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Abstract

A time series is a sequence of numerical data arriving sequentially as a data
stream. Typically, data streams’ generating distributions change over time (i.e.,
concept drifts), potentially degrading predictive model performance. Despite ex-
tensive literature on time series forecasting and concept drift handling separately,
few studies address both problems together. Recently, Particle Swarm Optimiza-
tion (PSO) has been applied to dynamic optimization problems and training
neural networks for forecasting. Building on these PSO applications, we propose
the first approach using dynamic swarm intelligence to address concept drift in
time series forecasting. Our approach includes three strategies: (i) using swarm
models to detect concept drifts; (ii) managing swarm models to adapt to new con-
cepts; and (iii) utilizing past swarm models for recurrent drifts. Experiments with
six synthetic and four real-world datasets demonstrated that the proposed ap-
proach was competitive in concept drift detection, achieving the best forecasting
errors compared to existing methods. This suggests dynamic swarm intelligence
is a promising method for handling concept drift in time series forecasting.

Keywords: Swarm Intelligence, Time Series Forecasting, Concept Drift, Artificial
Neural Network.



1 Introduction

A time series is a sequence of numerical observations recorded over time, arriving in the
form of a data stream [1]. One of the major challenges in handling data streams consists
in the change over time of their underlying distributions, causing past knowledge
potentially no longer useful for accurately predicting future observations [2]. Such
changes are known as concept drifts [3].

Most time series forecasting studies are based on off-line learning approaches (i.e.,
batch learning) and overlook the concept drift problem [4]. For real scenarios in the
presence of concept drift over time, this can lead to degraded models[5]. Nonetheless,
studies that take into account concept drift in time series forecasting typically rely on
a concept drift detection mechanism that resets the off-line predictive models [4, 6, 7].
Although it helps, forecasting performance is still hindered by the delay in collecting
recent observations for learning the new concept (i.e., an outdated model keeps in use
until the new concept is learned by the new model.

The Concept Drift phenomenon has been extensively investigated for classification
problems [3, 8], however, most existing approaches cannot be easily adapted for time
series forecasting problems. Existing classification approaches that actively detect con-
cept drift are typically based on the classification error [3] and cannot be applied to
time series forecasting since the regression error is based on an approximation of the
correct numeric value. Moreover, if these approaches were adapted to time series fore-
casting, since (typically) the models are reset after a drift detection, they would still
struggle with the delay for learning the new concepts after the drift. Passive ensem-
ble approaches that react to concept drift without relying on explicit drift detection
methods have also been proposed [9]. However, they still suffer from delays in react-
ing to drifts case the new concept has not been seen before in the stream - given that
they need to train many models in the same concept to obtain good modeling of the
current data distribution.

Dynamic Optimization Problems (DOPs) [10] provide potential solutions to the
delay for learning new concepts. This area is concerned with optimizing problems
that evolve over time [11], often moving optimal solutions to different regions of the
search space [12]. As such, it is related, but not the same as learning in the presence
of concept drift. Dealing with concept drift means ensuring that the classifier learns
the distribution of data whenever it changes over time. Although predictive model
training can also be seen as an error optimization problem, there is no guarantee that
a past concept can help find the optimum point of the new concept’s error function.
For this reason, dynamic optimization algorithms are not often used to deal with
concept drift in real-world problems.

Population-based meta-heuristics used in DOPs could serve as inspiration for new
approaches aimed at improving the time series forecasting quality in the presence of
concept drift, given that there are diverse approaches, and few of them have been
explored in this field. Strategies used to maintain diverse populations in such meta-
heuristics [13, 14] may be used to train diverse forecasting models, i.e., models that
learn different perspectives, and that may be used to adapt to a new concept more
rapidly. When monitored for drift detection, some of these models may also detect
concept drifts earlier or more reliably since they have different perspectives on the



problem. Thus, increasing the chances of having a model more appropriate for the
current situation, potentially accelerating and improving drift detection. Moreover,
memory strategies from DOP literature [15] may be helpful for dealing with recurrent
concepts, i.e., concepts that have been seen in the past.

