBU, such that the BBU
capacity can be shared by those clustered RRHs. To define the
complementarity of RRHs, the authors considered two aspects:
peak distribution and so-called capacity utility, as introduced
in [4].

Peak distribution: suppose points represent RRHs and those
RRHs assigned with the same BBU are in one cluster. Given
a set of clustered n points C = (r1, ..., ri, ..., rn), peak hours
for each point in C are defined as follows, which is calculated
based on the predicted traffic volumes for the next day,

T (ri) = {ti1 , ti2 , ..., tim}, 1 ≤ im ≤ 24, (1)

where tim denotes the mth peak time of ri. Then the Shannon
entropy of the peak hours of the set of clustered points T (C) =
∪T (ri) is calculated as follows:

H(C) = −
J∑

j=1

pj log(pj), (2)

where J = |T (C)| is the total quantity of peaks in C and pk
is the probability of observing the corresponding peak hour in
the set T (C). A larger entropy value of a cluster indicates that
the points are more complementary in the cluster w.r.t. traffic
patterns.

Capacity utility aims to make the aggregated traffic of all
RRHs in each cluster close to the BBU capacity, which is de-
fined as in Equation (3). To describe the problem formulation
in a more concise way, we assume the utility of BBU capacity
is 1.

U(C) = [mean f(C)]−ln(mean f(C)), (3)

where f(C) =
∑n

i=1 f(ri) =(∑n
i=1 f1(ri), ...,

∑n
i=1 fh(ri), ...,

∑n
i=1 f24(ri)

)
is the

aggregated traffic volume of the cluster C. Therefore,
mean f(C) = 1

24

∑24
h=1

∑n
i=1 fh(ri). Fig. 2(a) displays the

curve of the so-called capacity utility function, which achieves
its maximum when the mean aggregated traffic volume is
equal to the BBU capacity 1. Therefore, the complementarity
of the RRHs cluster C is calculated as follows [4],

M(C) = U(C) ∗H(C)

= −[meanf(C)]−ln(meanf(C))
J∑

j=1

pj log(pj).
(4)

Note that quality-of-service requirements may be affected
by the propagation delay as the distance between RRHs and
BBU increases. Besides, there may be also communication
delay among RRHs when enabling machine to machine com-
munications such as handover [13] in the mobile network.
Therefore, to alleviate the delay in the network, when allo-
cating the computing resources in the network, the distance
between any two RRHs assigned to the same BBU should be
constrained within a range.

To solve this problem formulation, the authors proposed
a Distance-Constrained Complementarity-Aware algorithm [4]
to cluster close RRHs to the same BBU. The basic idea of
the algorithm is to iteratively cluster close RRHs into groups,
such that the complementarity of RRHs in all clusters is max-
imized. Specifically, the authors designed a fitness function
considering the complementarity of RRHs and the distance of
any two RRHs in the cluster. The algorithm greedily assigns
randomly selected RRHs to the adjacent cluster with highest
fitness value until the termination criteria is satisfied. More
details about the algorithm can be found in [4].

However, there are several limitations in the existing frame-
work [4]. Firstly, in the definition of the so-called capacity
utility, there are two main limitations. It is clear from Fig.
2(a) that the so-called capacity utility is maximum when
mean f(C) reaches BBU capacity 1. However, mean f(C)
is the mean traffic volume of all RRHs in this cluster under
24 hours. It is possible that a clustering scheme causing much
delay at some hours while very low BBU occupation rate at
other hours may be still a good one. This is not captured by this
framework. Besides, according to the curve, when mean f(C)
is extremely large, it still gets the same capacity utility as
that of an almost unoccupied BBU. To this end, the clustering
scheme found by this problem formulation may bias towards
solutions that cause much delay.

Another limitation of the existing problem formulation is
that the peak distribution is incorrect as this definition does
not have a direct relationship to the three optimization goals.
A simple example will be presented to state why it is not
required in Section III. Besides the limitations in the problem
formulation, the used greedy algorithm is known to easily get
stuck in the local optima [5] [6].

Note that the RRH traffic data changes from one day to
the next and the existing algorithm [4] tend to optimize the
problem of each day from scratch. Therefore, one challenge
of solving this resource allocation problem is how to reduce
redundant computational effort during the O-RAN problem-
solving process, targeting better solution quality under a given
fixed computational budget. Our proposed approach in Section
IV will tackle this challenge.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

The existence of recent work on the resource allocation
problem in 5G network demonstrates that this is still a timely
topic worth studying [10]–[12] working on this recently. Even
though [10]–[12] are related studies, they are actually different
O-RAN problems with different focus and scenarios. Specifi-
cally, there is no explicit problem formulation in [10]; instead,
the Silhouette score is used as the optimization goal to select
the best clustering scheme by clustering approaches from
machine learning. Obviously, the three optimization goals, i.e.,
minimizing the number of computing resources, increasing
their utilization rate and decreasing the network delay, were
not considered in [10], since a clustering scheme with best
Silhouette score does not necessarily mean a best resource
allocation to achieve the three optimization goals. In [11], the
scenario is to allocate multiple computing resources to process
the traffic data at each of all RRHs each time, to minimize
wasted resources and unsatisfied user demand. However, this
formulation does not consider minimizing the number of used
resources, which is important to avoid high costs to the O-
RAN providers. In [12], the scenario is to allocate multiple
computing resources to each of a set of RRHs by adding or
removing one computing resource each time, so as to minimize
the number of computing resources and the cost of movements
while must satisfying the demands requested by the RRHs
(i.e., the allocated resource capacity must be no less than
the demand). However, this formulation does not consider
increasing the utilization rate of computing resources, which
is important for avoiding computing resource waste, especially
in the period of demand decreasing rapidly.

Three clustering approaches from machine learning, i.e., K-
means, density-based spatial clustering of applications with
noise and Agglomerative clustering, were studied in [10] to
see which one achieves a clustering scheme with the best
Silhouette score. However, none of these clustering approaches
is able to consider the objectives of minimizing the number
of resources, maximizing their utilization rate and decreasing
the network delay. As for [11], [12], different reinforcement
learning algorithms were proposed in their paper. However, to
include the reinforcement learning algorithm in our compari-
son, we would need to design totally novel state space, action
space, reward functions, etc. for the reinforcement learning
algorithms, which would lead to a different algorithm from
those proposed in [11], [12].

B. Time Series Prediction Methods

Given that in the computing resource problem traffic data
needs to be predicted beforehand for the proactive allocation
of the computing resource, several commonly used time series
prediction models in the literature [14]–[16] are presented.

Autoregressive integrated moving Average (ARIMA) is one
of the most widely used time series analyses model and has
been successfully applied to solve many short-term forecasting
problems [14]. However, it gets worse prediction errors and
confidence on long-term forecasting problems where multiple
future steps need to be predicted [15]. In addition, Artificial
Neural Network (ANN) models are also leveraged to learn
time series properties and predict the trend of the data in

the future through using a sliding-window-based strategy
[17], which has been used in many domains like operation
research [18] and financial market [19]. However, it is difficult
for ANNs to model the temporal dependency between the
elements in each time series window as analyzed in [4].
Moreover, a multivariate LSTM is proposed in [4] to learn the
temporal dependency and spatial correlation of RRH traffic
data.

C. Existing Optimization Algorithms for Resource Allocation
Problems

There are three types of methods for solving resource
allocation problems in the literature, which are linear pro-
gramming [20] [21], heuristic and metaheuristic methods [22]
[23] and other methods [24], [25]. All of them have their
advantages and disadvantages. Linear programming tends to
find an exact solution for resource allocation problems [20].
However, considering that most problems are highly complex,
nonlinear and with constraints, people always simplify the
modeling of the linear programming, thus results in inaccurate
solutions for the problem. As for a kind of heuristic algorithm,
greedy methods are a representative approach to solve the
resource allocation problem [26]–[28]. However, it is easy for
the greedy algorithm to get stuck into local optima. Many
metaheuristic algorithms like evolutionary approaches have
been widely applied into addressing the resource allocation
problem due to its competent global search ability [29]–[36].

Given that the problem we deal with in this paper is non-
linear and has complex objective function and constraint, it is
unable for any linear programming methods to solve. If the
linear programming is used to solve this problem, the problem
formulation needs to be simplified, thus resulting inaccurate
solution for the problem, which is not a good trial. In addition,
greedy algorithms, as a heuristic algorithm, easily get stuck
into the local optimal, which has been verified and stated in
[5] [6]. Therefore, the greedy algorithm that has been used
in the existing work [4] may prevents the search of better
solutions, which is not ideal.

As far as we know, the comparison algorithm in [4] is
the state-of-the-art method to solve the resource allocation
problem that firstly predicts the traffic data of RRHs and then
optimizes the problem with an approach based on a greedy
search. There are recently proposed optimization methods
[10]–[12] for the resource allocation problem in 5G network
that are based on deep reinforcement learning. They firstly
model the dynamic resource allocation problem as a Markov
decision process and then solve it using deep reinforcement
learning. Even though reinforcement learning achieved some
success, it requires many data to train such that they can
learn the environment well. Evolutionary algorithms, which
do not need any training process and data, are an appealing
alternative. As far as we know, there is no work using
evolutionary algorithm to solve the problem.

Evolutionary algorithm (EA) [7] is a generic population-
based metaheuristic optimization algorithm, which is inspired
by the principles of natural evolution and genetics. EA is a
valuable tool in the field of computational intelligence and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

optimization due to their versatility, robustness, and ability
to handle diverse problem types. A conventional EA has the
following detailed steps:

1) Initialization: generate an initial population of candidate
solutions in the search space as a parent population.

2) Evaluation: calculate the fitness of each individual in the
population based on the objective function(s).

3) Reproduction: produce an offspring population via ge-
netic operators on the parent population.

4) Environmental selection: combine the parent and off-
spring populations to select one population with the fittest
individuals as the population for the evolution of the next
generation.

5) Termination: check if termination criteria are met; if not,
repeat the steps 3 and 4 until a stopping condition is
satisfied.

Note that most state-of-the-art EAs [37]–[39] for single
objective constrained optimization problems are not suitable
for the computing resource allocation problem in this pa-
per. The reason is that the problems they are solving are
continuous problems and they use real-codes in the solution
representation, which cannot be directly used for solving the
discrete resource allocation problem targetted in this paper. In
particular, their genetic operators are not suitable for discrete
problems.

Moreover, existing state-of-the-art evolutionary algorithms
for other resource allocation problems are not applicable to our
targetted problem, since different resource allocation problems
have different problem characteristics and need specifically
designed algorithms. Compared to the resource allocation
problems in [40], [41], the problem in this paper have different
problem characteristics (including objective function and con-
straint). The number of resources in the problem of our paper
is to be minimized, while this number is pre-given in [40],
[41]. In addition, in the problem of our paper, the distance
between any two points/tasks assigned to the same resource
should not exceed a distance parameter, which is not required
in [40], [41]. Such differences require different initialization
procedures, genetic operators and constraint handling.