This work proposes a method able to improve concept drift detection quality while
reduces the delay for learning new concepts. The proposed method is called Swarm
Intelligence for Series with Concept Drift (SISC). SISC enabled this work to have two
contributions (i) the application of dynamic swarm intelligence in a real problem and
not in an optimization function; and (ii) a proposal to handle concept drift in time
series forecasting which it was little investigated. SISC adopts Particle Swarm Opti-
mization (PSO) [16] as this type of meta-heuristic since it has been widely used in the
literature for training artificial Neural Networks (NN), and has two possible strategies
to adapt to concept drifts: (i) SISC-P, that employs swarm models to better react to
concept drift; and (ii) SISC-M, that stores past best swarm models to be reused espe-
cially for recurring concepts. SISC investigation was guided be the following research
questions (RQs):

RQ1) How could dynamic swarm intelligence improve concept drift de-
tection in time series forecasting? In theory, the several particles of a dynamic
swarm intelligence approach can be used to monitor a large area of the search space
leading to a more reliable detection of a change in the function to be optimized. In-
spired by that, we can monitor each NN trained by PSO using drift detectors, instead
of only one, leading to a more reliable drift detection.

RQ2) To what extent using dynamic swarm intelligence improves the
adaptation of time series forecasting models to different concepts? In dy-
namic swarm intelligence, when the function to be optimized changes, instead of
reoptimize another swarm from scratch, an old swarm is reevaluated in the new con-
cept and the best solutions are used as an initial swarm in order to accelerate the
search for an acceptable solution in this new concept. Therefore, we could maintain
many swarms of models to select the one that presents better forecasting performance
to make the next predictions on the new concept instead of retraining an entirely new
swarm.

RQ3) To what extent using past swarms of models accelerate adap-
tation to recurring concepts in time series forecasting? In dynamic swarm
intelligence, long-term memory is used to store all the best particles found over time,
with the aim of reusing them when a similar concept takes place. Thus, in time series
forecasting, we could use the best solutions found so far to support the adaptation
to recurrent concepts (i.e., the solutions with best performances can be selected as
predictive models to the current concept).

This paper is further organized as follows. Section 2 presents the problem defi-
nition. Section 3 overviews related works. Section 4 presents the proposed approach
(SISC), and partially answers RQ1, RQ2 and RQ3. Section 5 depicts the experimental
setup. Section 6 presents the results and provides an analysis of the SISC perfor-
mance in several aspects, complementing the answer for RQ1, RQ2 and RQ3. Section
7 concludes the paper and presents some directions for further related research.



2 Problem Definition

A time series can be defined as a potentially infinite sequence of observations S =
{a1,...,a¢,...} ,a, € R. At any time step ¢t — 1, a time series forecasting model must
be able to provide a prediction 9, which is an approximation of y; = a; [17].

Each predicted value §; is a regression of an input &y = {a¢—k, ..., a;—1}, i.e., the
last k time series observations. This regression is performed by a model f;_; : R¥ — R,
trained with off-line supervised learning based on a set of previously received train-
ing examples of the format (Zy,yy) = (ap—g, ..., at—1/,ar). Each incoming example
(Z¢,y) comes from a specific joint probability distribution Pi(Z,y) = Pi(y|Z)P:(Z),
where P(Z) is the unconditional probability density function and P;(y|Z) is the
conditional probability of the outputs given the inputs.

So, the challenge faced by supervised learning algorithms is that observations
produced at distinct time steps ¢ and ¢ + A may come from different joint probability
distributions P(Z,y) # Piia(&,y), ie., the time series may be affected by concept
drift [18], making the model obsolete and potentially ineffective for forecasting future
observations.

3 Related Work

Although time series suffer from concept drift, there are not many works investigating
this phenomenon. Thus, to understand better concept drift we refer reader to classi-
fication surveys such as [8], [3], and [9]. But, to understand the existing time series
forecasting approaches that deal with concept drift, we describe them in single-based
and swarm-based approaches.

3.1 Single-Based Approaches

Cavalcante et al. [19], proposed two approaches to deal with concept drift. The ap-
proaches combine the neural network Extreme Learning Machine (ELM) [20] with the
drift detectors ECDD [21], and DDM [22]. ELM is trained with off-line supervised
learning with m training examples to make one-step ahead forecasts. ECDD and DDM
are approaches that monitor the model’s forecasting performance over time in an on-
line way to detect variations to detect drifts. When the model’s performance worsens
and the drift threshold (parameter ¢ in ECDD, and ¢ in DDM) is reached, m exam-
ples of the new concept are collected to retraining the model. The problem is waiting
for these observations, because an obsolete model is used in the meantime, compro-
mising the system forecasting performance. Although this work used drift detectors,
their detection performance was not evaluated.

Cavalcante et al. [6] proposed the Feature Extraction Drift Detector (FEDD), a
method for detecting concept drift designed for time series. FEDD create a feature
vector with 16 statistical characteristics from a batch of m examples of the time series.

For each new observation, the feature vector is updated and the distance between
the new and old vectors is calculated. If the distance between the new and old vectors
increases by more than a ¢ threshold, a concept drift is informed. In this work, only the



performance of concept drift detection was evaluated, i.e., FEDD was not investigated
as part of an approach for time series forecasting.

3.2 Swarm-Based Approaches

In a preliminary study of the current work [7], we applied ELM trained by the Self-
Adaptive Particle Swarm Optimization (IDPSO) [23] algorithm to make predictions
in time series, and also to detect drifts. The best ELM model generated by IDPSO
was used to make predictions, and the each one generate were monitored by an ECDD
for drift detection. Two drift detection rules were proposed: (i) IDPSO-ELM-B, which
monitors the ELM models’ average forecasting error; and (ii) IDPSO-ELM-S, which
monitors all ELM models separately, and if all models agree that there is a drift, a drift
is informed. IDPSO-ELM-B led to the best forecasting performance, but its ability
to detect drifts was not so good. IDPSO-ELM-S led to the most reliable detections,
but the delay of such detections resulted in a delay to retrain the model (wait for
m training examples), which in turn impaired its forecasting performance since an
obsolete model was used until that happened.

Rakitianskaia et al. [14] proposed an approach using swarm intelligence to deal
with concept drift. The approach was proposed and evaluated for classification prob-
lems, even though it could potentially be used for time series forecasting. The authors
proposed the Reinitialize Particle Swarm Optimization (RPSO) approach, which uses
PSO to learn the weights of Multilayer Perceptrons (MLPs) based on a sliding window
with m training examples. The average training accuracy of the model is monitored
on-line to detect concept drift. If the model error increases o standard deviations, the
weights of the NN are reset and the NN is retrained on the current sliding window.
Retraining on the current window are very costly and can hinder adaptation to drifts,
as it may contain training examples that belong to the old concept. Moreover, the
drift detection strategy is highly sensitive to outliers when the training error is low.

Overall, although there are some works in the literature using PSO for concept
drift [7, 14] no existing work took advantage of dynamic swarm intelligence to im-
prove concept drift handling. SISC uses dynamic swarm intelligence to overcome the
aforementioned problems, aiming to improve concept drift detection, and time series
forecasting.

4 SISC — Proposed Approach

This section introduces the proposed approach (SISC) which will support the answers
of the aforementioned research questions. Fig. 1 depicts the overall operation of the
proposed method which comprises four main blocks. First block contains an offline
model trained by the IDPSO algorithm. The second one performs online forecasting on
the incoming observations. The third block contains the drift detection method SISC-
D, which monitors multiple ELM models (particles) in order to detect drifts in the
time series. Finally, the fourth block provides two different mechanisms for tackling
concept drift. These mechanisms estimate new models able to operate effectively in
the new concept: SISC-P, which uses the current swarm to accelerate adaptation to
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Figure 1: SISC general procedure. The choice between SISC-P and SISC-M in Block
4 is mutually exclusive.

drifts, and SISC-M, which uses best models from past swarms to accelerate adaptation
to drifts. Both use previously trained models to adapt to the drift.