In particular, standard initialization, crossover and mutation
operators would lead to abundant infeasible solutions or in-
ferior solutions, especially in problems with small feasible
regions. A toy example is used to reveal this, as shown in Fig.
1. Even though existing constraint handling techniques [42]
could be used, different techniques have their own limitations
on the problem in this paper:

• Feasbility first: this type of methods do not consider
solutions with constraint violation. If this type of con-
straint handling techniques are used, the algorithm would
run slowly or even stuck in the initialization process
without using any targetted initialization procedure such
as the one proposed in our paper, since initialization
would be conducted by many times to generate fill a
population with feasible solutions or even no feasible
solutions would be generated.

• Constraint violation as penalty: this type of methods
remove the constraint and add it as a penalty to objective.

1r

2r

3r

4r

5r

6r

Fig. 1. Given 6 points (r1 to r6), suppose dis(ri, rj) < τ (i, j ∈ [1, 3]
or i, j ∈ [4, 6]) and dis(ri, rj) > τ (i ∈ [1, 3] and j ∈ [4, 6]). We use
solution vector X = {x1, x2, ..., x6} be a solution vector, where xi ∈ [1, 6]
corresponds to the identifier of the cluster to which point ri belongs. (a).
Standard initialization would easily initialize an infeasible solution, as long as
two points from different circles are assigned to the same cluster (e.g., xinf =
(1, 1, 2, 2, 3, 3)). In addition, standard initialization would initialize a solution
Xini = {x1, x2, ..., x6} to make xi ∈ [1, 6], since the maximal number
of clusters is equal to the number of points. The worse case of a standard
initialization would initialize a solution xw = (1, 2, 3, 4, 5, 6), which is a
solution with the maximal number of resources. (b). Given a parent solutions
xp = (1, 1, 2, 3, 4, 4), standard one point mutation would easily generate an
infeasible offspring solution such as xo1 = (1, 3, 2, 3, 4, 4). This issue of
standard initialization and mutation operators becomes much severe when the
number of points is large, since any one point is more likely to be assigned to
its far clusters. However, our proposed initialization and mutation operators
will not generate such solutions.

It is difficult to set the appropriate penalty parameter,
since the objective value and the constraint violation have
different scale. Moreover, the most appropriate parameter
is different for the same problem in this paper under
different datasets, since different dataset have different
points locations. Therefore, a penalty parameter should
be re-tuned when the same algorithm is applied a new
dataset. It is also not guaranteed that final optimized
solutions are feasible.

• Constraint violation as objective: this type of methods
put constraint violation into one of the objectives instead.
This method changes the single-objective optimization
problem to a multiple one, which makes it more complex.
In addition, it might spend many function evaluations
on infeasible solutions that might not be of interest.
Moreover, if the exact boundary solution is not found,
where the first objective (i.e., the constraint violation) is
minimized, the best solution might still be infeasible.

Therefore, most existing constraint handling techniques are not
appropriate to tackle the constraint of the resource allocation
problem in this paper.

Moreover, the existing algorithm [4] for the resource allo-
cation problem tends to conduct the optimization from scratch
when the traffic data of the next day come. This would cause
redundant computational effort during the O-RAN problem-
solving process, which is one of the gap in the literature. Our
proposed approach in Section IV will overcome this gap.

III. PROPOSED FORMULATION OF THE COMPUTING
RESOURCE ALLOCATION PROBLEM

The limitations of the existing problem formulation have
been stated in Section II-A. Therefore, in this section, a new
problem formulation is proposed to remedy the weaknesses of
the existing problem formulation, answering the first research
question: How to appropriately formulate the computing re-
source allocation problem?

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

To make the problem formulation more mathematical,
points represent RRHs and the data of each point means the
traffic data of each RRH. In addition, assume those RRHs
assigned to the same BBU are in one cluster. Suppose there
are N points R = (r1, ..., ri, ..., rN); each point ri has a
fixed position (r1i , r

2
i) (where r1i and r2i are the longitude

and latitude, respectively) and traffic data at 24 hour of a
day f =

(
f0(ri), ..., fh(ri), ..., f23(ri)

)T
, where fh(ri) is the

traffic volume of RRH i in time span between h-th to (h+1)-th
hour at the current day.

At the end of each day, the clustering scheme of the next
day needs to be found to deploy the BBUs to the RRHs
in the network. Considering this background, the aim is to
proactively cluster these N points to K clusters, so as to
maximize the BBU utilization rate, and minimize the delay
in the network and the required number of BBUs. Therefore,
this problem needs to firstly predict the traffic data of all
points and then dynamically find an optimal solution through
an optimization algorithm based on the predicted traffic data.
This problem can be also regarded as a time series clustering
problem.

There may be communication delay among RRHs when en-
abling machine to machine communications such as handover
[13] in the mobile network. Therefore, to alleviate the delay
in the network, when allocating the computing resources to
the base stations in the network, the distance between any
two RRHs assigned to the same BBU should be constrained
within a range τ .

Let X = {x1, x2, ..., xN} be a solution vector, where xi ∈ X
corresponds to the identifier of the cluster to which point ri
belongs. Since the identifier of one cluster is an integer, the
value of xi is an integer, which means that this problem is a
discrete optimization problem. The total number of clusters K
is equal to the number of unique cluster identifiers in X. We
will refer to the k-th cluster as Ck, where 1 ≤ k ≤ K. The
objective function is presented as follows:

minF(X) = w ∗K + 1
K

K∑
k=1

U(Ck),

s.t. dist(ru, rv) ≤ τ (∀ ru, rv ∈ Ck),

(5)

where w ∈ (0, 1] is a parameter that controls the weight

balancing K and 1
K

K∑
k=1

U(Ck); when increasing the value of

‘w’, it means that operators and vendors tend to minimize the
required BBUs more; otherwise, they bias the problem towards
the maximization of the BBU utilization rate and minimization
of the network delay. dist(ru, rv) is the maximum distance of
any two points ru and rv in k-th cluster Ck; τ is a threshold
controlling the distance of neighboring points; U(Ck) is
defined as:

U(Ck) =
1

24
∗

23∑
h=0

|fh(Ck)− 1|, (6)

where fh(Ck) is the sum of the traffic of all points in k-th
cluster in time span between h-th to (h+1)-th hour of a day,
which is defined as:

0 1 2 3 4

mean f(C)

0

0.5

1

1.5

C
ap

ci
ty

 U
til

ity

(a)

0 1 2 3 4

f
h
(C

k
)

0

0.5

1

1.5

2

2.5

3

|1
-f

h
(C

k)|

(b)
Fig. 2. Curve comparison of the existing so-called capacity utility function
in [4] and the proposed function in equation 6. (a) The curve of the so-called
capacity utility function in [4], which reaches its maximum when the cluster
traffic volume equals 1. (b) The curve of |1− fh(Ck)| function in equation
6, which reaches its minimal value when the clustered traffic volume equals
1.

fh(Ck) =
∑

rm∈Ck

fh(rm), (7)

where Ck is the set of all points in the k-th cluster, which is
presented as follows:

Ck = {rm|xm = k}. (8)

Note that in equation (6), the definition of U(Ck) is the
summation of the resource utilization rate and the delay of
the k−th cluster Ck. In this equation, |fh(Ck)− 1| represents
the delay of the k−th cluster Ck in time span between h-th to
(h+1)-th hour of a day when fh(Ck) > 1 while it represents
the resource utilization rate when fh(Ck) < 1.

One of the most challenging problems in O-RAN is to
allocate the computing resources (i.e, BBUs) to different RRHs
such that they can handle traffic data in the network optimally,
which in essence is an NP-hard problem. This problem is
very likely consisting of a landscape with local optima, such
that avoiding these local optima is important. However, no
operators currently exist for solving this problem with non-
greedy algorithms to avoid getting stuck in local optima. In
addition, the RRH traffic data changes from one day to the
next and existing algorithms tend to optimize the problem
of each day from scratch. Therefore, the other challenge of
solving this resource allocation problem is how to reduce
redundant computational effort during the O-RAN problem-
solving process with the aim of improving solution quality
under a given fixed computational budget.

Note that the resource allocation problem is a real world
problem in 5G networks, which are currently well known for
being widely used as the most advanced wireless technology
for mobile phones. This problem is still being studied in 5G
networks [10]–[12], being of current practical relevance. The
problem formulation in equation (5) is built based on the real
world variables and constraints, such that solving it could
potentially enable significant savings in computing resources
and reductions in network delay.

Remark 1: The reason why we add the K as one part in the
fitness function is that the number of clusters is one of the main
goals to be minimized to decrease the capital investment of
operators and vendors. w is a parameter controlling the weight
of number of clusters compared to the averaged summation of
delay and BBU utilization rate over all clusters, which gives
operators and vendors a choice to make a balance between the
investment and the user experience such that they can set it
according to their own spirit.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE I
THE VALUES OF 1− U(Ck), H(Ck) AND THEIR MEAN VALUE OF

DIFFERENT CLUSTERING SCHEMES FOR DIFFERENT DATASETS
DEMONSTRATING WHY THE H(Ck) IS INCORRECT.

Datasets Cluster 1-UC1 HC1 1-UC2 HC2 1-UC3 HC3 1 − U M

1h, 2h, 3h
[0.8, 0.5, 0.3]
[0.2, 0.7, 0.1]
[0.2, 0.6, 0.7]

12, 3 0.733 1 0.5 0 N N 0.617 0.367
13, 2 0.967 1 0.333 0 N N 0.65 0.483
1, 23 0.533 0 0.633 1 N N 0.583 0.317

1, 2, 3 0.533 0 0.333 0 0.5 0 0.456 0
123 0.633 1.585 N N N N 0.633 1.004

1h, 2h, 3h
[0.8, 0.5, 0.3]
[0.7, 0.2, 0.1]
[0.2, 0.6, 0.7]

12, 3 0.533 0 0.5 0 N N 0.517 0
13, 2 0.967 1 0.333 0 N N 0.65 0.483
1, 23 0.533 0 0.833 1 N N 0.683 0.417

1, 2, 3 0.533 0 0.333 0 0.5 0 0.456 0
123 0.633 0.918 N N N N 0.633 0.581

1h, 2h, 3h
[0.8, 0.5, 0.3]
[0.7, 0.2, 0.1]
[0.7, 0.6, 0.2]

12, 3 0.533 0 0.5 0 N N 0.517 0
13, 2 0.633 0 0.333 0 N N 0.483 0
1, 23 0.533 0 0.567 1 N N 0.55 0

1, 2, 3 0.533 0 0.333 0 0.5 0 0.456 0
123 0.367 0 N N N N 0.367 0

1h, 2h, 3h
[0.18, 0.15, 0.13]
[0.12, 0.17, 0.11]
[0.12, 0.16, 0.17]

12, 3 0.287 1 0.15 0 N N 0.218 0.143
13, 2 0.303 1 0.133 0 N N 0.218 0.152
1, 23 0.153 0 0.283 1 N N 0.218 0.142

1, 2, 3 0.153 0 0.133 0 0.15 0 0.146 0
123 0.437 1.585 N N N N 0.437 0.692

1h, 2h, 3h
[0.18, 0.15, 0.13]
[0.17, 0.12, 0.11]
[0.12, 0.16, 0.17]

12, 3 0.287 0 0.15 0 N N 0.218 0
13, 2 0.303 1 0.133 0 N N 0.218 0.152
1, 23 0.153 0 0.283 1 N N 0.218 0.142

1, 2, 3 0.153 0 0.133 0 0.15 0 0.146 0
123 0.437 0.918 N N N N 0.437 0.401

1h, 2h, 3h
[0.18, 0.15, 0.13]
[0.17, 0.12, 0.11]
[0.17, 0.16, 0.12]

12, 3 0.287 0 0.15 0 N N 0.218 0
13, 2 0.303 0 0.133 0 N N 0.218 0
1, 23 0.283 0 0.153 0 N N 0.218 0

1, 2, 3 0.153 0 0.133 0 0.15 0 0.146 0
123 0.437 0 N N N N 0.437 0

In the column of ‘Datasets’, each line represents the traffic data of each point
at three hour, in which the peak traffic value is highlighted in bold face. In
the column of ‘Clustering’, points with the numbers divided by the comma
are in the same cluster. For example, ‘12,3’ means first and second point are
in the same cluster while the third point is an isolated cluster. In the last
column, the best values obtained by the corresponding clustering scheme are
highlighted in bold face. There are five different clustering choices shown in
the second column. The clustering scheme with the largest values selected by
mean(1− U) or meanM is also highlighted with bold font.

Remark 2: The U(Ck) in equation (6) makes more sense
than the one proposed in [4]. The reasons are two-fold. Firstly,
minimizing equation (6) is trying to make the summed data
of each cluster close to the BBU capacity of 1 at 24 hours of
a day rather than the existing one where the average summed
traffic data of 24 hours in each cluster is close to 1. In addition,
the curve of y = |fh(Ck) − 1| is shown in Fig. 2(b). It can
be seen from this figure that when minimizing equation (6),
one solution with underutilized BBU (e.g. fh(Ck) = 0.5) and
another solution with delay (e.g. fh(Ck) = 1.5) are given the
same y value (i.e. 0.5), without any bias towards to BBU
utilization rate or delay. In particular, solutions with much
delay (i.e. fh(Ck) > 2) are given large y value.

Remark 3: Why we do not need the peak distribution
H(C) in the fitness function? It is because optimizing H(C)
does not have a direct relation with the three above-mentioned
optimization goals. A simple example with several points
and their traffic data at several hours is given to explain
the reason. In this example, several datasets with different
cases are generated, each of which has three points to be
clustered and each point has the traffic data at three hours
to make U(Ck) and H(Ck) easily calculated. As the U(Ck)
in the fitness function is to be minimized and H(Ck) is to
be maximized, let M(Ck) = (1 − U(Ck)) ∗ H(Ck) to be
maximized. Therefore, the clustering that gets the largest value
is the best one.

The clustering schemes for each dataset of this example
and the values of 1 − U(Ck), H(Ck) and the mean of them
is shown in Table I. Each dataset with three points has five
different clustering schemes by clustering one, two or three

points together, respectively. Among six generated datasets,
when doing the clustering on the first three datasets, there
might be delay while there is no delay on the last three
datasets. For example, when clustering all of the three points
in the first dataset together, there are delays in three hours.
However, no matter how to cluster the three points on the last
three datasets, there is no delay. In addition, the difference
among the first three and the last three datasets is in the peak
distribution of the traffic data and the peak traffic data among
three hours is highlighted with bold font.

It is clear from this table that meanM cannot distinguish
all choices on datasets where all points have the same peak
hour. In addition, both meanM and mean(1 − U) can get
the best clustering on datasets where there is no delay in any
clustering scheme. However, on datasets where there might be
delay, mean(1−U) gets best solution that makes more sense
while meanM tends to cluster all points together no matter
whether there is delay. To conclude, the peak distribution in
the existing problem formulation is incorrect.

IV. SPLITEA: AN EVOLUTIONARY APPROACH TO THE
COMPUTING RESOURCE ALLOCATION PROBLEM

This section aims to answer the second research question:
How to design an evolutionary algorithm tailored for solving
the new formulation? Specifically, the proposed SplitEA tai-
lored for solving the new problem formulation is presented in
detail.

As a meta-heuristic algorithm with capability of global
search, evolutionary algorithms have been successfully applied
to solve many resource allocation problems [29]–[36]. Despite
this, the existing evolutionary algorithms for solving resource
allocation problems in the literature are not suitable for the
problem in this paper, since the problem formulation in this
paper is different from that in the literature and evolutionary
operators of existing evolutionary algorithms are not directly
applicable. More specifically, genetic operators to generate
offspring solutions and constraints handling mechanisms in
existing evolutionary algorithms are not appropriate for the
problem formulation in this paper, since they tend to generate
infeasible solutions which cannot be handled well by exist-
ing constraint handling techniques. Besides the proposed EA
components, the process of random cluster splitting in SplitEA
is designed to produce an initial population for the problem
of the next day, through randomly selecting a cluster from a
solution in the optimized population of the previous day and
randomly splitting it into two clusters.

The main novelty our proposed SplitEA is that the proposed
EA operators are designed considering the problem character-
istics. Different from standard EA operators which operate so-
lutions on solution representation (e.g., vector), our proposed
operators operate solutions on the clustering scheme first and
then update the solution representation (i.e., vector). Regarding
the resource allocation problem as a clustering problem, the
operators in SplitEA use the principle of iteratively grouping
point(s) into an existing cluster and/or breaking up existing
cluster(s) to generate feasible solutions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Algorithm 1: Proposed SplitEA framework
Input: A set of N points R = (r1, ..., ri, ..., rN) with

their position coordinate (r1i , r
2
i) (where r1i and

r2i are the longitude and latitude, respectively);
neighborhood threshold τ ; population size
popsize; maximum number of generations
maxgen; start date startdate and end date
enddate.

Output: The found best solutions x∗ for days from
startdate+ 1 to enddate+ 1.

1 Calculate the distance of any two points disti,j to fill the
distance matrix distM = disti,j ;

2 Initialize parameters: set the count of generation
gencount = 1; set the count of days d = startdate;

3 InitialPop(): randomly generate a population P with a
set of popsize feasible solutions;

4 while d ≤ enddate do
5 Input the traffic data of each point

f di =
(
fd0 (ri), ..., f

d
h(ri), ..., f

d
23(ri)

)T
on the current

day, where fdh(ri) is sum of data of ri from h-th to
(h+ 1)-th hour at the current day;

6 Utilize a forecasting model to predict the traffic data
of each point on the next day ((d+ 1)−th)
fpd+1

i =
(
fd+1
0 (ri), ..., f

d+1
h (ri), ..., f

d+1
23 (ri)

)T
based on the current day’s (d−th) traffic data f di ;

7 Calculate the fitness value of each solution in
population P based on the predicted traffic data fpd+1

i

using the equation (5);
8 while gencount ≤ maxgen do
9 Generate an offspring population Poff using the

mutation operator based on the parent population
P: Mutation(P);

10 Calculate the fitness value of each solution in
population Poff based on the predicted traffic
data fpd+1

i using the equation (5);
11 Combine two populations P and Poff and select

the top popsize solutions as the P for the next
iteration;

12 gencount = gencount + 1;
end

13 Select xd+1 with the smallest fitness value from P as
the solution to be adopted/deployed for day d+1;

14 RandomClusterSplitting(P): conduct random cluster
splitting on P to produce a new population as the
initial population P for the next day;

15 d = d + 1;
end

A. Overview of the Proposed Evolutionary Algorithm SplitEA

This section introduces the framework of the proposed
evolutionary algorithm, which is exhibited in Algorithm 1.
Given a set of N points with their position coordinate in the
network, the algorithm firstly calculates the distance of any
two points to fill the adjacent matrix in line 1 of Algorithm
1. Then, in line 2, the initialization process of parameters is

conducted to set the initial values for the parameters used in
SplitEA. The initial values of gencount and d are set as 1 and
startdate, respectively. After that, the initialization process of
the algorithm randomly generates a population P with a set
of feasible solutions in line 3. Then, allocate the computing
resources to all points day to day from the start date startdate
to the end date enddate.

Within the outer loop of the while from line 4 to line 15, the
first step is to input the traffic data of all points on the current
day in line 5. Then in line 6, leverage a prediction model to
forecast the traffic data of all points on the next day. The input
of the prediction model is the traffic data of all points on the
current day. Note that, in reality, the traffic data of all points
is only completely collected and therefore available at the end
of each day. Next step in line 7 is to calculate the fitness value
of all solutions in the initial population P for this day on the
predicted traffic data using the equation (5).

Algorithm 2: InitialPop(): procedures of the population
initialization.

Input: A set of N points R = (r1, ..., ri, ..., rN) with
their position coordinate (r1i , r

2
i) (where r1i and

r2i are the longitude and latitude, respectively);
distance matrix disM ; neighborhood threshold τ ;

Output: The initialized population P.
1 for j:=1 to popsize do
2 Set the cluster count clucount as 0;
3 while there is a point not clustered do
4 Randomly select a point r from the set of points

R;
5 Find all points from the rest points to get a set

CloseSet, in which the distance of any point to r
is smaller than τ , the size of the set CloseSet is
Nc;

6 Randomly pick points from CloseSet with the
number of less than or equal to Nc and group
them with r as a cluster;

7 Set the value of those clustered points as:
xk=clucount, where k is the index of those
points grouped into the same cluster;

8 clucount = clucount+ 1;
end

9 Set the j−th solution as Pj = (xj1, ..., x
j
N);

end
10 Return P.

After evaluating the initialized population in line 7, the
algorithm iterates until the gencount reaches the pre-setting
maximum number of generations within the loop of while from
line 8 to line 12. At each generation, the proposed mutation
operator is used to produce an offspring population Poff with
feasible solutions based on the parent population P in line 9.
Then in line 10, solutions in the offspring population are also
evaluated using the fitness function in equation (5). After that,
the parent population P and the offspring population Poff are
combined together in line 11. Then also in line 11, the top
popsize solutions with the smallest fitness values are selected

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

from the combined population as the P for the next generation.
After the iteration before line 13, a solution with the

smallest fitness value is selected from P as the found best
solution for the resource allocation problem at the d + 1-th
day to be deployed. Then, in line 14, conduct the process of
random cluster splitting on P to produce a new population
as the initial population P for the next day. This process is
trying to improve the clustering structure diversity of the whole
population such that better solutions can be found for the next
day.