4.1 NN Training

As shown in the first block of Fig. 1, the predictive model is trained using offline
supervised learning on a set of m training examples from the data stream. These
examples are divided into 80% for training (7) and 20% for validation (v). The val-
idation set is used to avoid model overfitting when training the predictive model, as
will be explained later on this section.

As regression model, this work adopted the Extreme Learning Machine neural
network [20] due to its fast training procedure and acceptable predictive performance
[24] demonstrated in past studies involving swarm intelligence [7, 25]. In addition,
the ELMs analytical training helps to guarantee a stable and fast training time -
important characteristics to the SISC framework. As depicted in Fig. 2, the input
weights and hidden biases of each ELM model are selected using a swarm intelligence
approach, namely IDPSO [26], while the output weights are determined analytically
by the ELM typical procedure through the Moore-Penrose (MP) generalized inverse.
This arrangement introduces two benefits: (i) optimization of few parameters in the
input layer, which results in a quick optimization, and (ii) fast training in the second
layer with good generalization [20]. Other neural networks types, such as MLP, are
not applicable in the SISC framework due to their higher training computational cost.

Alg. 1 depicts the training phase (i.e., learning the input weights of an ELM
particle) using the IDPSO optimization algorithm [23].
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Figure 2: ELM network configuration. @ represents the input weights, k represents
the number of inputs, and [ represents the number of hidden neurons. The input b
stands for the bias. H; is the induced local field provided to the non-linear activation

function (g(-)). B represents the vector of output weights. In addition, the vector
representing the IDPSO particle codification is also depicted.

In Alg. 1, lines 3 and 4 randomly assign the positions and velocities values for
each particle. Each position and velocity consist of a D-dimensional vector, where:
D = (k+1)xl; k is the number of inputs; and [ is the number of hidden neurons. Line 9
indicates the analytical procedure aimed at computing the ELM’s output weights (5)
5, depicted in Eq. 2, is obtained by solving the following linear system: B = H1Y.
HT refers to the Moore-Penrose generalized inverse of the matrix H. H is a matrix
containing the products between the input instances and the weights of the input layer
activated by a non-linear function g(-) (Eq. 1). Finally, ¥ represents the respective
outputs for each input instance (Eq. 2).
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During the training phase (lines 7 to 20), the particles move in a D-dimensional
hyperspace seeking for the best fitness (line 10). The fitness of each particle is its



Algorithm 1 ELM weights optimization using IDPSO

1: Input: SwarmSize, #iterations, cl, ¢2, Winitial, Wend, T, V
2: for each i from 1 to SwarmSize do

3: vj < random() > random velocities
4: p;  random() > random positions (weight and bias)
5: Swarm.append(p;)

6: end for

7. for each ¢ in #iterations do

8 for each Particle (p;) in Swarm do

9: hj <= ELM(p;,7) > output weights training
10: fj < Fitness(p;, h;, v) > Eq. 3
11 pBest < PBest(f;)

12: gBest < GBest(f;)

13: v; < Velocity(pj, ..., €2;) > Eq. 4
14: p; < Position(p;, v;) > Eq. 5
15: ¢; < Phi(pBest, gBest, p;) > Eq. 8
16: w; < Inertia(y;, Winitial, Wend) > Eq. 6
17: cl; < PersonalFactor(p;, cl;) > Eq. 7
18: ¢2; < SocialFactor(y;, ¢2;) > Eq. 7
19: end for

20: end for
21: Return gBest, Swarm

Mean Absolute Error (MAE) computed on the validation set (v), which can be easily
obtained after determining the ELM’s output weights. The fitness is calculated ac-
cording to Eq. 3, where: o is the number of examples in v; y; is the true output for a
validation example j; and g7 is the predicted output for a validation example j.