B. Description of Each Step of the Algorithm
This section describes the details of three procedures in

the framework of the proposed evolutionary algorithm: the
initialization process of the population InitialPop(), mutation
operator to produce feasible offspring solutions Mutation(P)
and the process of random cluster splitting to produce the
initial population for the next day RandomClusterSplitting(P).
These procedures are specifically tailored for solving the re-
source allocation problem. Notably, all these three procedures
are designed in a way that ensures that no solution generated
will violate the constraints.

1) Population initialization: Different from standard EA
initialization which randomly generate a value within its range
for each element of the solution vector, the population initial-
ization process in the proposed SplitEA randomly generates a
clustering scheme through iteratively grouping the points into
a set of clusters and then assigning the points within the same
cluster with the same value in the solution representation. This
ensures that no infeasible solutions are generated.

The idea of initializing a feasible solution in the population
is illustrated in Fig. 3, which is to iteratively group one
randomly selected unclustered point and a set containing a
random number of its neighboring points together, until all
points are clustered. As shown in the figure, suppose r1 is
firstly selected. Two neighboring points (with the distance to
r1 smaller than τ) and r1 are grouped into one cluster (black
points). A similar procedure is followed for r2 and r3.

The detailed procedures of the population initialization are
stated in Algorithm 2, which aims to produce a population with
popsize feasible solutions. The specific steps for producing
each feasible solution are as follows. Firstly, a point r is
randomly selected from the set of points in line 4. Then, find
all neighboring points of r to form a neighboring set of this
point CloseSet in line 5. All those neighboring points have
the distance to r smaller than τ . After that, in line 6, randomly
pick several points with the number of no larger than Nc to
cluster them to point r, where Nc is the size of CloseSet.
Repeat these steps until all points in the set of all points
are clustered. This initialization process aims to generate a
population with the number of cluster smaller than the number
of points and potentially increase the clustering structure
diversity as much as possible, such that the optimal clustering
structure could be found in later optimization process.

2) Mutation operator: Different from standard mutations
operators which usually mutate one or more gene points of a
solution vector to generate mutated solutions, the mutation op-
erator in the proposed SplitEA generates an offspring solution

Algorithm 3: Mutation(P): procedures of the mutation
operator.

Input: The parent population P distance matrix disM ;
neighborhood threshold τ ; the probability of
preferentially clustering isolated points prob.

Output: The offspring population Poff .
1 for j:=1 to popsize do
2 Select the isolated points as the set isoPoint from

Pj , each of which solely forms a cluster;
3 Random generate a number randNum between 0

and 1: randNum = rand(0, 1) ;
4 if randNum < prob and isoPoint is not null then
5 Randomly select an isolated point x with the

index k from the set isoPoint;
else

6 Randomly select a point from all points;
end

7 Find all adjacent clusters of x as mutClusters, in
which all points have the distance to point x smaller
than or equal to τ ;

8 if mutClusters is not NULL then
9 Group x into a random cluster randCluster in

mutClusters and set the value of xk as the
cluster number of randCluster:
xk = randCluster ;

else
10 Randomly select an adjacent cluster C and put

those points whose distance to x is smaller than
or equal to τ in the set Cclose, of which the size
is Num;

11 Randomly pick a random number of points
between 1 and Num from Cclose, and group
them and x into a new cluster;

12 Set the value of those points in the new cluster as
max(xi) + 1, (x = 1, ..., N) (It is impossible that
some existing clusters are eliminated since the
size of cluster C is larger than Num. The reason
is mutClusters is NULL.);

end
13 Get the j−th mutated solution Pj = (xj1, ..., x

j
N);

end
14 Return Poff .

through randomly choosing a cluster from a parent solution
(i.e., a clustering scheme) to break up and randomly re-cluster
the points. As our problem is a resource allocation problem
that can be seen as a clustering problem, our operator will
guarantee that the offspring also represents valid clusters.

The idea of how to generate a feasible solution using the
designed mutation operator is presented in Fig. 4. As shown in
the figure, the process of the mutating a solution is classified
into two situation depending on whether there is an isolated
cluster in the parent solution. As shown in Fig. 4 (a), when
there is an isolated cluster (i.e. the point x as a single cluster),
it is grouped to any one adjacent cluster of x (the cluster with
black points). Otherwise, as shown in Fig. 4 (b), randomly

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

1r

2r

3r

Fig. 3. The process of initializing a feasible solution in the procedure
of population initialization. All points are to be clustered. Suppose the first
randomly selected point is r1, find all neighboring points of r1 whose distance
to r1 is smaller than or equal to τ , and put them in CloseSet (i.e. points
within the black dash circle) with the number of Nc (Nc=4); randomly pick
several points (2 black points) from CloseSet with the number of less than or
equal to Nc and group them with r1 as a cluster. The above similar procedures
can be conducted on r2 and r3 to get other two clusters with blue and red
points, respectively.

Mutation

x

x

Mutation

x

x

(a) (b)

Fig. 4. Illustration of how to conduct mutation on a solution: (a) there
is an isolated cluster with only one point. Suppose x is the point in the
isolated cluster, x has two adjacent clusters (red and black). Note that the
set of adjacent clusters of x, where all points in the cluster have the distance
smaller or equal to x, is denoted as mutClusters. Therefore, only the adjacent
cluster of x with black points is the mutClusters. Then, x could be grouped
to the cluster of black points. (b) There is no cluster with only one point.
Suppose x is the selected point, x has one adjacent cluster with red points.
The red cluster has three (i.e. Num=3) points with the distance smaller than
τ to x. Then, randomly pick less than Num points (supposing 2) and group
them and x to form a new cluster (i.e. blue points).

select a random number of points (2 red points) from its x
adjacent cluster to group x and selected points as a new cluster
(the cluster with blue points).

Specific procedure of the mutation is presented in Algorithm
3. Given a parent population P, the mutation operator produces
an offspring population Poff with popsize feasible solutions.
For each solution of P, the operator firstly selects the isolated
point as the set of isoPoint in line 2, in which each point is
formed as one isolated cluster. Here, isolated points are those
that are not grouped into any clusters with other points and
each of them forms a single cluster. Then, in line 3, randomly

generate a random number randNum between 0 and 1. If
randNum is smaller than the pre-setting probability prob and
the set isoPoint is not empty, randomly select an isolated
point x with the index k from the set isoPoint in line 5; else,
randomly select a point from all points in line 6. Here, prob
controls the weight of decreasing the number of clusters and
increasing the diversity of the clustering scheme. For example,
if prob is large, more isolated points could be given more
priority to be grouped to its adjacent clusters.

Afterwards, the mutation process is conducted on the se-
lected point x, trying to set xk as the cluster number to produce
a feasible solution. Firstly, find all adjacent clusters of x as
mutClusters in line 7, in which all points have the distance to
point x smaller than or equal to τ . This is to ensure whether
x can be directly grouped to the existing cluster. If the set
mutClusters is not null, just directly group x into one of the
randomly picked cluster in the mutClusters to decrease the
number of clusters in line 9; else, in line 10 randomly select
an adjacent cluster C of x and put those points whose distance
to x is smaller than or equal to τ in the set Cclose with the
number of Num.

After that, randomly pick a random number of points
between 1 and Num from Cclose group them and x into a
new cluster in line 11. Following this way, feasible solutions in
the offspring population Poff can be produced. In the second
case, a new cluster is produced, which results in one more
cluster while increase the diversity of the clustering. Therefore,
solutions with more resource utilization rate and less delay
might be searched.

3) Random Cluster Splitting: Problems at different days are
similar to each other, since they have the same position for all
points. Therefore, transferring useful information from solving
one problem instance to solve another related problem instance
could potentially speed up the optimization process for the
new instance. However, considering that optimal solutions
in the population for the problem of the previous day have
converged, the population may have limited diversity on the
problem of the next day if we directly transfer all of them
without any mechanism on them. Therefore, we propose a
knowledge transfer-based strategy random cluster splitting to
transfer optimal solutions of the old problem and to generate
an initial population with enough diversity on the problem
of the next day. The main idea is, for each solution in the
population obtained previously, to split a randomly selected
cluster into two clusters, in which each cluster has a random
number of points.

The process of the random cluster splitting is shown in Fig.
5. As shown in the figure, the red cluster is randomly split
into two clusters (red one and the blue one). The reason why
not just copying the individuals from the previous population
is that copied population has very few diversity regarding the
number of cluster, which may prevent the search of solutions
with better fitness value and few BBU underutilization and
delay. The specific procedures of the random cluster splitting
is described in Algorithm 4.

For each solution in the population P, conduct the following
random cluster splitting on it to increase the structure diversity
of the existing clustering scheme, such that each solution

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

RandomCluster
Spliting

Fig. 5. The process of Random Cluster Splitting. Suppose the solution in the
left side has two clusters (black one and red one) and suppose the randomly
selected cluster is the red one, there are 5 point in the red cluster. Randomly
generate a number between 1 and 5 (suppose it is 2). Then, the red cluster is
split to two clusters with two points in the blue (new) cluster.

has more chance to reach better fitness in later optimization.
Firstly, in line 2, randomly pick a cluster C with more than
one point as the cluster to be split, since there is no need to
split with just one point. Then, calculate the number of points
in the cluster C: NR in line 3.

Next, in line 4, randomly generate a number between 1
and bNR/2c: Nsplit = rand(1, bNR/2c). This also enables
the diversity of the clustering structure. After that, in line
5, split the cluster C into two clusters with size of Nsplit
and NR − Nsplit, respectively. Lastly, set the value of
those points in the cluster with the size of NR − Nsplit as
max(xi) + 1, (x = 1, ..., N). Through this random cluster
splitting process, the produced solutions can decrease the
number of cluster by 1 and therefore maintain most clustering
structure. At the same time, the diversity of the clustering
structure can be increased through splitting the cluster, which
might generate better solutions for the problem at the next day.

Algorithm 4: RandomClusterSplitting(P): procedures
of the random cluster splitting.
Input: The population P of the problem at the previous

day; distance matrix disM ; neighborhood
threshold τ ;

Output: The initialized population P for the problem at
the next day.

1 for j:=1 to popsize do
2 Randomly select a cluster C with more than one

point;
3 Calculate the number of points in the cluster C: NR;
4 Randomly generate a number:

Nsplit = rand(1, bNR/2c);
5 Split the cluster C into two clusters with size of

Nsplit and NR−Nsplit, respectively;
6 Set the value of those points in the cluster with the

size of NR−Nsplit as max(xi) + 1, (i = 1, ..., N);
7 Set the j−th solution as Pj = (xj1, ..., x

j
N);

end
8 Return P.

C. Time Complexity of the Proposed Evolutionary Algorithm

This section analyzes the time complexity of the proposed
knowledge transfer-based evolutionary algorithms. The pro-

cesses that consume main time complexity will be analyzed.
Step 1 in Algorithm 1 takes O(N2) computations, where
N is the number of points. The while loop from Step 3 to
Step 8 in Algorithm 2 takes less than O(N). Therefore, the
population initialization consumes maximum O(N ∗ popsize)
computations. At each generation of the evolutionary algo-
rithm, mutation process consumes the most time complexity.
Step 7 of the Algorithm 3 consumes O(N) computations while
all other steps in the loop from Step 2 to Step 12 in Algorithm
3 consumes less than O(N) computations. Therefore, the
mutation process consumes O(N ∗ popsize). Steps 2 to 7
in the Algorithm 4 consumes O(NR − Nsplit), as Step
6 consists a for loop taking O(NR − Nsplit) computa-
tions. Therefore, the process of random cluster splitting takes
O(popsize) computations. To conclude, the proposed evolu-
tionary algorithm except for the prediction model consumes
O(days∗maxgen∗N ∗popsize) computations, where days is
the number of days in the dataset and popsize is the population
size.

V. EXPERIMENTAL STUDIES

This section introduces datasets, compared algorithms, pa-
rameter settings for them and performance metrics, so as
to validate the effectiveness of our proposed evolutionary
algorithm (i.e. SplitEA). Specifically, Section V-B1 answers
the first sub-research question of the second research question:
Does proposed EA outperform a greedy algorithm? Under
what conditions? Then, the second sub-research question (i.e.
what is the influence of different algorithm’s design choices
on its performance) is answered in Section V-B2.

A. Experimental Setup

1) Datasets Description: There are two sets of datasets
to be used, one of which is the real-world datasets found
online while another is the artificial datasets. The real-world
datasets are used to verify whether the proposed approach is
able to solve the real-world problems better than the greedy
algorithm. However, the available real-world datasets have
limited types of location and traffic dataset. In order to verify
the effectiveness of the proposed algorithm on datasets with
more properties, several artificial datasets with the combina-
tion of different RRH location and different traffic dataset are
generated.

a) Real-world Datasets: There are four real datasets
found in the literature: Milan [43], Songliao Basin [44], C2TM
[45] and Archive [11]. Note that the Archive dataset does
not have the location information, three location datasets are
generated to complement it, via randomly selecting from the
location dataset of Milan and Songliao Basin and randomly
generating within a range. Therefore, there are six real-world
datasets in total. The specific description of datasets are
explained in the Supplementary File.

b) Artificial Datasets: This paragraph describes the gen-
erated artificial datasets and how they are combined with
different types of generated location dataset and generated
traffic dataset. There are 8 generated artificial datasets with
seven days, which includes 1a, 2a, 3a 100/158, 3a 120/158,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

1c-Milan, 1c-Songliao, 2b-Np=10 (Nt=174) and 2b-Np=5
(Nt=185), where Np is the maximal number of points in each
group for the location dataset, Nt is the total number of points
in the solution. Note that in dataset 2a, the maximal number
of points (Np) in each group for the location dataset is set
as 5. Among those datasets, ‘1’, ‘2’ and ‘3’ means the first,
second and third location dataset, respectively; ‘a’, ‘b’ and ‘c’
means the first, second and third traffic dataset, respectively.
The specific description of artificial datasets are explained
in the Supplementary File. These datasets and the codes on
specifically generating those datasets will be released online.

2) Model Specification: In the experiments on real-world
datasets with the prediction, we use the LSTM model to do
the prediction, which is used in Step 6 of Algorithm 1. The
reason why we use LSTM is that it can capture the temporal
dependency and spatial correlation among base station traffic
patterns [4] and it has been proved to achieve better prediction
results than ARIMA and WANN in [4]. The specification of
the model and the model parameters are the same as those used
in [4]. The model has two stacked LSTM layers. The encoder
layer L1 contains Nen encoder memory units, which accepts
a traffic snapshot of shape [24;182] as input, and outputs an
encoded sequence for the decoder. The decoder contains Nde

decoder memory units, which accepts the encoded sequence
as input and outputs the forecast of the traffic snapshot.

Considering that only the Milan and Archive datasets have
many days to do the prediction, compared algorithms on those
two days will use the LSTM to do the prediction. The division
of the training set and testing set is also the same as that in
[4], i.e. the first 70% days of the dataset is regarded as the
training set with the remaining days as the testing set. For other
datasets except Milan and Archive which do not have enough
days, no splitting process is conducted on them, which are not
used to do the prediction. To save space, the prediction errors
of the LSTM model on two realworld datasets Milan [43] and
Archive [11] are shown in Fig. 1 of the Supplementary File.

3) Compared Algorithms: There are four compared al-
gorithms in the following experiments. In order to verify
the effectiveness of our proposed SplitEA in solving the
resource allocation problem, we compare SplitEA to the
greedy algorithm [4] as it is the state-of-the-art algorithm for
solving the computing resource allocation problem in open
RAN of this paper. Moreover, to verify the effectiveness of
the proposed knowledge transfer-based strategy (i.e., random
clustering splitting) in SplitEA, two algorithms (i.e., the fol-
lowing RandEA and CopyEA) are modified from SplitEA to
be compared to SplitEA.

1) The greedy algorithm (GreedyAlg): modified from the
greedy algorithm in the existing work [4] through apply-
ing the fitness function of the proposed problem formu-
lation and setting the termination criteria as the pre-set
maximum number of evaluations. In the greedy algorithm
of the existing work [4], it calculates the fitness value of
clusters formed by a selected point to its adjacent clusters,
of which more details can be found in [4]. However, in the
greedy algorithm here, it calculates the fitness function
of the cluster schemes (solutions) formed by a selected
point to its adjacent clusters as well as other clusters. The

greedy algorithm here is regarded as a baseline algorithm
to verify the effectiveness of the proposed evolutionary
algorithms. The aim of setting the maximum number
of evaluations as the termination criterion is to make a
fair comparison to the proposed evolutionary approach
through setting the evaluation times the same for all
compared algorithms.

2) RandEA: replace step 14 of Algorithm 1 with Algorithm
2: it randomly generated an initial population whenever
solving the problem of the next day; other procedures
remain the same. The reason why to introduce this
algorithm is to verify whether the random cluster splitting
is better than optimization from scratch.

3) CopyEA: replace step 14 of Algorithm 1 with the follow-
ing process: just copy P as the initial population P for the
next day. CopyEA is regarded as the compared algorithm
to prove whether the random cluster splitting process is
better than simply copying all previous solutions.

4) SplitEA: our proposed evolutionary algorithm.
In order to verify the performance of our proposed SplitEA
over the greedy algorithm, we compare SplitEA against the
greedy algorithm on six real-world datasets and eight artificial
datasets. In addition, we analyze the impact of different
parameter settings on the performance of SplitEA and the
greedy algorithm on Milan dataset. The comparison results
are shown in Section V-B1. Similarly, the performance of dif-
ferent algorithm design choices and the influence of parameter
settings on them are also analyzed. The comparison results are
shown in Section V-B2.

4) Parameter Settings: In this section, we describe the used
specific parameter settings, like the mutation probability and
the parameters of the problem.
• prob=0.5 in the improved mutation, which makes the

probability of clustering isolated points into a cluster and
that of searching for different clustering structure equal.

• Neighborhood threshold τ = 3d, where d is the average
distance of all point to their closest point, which is
selected based on the experience.

• Evaluation time in GreedyAlg = 1500.
• w = 0.01 in the problem formulation; popsize = 10

and generation = 150 for all compared EAs including
SplitEA, RandEA and CopyEA, which are set to make
the evaluation times = 1500, equal to that of the greedy
algorithm to enable fair comparison. The evaluation time,
generation and population size are selected based on the
experience.

• Mutation probability: 1, as there is only one operator to
evolve the population;

The impact of these parameters will also be analyzed in
Section V-B1 and Section V-B2.

5) Performance Metrics: Metrics to evaluate the perfor-
mance of found solutions by the greedy algorithms and the
evolutionary algorithms are shown as follows. They are set
according to the optimization objectives of the problem, so that
we can investigate how well the algorithm is able to optimize
these objectives.

1) The number of clusters: K;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

2) The average difference between all points data and 1 for
all clusters: U , which is defined as follows:

U =
1

K

K∑
k=1

U(Ck). (9)

3) The average difference of all points data and 1 when there
is delay: Udelay, which is described as follows:

Udelay =
1

K

1

24

K∑
k=1

∑(
fh(Ck)− 1

)
,

when fh(Ck) > 1.

(10)

4) The average difference of all points data and 1 when there
is NO delay: Uunder1, which is described as follows:

Uunder1 =
1

K

1

24

K∑
k=1

∑(
1− fh(Ck)

)
,

when fh(Ck) ≤ 1.

(11)

Note that all metrics are required to be minimized. Minimizing
Uunder1 means maximizing the utilization rate.

For the computational studies, each algorithm is given
30 independent runs. Friedman and Nemenyi statistical tests
[46] with the significance level 0.05 are used to indicate the
statistical significance of all compared algorithms. The metric
value obtained by a given algorithm on one dataset is regarded
as an observation to compose that algorithms group for the
test, following Demsars guidelines [46]. Therefore, there are
30 observations in each group.

B. Experimental Results

This section firstly presents the comparing results between
the proposed SplitEA and the greedy algorithm on the real-
world datasets, to show the superiority of our proposal. Then,
the comparison results of SplitEA and the greedy algorithm on
artificial dataset are shown to verify the performance of them
under different scenarios, like different distribution of points
and different traffic pattern. Later on, three EAs (RandEA,
CopyEA and SplitEA) are compared on both real-world and
artificial datasets to verify the benefit of the process of random
cluster splitting in SplitEA.