fitness") = % Z ’yj(-y) - 37§V) (3)
j=1

The solution with best fitness value (lowest MAE) found by each particle so far is
stored in pBest (Line 10), while the best solution found so far by the whole swarm is
stored in gBest (Line 11). Both pBest and gBest are used to update the velocity in
line 13 using Eq. 4. Velocity represents the distance that each particle will fly in the
weight and bias space, being used to update the position of each particle in line 14
using Eq. 5:

vi(i+1) =wxv;(i) + c1 - rnd() - (pBest; — p;(i)) )
+c2 - rnd() - (9Best — p;(i))

pi(i+1) = p;(@) +v;(i + 1) (5)

where w, cl, ¢2, and rnd() represent inertia, control factors, and a random number in

[0,1], respectively. These parameters are iteratively modified for each particle so that



each one can decide for itself to change for a global or local search (lines 15, 16, 17,
and 18) by Egs. 6 to 8&:

N Winitial — Wend
(Z) T 1 4 () (i=((1+In(0 (1)) Kmaa) /1) T Wend (6)
c1(i) = c1- 97 (i), ca(d) = ca - p(d) (7)

lpBest; — p;(i — 1)
where winitiar and Wepng represent the initial value and the final value of w, respectively,
Kpnaz is the maximum number of iterations, ¢ is the current iteration, and w is an
adjustment factor to ensure that w will decrease.

4.2 On-line forecasting

Finally, as shown in the second block of Fig. 1, the best ELM model encountered
during training (gBest) in terms of validation error (MAE) is retrieved and used to
predict observation a; of the time series based on the last k observations as input
features, i.e, {a;—g,...,as—1 }. Once the true target (a;) is obtained, the error for this
observation is computed and passed to the drift detector as explained in Section 4.3. It
is important to mention that there is no incremental learning or on-line retraining in
this part; there is only a batch retraining triggered when a drift is detected, where new
m instances of the new concept are collected and used for this according to described
in NN training.

4.3 SISC-D — Detecting Concept Drift with Swarm
Intelligence in Time Series Forecasting

This section proposes an approach to improve concept drift detection in time series
forecasting using swarm intelligence, answering RQ1. The motivation is that existing
approaches based on drift detection usually monitor the error of a single forecasting
method. If this single model was built as a result of a poor training process, drift
detection may be inaccurate, generating several false alarms [7]. Dynamic swarm intel-
ligence literature has investigated the use of several particles to monitor a larger area
of the optimization search space to be more consistent in stating when the function
to be optimized changed [15].

Based on that, we propose an extension of our preliminary IDPSO-ELM-S [7] (see
Section 3). In IDPSO-ELM-S, each particle is an ELM that has its own drift detector
(ECDD). This combination allowed to monitor the drift from various perspectives
giving the best drift detections. Given that, we also adopt in this work the ECDD
[21] as our drift detector. ECDD is a method that detects the drift based on the
error obtained from the ELM model for each new observation. The error can be
measured by the thresholds warning level (w), and drift level (¢). Note that no prior
drift information is needed, only the model error iteratively. Any drift detector could
potentially be used as long as it is compatible with the time series forecasting error.
In future works, we intend to investigate other types of more accurate drift detectors.



At this point, we want to study only the impact that monitoring of various models
can have.

IDPSO-ELM-S has a rule that a drift is detected only if all ECDDs agreed that
there is a drift. This rule achieved promising results in detecting drifts, but it greatly
increases the detection delay, thus also increasing the delay in retraining. To prevent
that, we propose a change to this rule. Given the result of each ECDD drift detector
S = (81,82, ", SswarmSize), & drift is detected using mode(S), meaning that the
majority agree that there is a drift. So, this new rule is used in the third block of Fig. 1.

If most models have a normal error level, gBest remains untouched. If most models
have a warning error level, the system begins to collect incoming observations. Each
observation received is stored in a batch as shown in the gray box Collect data in
Fig. 1. Historical Observations in the first block in Fig. 1 is only full filled with
m new observations when most models have a drift error level, informing that it is
time to retrain the model according to discussed in Section 4.1. While the batch is
not filled, these observations are used in the NN selection method to accelerate the
adaptation to the drift, according explained in Sections 4.4 and 4.5.