TABLE II
COMPARISON RESULTS OF SPLITEA AND THE GREEDY ALGORITHM ON

REAL-WORLD DATASETS.
Datasets Milan Songliao C2TM-sub1

Algorithms GreedyAlg SplitEA GreedyAlg SplitEA GreedyAlg SplitEA
K 81.3907 52.3019 104.7381 54.3619 59.6792 51.7708
U 0.8388 0.7644 0.8715 0.8042 0.9961 0.9956

Udelay 0.0003 0.0076 0.0001 0.0234 1.25E-07 2.97E-07
Uunder1 0.8385 0.7568 0.8714 0.7760 0.9961 0.9956

f 1.6527 1.2874 1.9189 1.3478 1.5929 1.5133

Datasets Archive-Milan Archive-Songliao Archive-Random
Algorithms GreedyAlg SplitEA GreedyAlg SplitEA GreedyAlg SplitEA

K 15.3396 13.0352 15.6082 13.2629 15.2642 12.0069
U 0.7839 0.7536 0.7880 0.7538 0.7823 0.7260

Udelay 0.0001 0.0039 0.0002 0.0022 0.0001 0.0009
Uunder1 0.7837 0.7497 0.7878 0.7517 0.7822 0.7250

f 0.9372 0.8840 0.9440 0.8865 0.9349 0.8460

The values in this table are the mean value of the metrics under 30 indepen-
dent runs. Friedman and Nemenyi statistical tests [46] with the significance
level 0.05 are used to indicate the statistical significance between compared
algorithms. The significantly better values obtained by the algorithm are
highlighted in red color.

1) Comparison Results of SplitEA and the Greedy Algo-
rithm: This section tries to answer the first sub-research ques-
tion of the second question: Does proposed EA outperform a
greedy algorithm? Under what conditions? Specifically, this
section presents the comparison results of SplitEA and the
greedy algorithm on several real-world and artificial datasets,
to show the superiority of our proposal over the greedy
algorithm.

Firstly, SplitEA and the greedy algorithm are tested on
the real-world datasets by using the real traffic data in the
fitness function instead of the predictions of such traffic data.
This has the aim of evaluating the optimization mechanisms
themselves in the proposed SplitEA. Then, two algorithms are
tested on two real-world traffic datasets (Milan and Archive)
with predictions to see whether the prediction error affects the
performance of SplitEA through using the predicted traffic data
in the fitness function. Lastly, two compared algorithms are
tested on artificial datasets with different scenarios, to further
verify the effectiveness of the optimization mechanisms them-
selves in the proposed SplitEA on more datasets beyond the
real-world datasets. Note for those experiments without using
the prediction model, the Step 6 in Algorithm 1 is deleted and
in Step 7, the fitness value of solutions is calculated on the
real traffic data.

a) Comparison results of SplitEA and greedy algorithm
on real datasets: The comparison results of the greedy algo-
rithm and SplitEA on the real dataset are shown in Table II.
It is clear that SplitEA gets significant better fitness values on
all datasets, which shows that the SplitEA is able to get better
solutions as expected. In addition, SplitEA achieves significant
better values of all 4 metrics on all datasets except for the
metric Udelay.

The reason why the compared two algorithms get equal
Udelay on the dataset C2TM − sub has been analyzed that
the traffic data of most points at most hours of each day is too
small to cause delay. This can be reflected by the results of the
computing resource utilization rate (Uunder1), as the traffic
data is too small to make the BBU rather underutilization. For
all other datasets, SplitEA gest worse significant Udelay. It is
intuitive to get the reason that SplitEA tends to cluster more
points together due to the less required number of clusters for
fixed number of points and this would inevitably increase the
delay in the network.

b) Comparison results of SplitEA and greedy algorithm
on real-world datasets with the prediction: The comparison
results of the greedy algorithm and SplitEA on the real-world
datasets with predicted traffic data are shown in Table III. Note
that only Milan and Archive datasets have enough days to do
the prediction. Therefore, there are only four datasets used to
test the ability of compared greedy algorithm and SplitEA on
the predicted traffic datasets. It is clear from Table III that
SplitEA gets significant better fitness value on all predicted
datasets.

In addition, SplitEA gets significant better metrics value
regarding all four metrics on Archive− Songliao. On other
datasets, SplitEA gets significant better metrics regarding all
metrics except for Udelay. It is intuitive to get the reason that
SplitEA tends to cluster more points together due to the less

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

TABLE III
COMPARISON RESULTS OF SPLITEA AND THE GREEDY ALGORITHM ON

REAL-WORLD DATASETS WITH THE PREDICTION.

Datasets Milan Archive-Milan
Algorithms GreedyAlg SplitEA GreedyAlg SplitEA

K 81.4481 52.4222 14.9969 13.0181
U 0.8389 0.7673 0.7811 0.7540

Udelay 0.0003 0.0089 0.0013 0.0043
Uunder1 0.8386 0.7585 0.7799 0.7497

f 1.6534 1.2915 0.9311 0.8842
Datasets Archive-Songliao Archive-Random

Algorithms GreedyAlg SplitEA GreedyAlg SplitEA
K 81.4481 52.4222 14.9969 13.0181
U 0.8389 0.7673 0.7811 0.7540

Udelay 0.0003 0.0089 0.0013 0.0043
Uunder1 0.8386 0.7585 0.7799 0.7497

f 1.6534 1.2915 0.9311 0.8842
The values in this table are the mean value of the metrics under 30 indepen-
dent runs. Friedman and Nemenyi statistical tests [46] with the significance
level 0.05 are used to indicate the statistical significance between compared
algorithms. The significantly better values obtained by the algorithm are
highlighted in red color.

SplitEA Greedy Alg.

1 2

CD

(a) K

SplitEA Greedy Alg.

1 2

CD

(b) U

SplitEA Greedy Alg.

1 2

CD

(c) Udelay

SplitEA Greedy Alg.

1 2

CD

(d) Uunder1

Fig. 6. Nemenyi post-tests results among four metrics by SplitEA and the
greedy algorithm on all artificial datasets.

required number of clusters for fixed number of points and
this would inevitably increase the delay in the network.

c) Comparison results of SplitEA and greedy algorithm
on artificial datasets: In order to test the ability of the SplitEA
in searching for good solutions over the greedy algorithm on
datasets with more properties beyond those of the existing
datasets, like different types of location information and traffic
patterns, six artificial datasets with different points distribution
and different traffic pattern have been generated to do the
verification. The property of those datasets are described in
V-A1.

To show the significant superiority of our proposed SplitEA
over the greedy algorithm on artificial datasets in general,
Friedman and Nemenyi statistical tests [46] are adopted across
all artificial datasets regarding the four metrics (HV, GD and
MS). The metric value of each independent run that each
algorithm gets on one dataset at each day of seven days is
regarded as an observation of the test. Therefore, there are
1680 (8 artificial datasets, 7 days and 30 independent run runs)
observations for each algorithm in the Friedman and Nemenyi
tests.

Fig. 6 presents the Nemenyi post-tests results among four
metrics by SplitEA and the greedy algorithm. Friedman test
detects significant differences in average accuracy for all
metrics with a p-value of 3.1628E-30, 2.5955E-122, 2.9012E-
21 and 4.4523E-247, respectively. It is clear from this figure
that our proposed SplitEA outperforms the greedy algorithms

0 100 200 300 400 500 600 700
Generations from 1st day to 7th day

1.1

1.2

1.3

1.4

1.5

f

SplitEA
GreedyAlg

(a) Dataset 1a

0 100 200 300 400 500 600 700
Generations from 1st day to 7th day

1.2

1.4

1.6

1.8

2.0

f SplitEA
GreedyAlg

(b) Dataset 3a 100/158

0 100 200 300 400 500 600 700
Generations from 1st day to 7th day

1.0

1.2

1.4

1.6

1.8

2.0

f

SplitEA
GreedyAlg

(c) Dataset 1c-Milan

0 100 200 300 400 500 600 700
Generations from 1st day to 7th day

0.8

1.0

1.2

1.4

1.6

1.8

2.0

f

SplitEA
GreedyAlg

(d) Dataset 2b-Np=10 (Nt=174)

Fig. 7. Curve of the fitness value obtained by SplitEA and the greedy
algorithm on four artificial datasets across the whole evolution process.

in general regarding all metrics, which prove the effectiveness
of our proposed SplitEA over the greedy algorithms. Only the
test results are shown here to save space. More details can be
found in Table 1 of the Supplementary File.

d) Fitness value curve of SplitEA and greedy algorithm
on selected artificial datasets: In order to have a better
understanding of the behavior of SplitEA against the greedy
algorithm in the optimization process over time, the curve of
the fitness value obtained by SplitEA and greedy algorithm
on four representative artificial datasets (1a, 3a 100/158, 1c-
Milan and 2b-Np=10 (Nt=174)) are drawn to be shown in Fig.
7. In other words, we need to check if the better performance
of the proposed SplitEA than that of the greedy algorithm is
consistent over time.

It is clear from Fig. 7 that SplitEA gets better fitness values
at all days of dataset 3a100/158 and dataset 2b − Np =
10(Nt = 174). In addition, SplitEA only gets worse fitness
value at the beginning of the first day of dataset 1a and dataset
1c − Milan. Therefore, it has been checked that there are
not some periods of time for which SplitEA is actually much
worse than the greedy algorithm, despite being better overall.
To be more specific, SplitEA is able to get better fitness values
than the greedy algorithm in the optimization process over
time.

e) The effect of different parameter settings on the perfor-
mance of SplitEA and greedy algorithm: In order to check the
influence of different parameter settings on the performance
of SplitEA and greedy algorithm, two methods are tested
on the Milan Dataset which sets different values for two
problem-related parameters w and τ . The comparison results
of SplitEA and greedy algorithm on dataset Milan under
different parameter settings are presented in Table 2 of the
Supplementary File. It is clear from this table that under
different settings of w, SplitEA significantly performs better
than the greedy algorithm on all metrics and the fitness value.
In addition, SplitEA gets significantly better results the greedy
algorithm on all metrics under all settings of τ except for the
setting of τ = 1500 on the metric Udelay. The reason might

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

be that if τ is too large, SplitEA tends to cluster many points
together, which inevitably causes more delay than the greedy
algorithm causes.

2) Analyses of Random Cluster Splitting in SplitEA: This
section tries to answer the second sub-research question of the
second question: What is the influence of different algorithms
design choices on its performance? Considering that process
of random cluster splitting is an importance mechanism in
SplitEA and there are two intuitive alternatives, this section
analyzes the effect of the process of random cluster splitting on
SplitEA. Therefore, we replace the process of random cluster
splitting with two different processes to create two variants
of SplitEA, named as RandEA and CopyEA, and compare
three of them on several real-world and artificial datasets. The
details of the replacement in RandEA and CopyEA can be
found in Section V-A3.

Firstly, SplitEA and two variants are tested on the real-
world datasets to verify that whether the proposed SplitEA
gets best optimization results than two variants on real-
world datasets. Then, three algorithms are tested on predicted
traffic datasets to see whether the prediction error affects the
performance of SplitEA. Lastly, three compared algorithms are
tested on artificial datasets with more properties beyond the
existing datasets. Note for those experiments without using the
prediction model, the Step 6 in Algorithm 1 is deleted and in
Step 7, the fitness value of solutions is calculated on the real
traffic data.

TABLE IV
COMPARISON RESULTS OF THREE EAS ON REAL-WORLD DATASETS.

Datasets Milan Songliao
Algorithms RandEA CopyEA SplitEA RandEA CopyEA SplitEA

K 55.5481 53.3444 52.3019 53.4524 53.8810 54.3619
U 0.7766 0.7671 0.7644 0.8187 0.8109 0.8042

Udelay 0.0067 0.0069 0.0076 0.0351 0.0274 0.0234
Uunder1 0.7699 0.7602 0.7568 0.7836 0.7778 0.7760

f 1.3321 1.3005 1.2874 1.3532 1.3497 1.3478

Datasets C2TM-sub1 Archive-Milan
Algorithms RandEA CopyEA SplitEA RandEA CopyEA SplitEA

K 54.3792 52.0458 51.7708 13.5239 13.1157 13.0352
U 0.9958 0.9956 0.9956 0.7587 0.7548 0.7536

Udelay 1.70E-07 2.84E-07 2.97E-07 0.0020 0.0038 0.0039
Uunder1 0.9958 0.9956 0.9956 0.7567 0.7510 0.7497

f 1.5396 1.5160 1.5133 0.8939 0.8859 0.8840

Datasets Archive-Songliao Archive-Random
Algorithms RandEA CopyEA SplitEA RandEA CopyEA SplitEA

K 13.5308 12.9308 13.2629 12.1497 12.0057 12.0069
U 0.7572 0.7522 0.7538 0.7289 0.7268 0.7260

Udelay 0.0011 0.0043 0.0022 0.0008 0.0014 0.0009
Uunder1 0.7560 0.7479 0.7517 0.7280 0.7254 0.7250

f 0.8925 0.8815 0.8865 0.8504 0.8469 0.8460

The values in this table are the mean value of the metrics under 30
independent runs. The best and the second best values obtained by the
algorithm are highlighted in red and bold face, respectively. Friedman and
Nemenyi statistical tests [46] with the significance level 0.05 are used to
indicate the statistical significance between compared algorithms. If results
obtained by two or three algorithms are highlighted with the same mark, it
meas there is no significant difference between them.

a) Comparison results of SplitEA and two variants on
real-world datasets: The comparison results of three algo-
rithms on the real-world dataset are shown in Table IV. It is
clear that SplitEA gets significant overall best results on all
datasets except for the dataset Archive-Songliao. The reason
why CopyEA gets significant better results than SplitEA on
the dataset Archive-Songliao is due to the location dataset of
Archive-Songliao, as three datasets (Archive-Milan, Archive-
Songliao and Archive-Random) have the same traffic dataset.
It is possible on this dataset that when the solutions from the
problem of the previous day are still good for the problem of

the next day. Therefore, when SplitEA splits one cluster into
two clusters, it makes the solutions worse.

On all datasets except for Archive-Songliao, SplitEA gets
significantly best values on three metrics. Specifically, SplitEA
is the best regarding K, U and Uunder1 on datasets Milan
and Archive − Milan. It is easy to understand that when
SplitEA gets the smallest number of clusters while resulting
more delay. As for the reason why CopyEA and SplitEA
perform equally on C2TM, it is due to the traffic dataset,
which is so few that the SplitEA could not find better solutions
than CopyEA. With regards to the results on dataset Songliao,
SplitEA gets the worse K while RandEA gets the best. It
might be that when further increasing the resource utilization
rate and decreasing the delay, the number of clusters inevitably
increases.

TABLE V
COMPARISON RESULTS OF THREE EAS ON REAL-WORLD DATASETS WITH

PREDICTION.

Datasets Milan Archive-Milan
Algorithms RandEA CopyEA SplitEA RandEA CopyEA SplitEA

K 13.3635 13.6233 13.0340 13.4692 13.0962 13.0181
U 0.7591 0.7611 0.7547 0.7594 0.7546 0.7540

Udelay 0.0036 0.0021 0.0044 0.0029 0.0039 0.0043
Uunder1 0.7555 0.7590 0.7502 0.7566 0.7507 0.7497

f 0.8928 0.8973 0.8850 0.8941 0.8855 0.8842

Datasets Archive-Songliao Archive-Random
Algorithms RandEA CopyEA SplitEA RandEA CopyEA SplitEA

K 13.2068 12.8242 12.8106 12.0794 12.0019 12.0019
U 0.7608 0.7535 0.7553 0.7284 0.7268 0.7267

Udelay 0.0060 0.0061 0.0072 0.0014 0.0014 0.0013
Uunder1 0.7548 0.7473 0.7480 0.7270 0.7254 0.7253

f 0.8929 0.8817 0.8834 0.8492 0.8468 0.8467
The values in this table are the mean value of the metrics under 30
independent runs. The best and the second best values obtained by the
algorithm are highlighted in red and bold face, respectively. Friedman and
Nemenyi statistical tests [46] with the significance level 0.05 are used to
indicate the statistical significance between compared algorithms. If results
obtained by two or three algorithms are highlighted with the same mark, it
meas there is no significant difference between them.

b) Comparison results of SplitEA and two variants on
datasets with prediction: The comparison results of three
algorithms on the real-world datasets with prediction are
shown in Table V. It is clear that SplitEA gets the best fitness
values on all four dataset except the Archive-Songliao, which
is similar to those without prediction. The reason might be
similar, due to the location dataset of Archive-Songliao. In
addition, SplitEA significantly performs best on datasets Milan
and Archive-Milan regarding all four metrics except for the
Udelay.

The only difference between their performance on Milan
with prediction and without prediction is that RandEA per-
forms better than CopyEA on Milan with prediction. The
performance of three algorithms on Archive-Random is similar
to that without prediction. Therefore, it can be concluded that
the prediction error does not have much influence on the
performance of SplitEA.

c) Comparison results of SplitEA and two variants on
artificial datasets: In order to test the performance of the
SplitEA in searching for good solutions over RandEA and
CopyEA on different scenarios with different points distribu-
tion and different traffic pattern, several artificial dataset have
been generated to do the verification. The property of those
datasets are described in V-A1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

SplitEA
RandEA

CopyEA

1 2 3

CD

(a) K

SplitEA
RandEA

CopyEA

1 2 3

CD

(b) U

RandEA
SplitEA

CopyEA

1 2 3

CD

(c) Udelay

SplitEA
RandEA

CopyEA

1 2 3

CD

(d) Uunder1

Fig. 8. Nemenyi post-tests results among four metrics by SplitEA, RandEA
and CopyEA on all artificial datasets.

To show the significant superiority of our proposed SplitEA
over the RandEA and CopyEA on artificial datasets in general,
Friedman and Nemenyi statistical tests [46] are adopted across
all artificial datasets regarding the four metrics (HV, GD and
MS). The metric value of each independent run that each
algorithm gets on one dataset at each day of seven days is
regarded as an observation of the test. Therefore, there are
1680 (8 artificial datasets, 7 days and 30 independent run runs)
observations for each algorithm in the Friedman and Nemenyi
tests.

Fig. 8 presents the Nemenyi post-tests results among four
metrics by SplitEA, RandEA and CopyEA. Friedman test
detects significant differences in average accuracy for all met-
rics with a p-value of 3.7973E-25, 1.5423E-159, 4.1767E-63
and 9.8020e-303, respectively. It is clear from this figure that
our proposed SplitEA outperforms RandEA and CopyEA in
general regarding three metrics except for Udelay, which prove
the effectiveness of our proposed SplitEA over RandEA and
CopyEA Only the test results are shown here to save space.
More details can be found in Table 3 of the Supplementary
File.

d) Fitness value curve of SplitEA and two variants on
artificial datasets: In order to have a better understanding of
the proposed SplitEA and its two variants in the evolution
process, the fitness value curve of three EAs on all artificial
datasets in a randomly selected run is drawn and presented
in Figs. 2 and 3 of the Supplementary File. As three EAs all
initialize the population randomly at the first day, the curve of
all days except for the first day is presented.

It is clear from those two figures that during the whole
optimization process, the fitness vale of SplitEA is always
better than that of RandEA and CopyEA on four datasets 3as
and 1cs. As for the comparison results on datasets 1a and 2a,
SplitEA is only worse than CopyEA on first day of all days.
The reason might be that the spitting of clusters at the day
cannot provide enough diversity as the RandEA gets the best
on the first day. This case of insufficient diversity introduced
by SplitEA becomes worse on two datasets 3as on which
SplitEA performs best at initial generations while RandEA
performs best at later generation of most days among all days.

e) The effect of different parameter settings on the per-
formance of SplitEA and two variants: In order to check the
influence of different parameter settings on the performance of

SplitEA and two variants, three algorithms are tested on the
Milan Dataset which sets different values for two problem-
related parameters w and τ and three EA-related parameters
prob, G and popsize. The comparison results of SplitEA and
two variants on dataset Milan under different parameter set-
tings are presented in Table 4 of the Supplementary File. It is
clear from this table that under different settings of w, SplitEA
significantly performs better than the greedy algorithm on all
metrics and the fitness value. It is clear from this table that
under different settings of all parameters, SplitEA gets best
results, which shows that the proposed SplitEA is not sensitive
with parameter setting.

In the proposed random cluster splitting, the superiority
of the solution is not affected so much, even though the
diversity is introduced. The reason is that in the random
cluster splitting, only a random one cluster in a solution
is selected and splitted into two clusters with other clusters
unchanged, which maintains the superiority of the solution
regarding the summation of the resource utilization rate and
the delay on other non-splitted clusters. Moreover, it can be
seen from Fig. 2 of the Supplementary File that the proposed
SplitEA has better fitness value after each day than CopyEA
(copy all solutions from the previous iterations without any
modification) in most cases through comparing the curves of
them (i.e., red and blue curves). This further verifies that the
superiority of the solution in the random cluster splitting is not
affected so much from the perspective of experimental results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we firstly mathematically revealed limitations
of the existing problem formulation for the computing resource
allocation problem in O-RAN. To overcome these limitations,
we proposed a novel formulation for a better representation of
the problem.We also proposed a novel evolutionary algorithm
(called SplitEA), enabling better solutions to be found than the
existing greedy algorithm for the problem. In particular, three
novel operators were designed in SplitEA tailored for the new
problem formulation. They are population initialization, mu-
tation operator and knowledge transfer-based random cluster
splitting. Experimental studies demonstrated that our proposed
SplitEA significantly outperformed the greedy algorithm under
all parameter settings on all real-world datasets and most
artificial datasets. The comparison between SplitEA and two
variants has shown that our proposed transfer technique can
achieve better fitness over time than transferring all previous
solutions and optimization from scratch.

In the future, this work can be improved in several di-
rections. Firstly, different size of computing resource can be
considered in different clusters. Secondly, the communication
delay between the BBU pool and base stations could be also
taken into consideration. Lastly, more artificial intelligence
techniques like prediction methods or optimization approaches
can be leveraged to help the automation of O-RAN.

ACKNOWLEDGMENT

This work has received funding from the European Unions
Horizon 2020 research and innovation programme under grant

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

agreement number 766186. The work was also supported
by the Program for Guangdong Introducing Innovative and
Enterpreneurial Teams (Grant No. 2017ZT07X386), Shen-
zhen Peacock Plan (Grant No. KQTD2016112514355531) and
the Program for University Key Laboratory of Guangdong
Province (Grant No. 2017KSYS008).

REFERENCES

[1] S. K. Singh, R. Singh, B. Kumbhani, The evolution of radio ac-
cess network towards open-ran: challenges and opportunities, in: 2020
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), IEEE, 2020, pp. 1–6.

[2] Y. Liu, X. Wang, G. Boudreau, A. B. Sediq, H. Abou-zeid, Deep learning
based hotspot prediction and beam management for adaptive virtual
small cell in 5g networks, IEEE Transactions on Emerging Topics in
Computational Intelligence 4 (1) (2020) 83–94.

[3] L. Gavrilovska, V. Rakovic, D. Denkovski, From cloud ran to open ran.,
Wirel. Pers. Commun. 113 (3) (2020) 1523–1539.

[4] L. Chen, D. Yang, D. Zhang, C. Wang, J. Li, T.-M.-T. Nguyen, Deep
mobile traffic forecast and complementary base station clustering for
c-ran optimization, Journal of Network and Computer Applications 121
(2018) 59–69.

[5] B. I. Simmons, C. Hoeppke, W. J. Sutherland, Beware greedy algorithms,
Journal of Animal Ecology 88 (5) (2019) 804–807.

[6] W. Gao, T. Friedrich, F. Neumann, C. Hercher, Randomized greedy
algorithms for covering problems, in: Proceedings of the Genetic and
Evolutionary Computation Conference, 2018, pp. 309–315.

[7] A. E. Eiben, J. E. Smith, et al., Introduction to evolutionary computing,
Vol. 53, Springer, 2003.

[8] A. Gupta, Y.-S. Ong, L. Feng, Insights on transfer optimization: Because
experience is the best teacher, IEEE Transactions on Emerging Topics
in Computational Intelligence 2 (1) (2017) 51–64.

[9] K. C. Tan, L. Feng, M. Jiang, Evolutionary transfer optimization-a
new frontier in evolutionary computation research, IEEE Computational
Intelligence Magazine 16 (1) (2021) 22–33.

[10] S. P. Jayakumar, A. Conte, Framework: Clustering-driven approach for
base station parameter optimization and automation (ceda-batop), in:
2024 IEEE 21st Consumer Communications & Networking Conference
(CCNC), IEEE, 2024, pp. 1026–1029.

[11] R. T. Rodoshi, T. Kim, W. Choi, Deep reinforcement learning based
dynamic resource allocation in cloud radio access networks, in: 2020
International Conference on Information and Communication Technol-
ogy Convergence (ICTC), IEEE, 2020, pp. 618–623.

[12] A. Staffolani, V.-A. Darvariu, L. Foschini, M. Girolami, P. Bellavista,
M. Musolesi, Prorl: Proactive resource orchestrator for open rans using
deep reinforcement learning, IEEE Transactions on Network and Service
Management.

[13] S. Tekinay, B. Jabbari, Handover and channel assignment in mobile
cellular networks, Communications Magazine IEEE 29 (11) (1991) 42–
46.

[14] A. Sang, S.-q. Li, A predictability analysis of network traffic, Computer
Networks 39 (4) (2002) 329–345.

[15] G. E. Box, G. M. Jenkins, G. C. Reinsel, G. M. Ljung, Time series
analysis: forecasting and control, John Wiley & Sons, 2015.

[16] A. N. Jahromi, S. Hashemi, A. Dehghantanha, R. M. Parizi, K.-K. R.
Choo, An enhanced stacked lstm method with no random initialization
for malware threat hunting in safety and time-critical systems, IEEE
Transactions on Emerging Topics in Computational Intelligence 4 (5)
(2020) 630–640.

[17] G. Dorffner, Neural networks for time series processing, in: Neural
Network World, Citeseer, 1996.

[18] G. P. Zhang, M. Qi, Neural network forecasting for seasonal and trend
time series, European Journal of Operational Research 160 (2) (2005)
501–514.

[19] E. M. Azoff, Neural network time series forecasting of financial markets,
John Wiley & Sons, Inc., 1994.

[20] H. Moens, F. De Turck, Vnf-p: A model for efficient placement of
virtualized network functions, in: 10th International Conference on
Network and Service Management (CNSM) and Workshop, IEEE, 2014,
pp. 418–423.

[21] A. Gupta, M. F. Habib, P. Chowdhury, M. Tornatore, B. Mukherjee,
On service chaining using virtual network functions in network-enabled
cloud systems, in: 2015 IEEE International Conference on Advanced
Networks and Telecommuncations Systems (ANTS), IEEE, 2015, pp.
1–3.

[22] Z.-J. Lee, C.-Y. Lee, A hybrid search algorithm with heuristics for
resource allocation problem, Information Sciences 173 (1-3) (2005) 155–
167.

[23] P. Samimi, Y. Teimouri, M. Mukhtar, A combinatorial double auction
resource allocation model in cloud computing, Information Sciences 357
(2016) 201–216.

[24] A. Mebrek, A. Yassine, Intelligent resource allocation and task of-
floading model for iot applications in fog networks: A game-theoretic
approach, IEEE Transactions on Emerging Topics in Computational
Intelligence PP (99) (2021) 1–15.

[25] X. Liu, M. Jia, Intelligent spectrum resource allocation based on joint
optimization in heterogeneous cognitive radio, IEEE Transactions on
Emerging Topics in Computational Intelligence 4 (1) (2020) 5–12.

[26] R. Riggio, T. Rasheed, R. Narayanan, Virtual network functions orches-
tration in enterprise wlans, in: 2015 IFIP/IEEE International Symposium
on Integrated Network Management (IM), IEEE, 2015, pp. 1220–1225.

[27] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, S. Davy,
Design and evaluation of algorithms for mapping and scheduling of vir-
tual network functions, in: Proceedings of the 2015 1st IEEE Conference
on Network Softwarization (NetSoft), IEEE, 2015, pp. 1–9.

[28] A. A. Khan, M. Abolhasan, W. Ni, J. Lipman, A. Jamalipour, A hybrid-
fuzzy logic guided genetic algorithm (h-flga) approach for resource
optimization in 5g vanets, IEEE Transactions on Vehicular Technology
68 (7) (2019) 6964–6974.

[29] A. Perveen, R. Abozariba, M. Patwary, A. Aneiba, Dynamic traffic
forecasting and fuzzy-based optimized admission control in federated
5g-open ran networks, Neural Computing and Applications (2021) 1–
19.

[30] E. Robinson, P. McBurney, X. Yao, Market niching in multi-attribute
computational resource allocation systems, in: Proceedings of the 13th
International Conference on Electronic Commerce, 2011, pp. 1–10.

[31] P. R. Lewis, P. Marrow, X. Yao, Evolutionary market agents and
heterogeneous service providers: Achieving desired resource allocations,
in: 2009 IEEE Congress on Evolutionary Computation, IEEE, 2009, pp.
904–910.

[32] P. R. Lewis, P. Marrow, X. Yao, Resource allocation in decentralised
computational systems: an evolutionary market-based approach, Au-
tonomous Agents and Multi-Agent Systems 21 (2) (2010) 143–171.

[33] Z. Wang, K. Tang, X. Yao, Multi-objective approaches to optimal testing
resource allocation in modular software systems, IEEE Transactions on
Reliability 59 (3) (2010) 563–575.

[34] P. R. Lewis, P. Marrow, X. Yao, Evolutionary market agents for resource
allocation in decentralised systems, in: International Conference on
Parallel Problem Solving from Nature, Springer, 2008, pp. 1071–1080.

[35] S. Salcedo-Sanz, J. A. Portilla-Figueras, E. G. Ortiz-Garcı́a, A. M. Pérez-
Bellido, C. Thraves, A. Fernández-Anta, X. Yao, Optimal switch location
in mobile communication networks using hybrid genetic algorithms,
Applied Soft Computing 8 (4) (2008) 1486–1497.

[36] S. Salcedo-Sanz, X. Yao, Assignment of cells to switches in a cellular
mobile network using a hybrid hopfield network-genetic algorithm
approach, Applied Soft Computing 8 (1) (2008) 216–224.

[37] H. Huang, Y. Xu, Y. Xiang, Z. Hao, Correlation-based dynamic al-
location scheme of fitness evaluations for constrained evolutionary
optimization, IEEE Transactions on Evolutionary Computation.

[38] Y. Wang, J.-P. Li, X. Xue, B.-C. Wang, Utilizing the correlation
between constraints and objective function for constrained evolutionary
optimization, IEEE Transactions on Evolutionary Computation 24 (1)
(2020) 29–43.

[39] B.-C. Wang, H.-X. Li, Q. Zhang, Y. Wang, Decomposition-based multi-
objective optimization for constrained evolutionary optimization, IEEE
Transactions on Systems, Man, and Cybernetics: Systems 51 (1) (2021)
574–587.

[40] S. Salcedo-Sanz, X. Yao, A hybrid hopfield network-genetic algorithm
approach for the terminal assignment problem, IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 34 (6) (2004)
2343–2353.

[41] A. Mousa, M. El-Shorbagy, M. Farag, K-means-clustering based evolu-
tionary algorithm for multi-objective resource allocation problems, Appl.
Math. Inf. Sci 11 (6) (2017) 1681–1692.

[42] I. Rahimi, A. H. Gandomi, F. Chen, E. Mezura-Montes, A review on
constraint handling techniques for population-based algorithms: from

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

single-objective to multi-objective optimization, Archives of Computa-
tional Methods in Engineering 30 (3) (2023) 2181–2209.

[43] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi,
F. Antonelli, A. Vespignani, A. Pentland, B. Lepri, A multi-source
dataset of urban life in the city of milan and the province of trentino,
Scientific Data 2 (1) (2015) 1–15.

[44] Z. Du, Y. Yang, Z. Ertem, C. Gao, L. Huang, Q. Huang, Y. Bai, Inter-
urban mobility via cellular position tracking in the southeast songliao
basin, northeast china, Scientific Data 6 (1) (2019) 1–6.

[45] X. Chen, Y. Jin, S. Qiang, W. Hu, K. Jiang, Analyzing and modeling
spatio-temporal dependence of cellular traffic at city scale, in: 2015
IEEE International Conference on Communications (ICC), IEEE, 2015,
pp. 3585–3591.

[46] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (Jan) (2006) 1–30.