4.4 SISC-P — Reevaluating and Reusing Swarm Models to
Improve Adaptation to New Time Series Concepts

This section proposes our strategy SISC-P (Adaptation by Particles) to answer RQ2.
SISC-P is in the fourth block of Fig. 1, and is triggered upon a SISC-D drift detec-
tion and remains active while the system is collecting the batch of m observations for
retraining. SISC-P takes inspiration from the dynamic optimization literature as fol-
lows. Fouladgar et al. [13] create several swarms to find the best points of the dynamic
optimization function. When the function changes, old solutions become obsolete, and
a new search needs to be done. To avoid this, all swarms are reevaluated in the new
function, and the best solutions are used as a starting point for a new search.

Since in this work a swarm of models also is adopted, and the particles represent
different ELM models with distinct capabilities to adapt to a new concept, we devel-
oped a mechanism to recognize which ELM model (particle) of this swarm better fits
the new concept. To illustrate the relevance of that in the context of time series fore-
casting, Fig. 3 depicts the performances of a swarm with 15 particles in two different
moments: (i) when the concept remains with the same characteristics of the training
phase (Fig. 3a), and (ii) when a new concept appears (Fig. 3b). In Fig. 3a, all parti-
cles perform similarly, i.e., the error standard deviation is low. In Fig. 3b, as a new
concept appears, the errors of the particles vary a lot, i.e., the error standard devi-
ation highly increases. In particular, particle 8 seems much better suited to the new
concept than the other particles, including the gBest particle obtained by IDPSO for
the previous concept indicating that it needs to be replaced.

Therefore, using this idea of replacing gBest with more suited particles, SISC-P
applies the NN Selection mechanism when a drift takes place, as shown in Fig. 4.
This method receives the instances collected after the drift (gray instances in Fig. 4),
and returns the ELM model in the swarm that has the minimum MAE (Eq. 3) for these
observations. This process is repeated for each new observation incrementally stored,
which means that possibly a different model is chosen to predict the next observation.

10
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Figure 3: Particles error distribution on the linear time series with abrupt drifts. In
Fig. (a), the green particle has the best performance in a recently trained concept. In
Fig. (b), the red particle presents the best performance on the new concept.

Note that these models are not re-optimized for each new observation, they are only
reevaluated using MAE. The models in the reevaluation are those previously trained
during the training phase (Section 4.1).

4.5 SISC-M — Reusing Past Best Swarm Models to Deal with
Recurring Concepts in Time Series Forecasting

This section proposes our strategy SISC-M (Adaptation by Memory) to answer RQ3.
SISC-M is performed in the fourth block in Fig. 1 and is also triggered upon a SISC-D
drift detection. SISC-M takes inspiration from the dynamic optimization as follows.
Nasiri et al [15] uses a long-term memory to store all gBests found over time. In this
work, a filter is used for the storage of different solutions to increase the chances of
having at least one efficient solution when the drift takes place. Then, the memory
solutions are reevaluated in the new function, and the best one is used. This strategy
was shown to be efficient in dynamic optimization problems with recurring drifts.

So, SISC-M relies on the assumption that good past solutions that are not currently
good might become good again in the future. The expectation is that old concepts
may reappear and then can be treated by a pre-trained model. For this, whenever a
swarm is trained, the gBest is stored in a Memory in the fourth block of Fig. 1.

Alg. 2 presents the procedure to add different ELM models. In lines 2-3, the
new particle gBest is stored in the Memory. If there is no available space anymore
(MaxMemorySize), the nearest neighbor of gBest in the memory is determined (line
5). The nearest neighbor Neigh is the model with the smallest Euclidean distance to
gBest in the space of model input weights (Fig. 2). If Neigh is very close to gBest,
i.e., if the distance is smaller than FxclusionT hreshold, Neigh is replaced by gBest
(lines 5 to 11). The reason for this is to avoid redundancy and to supply the system
with ELM models that have different perspectives.

11
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Figure 4: The procedure of NN estimation. In periods without drift (white boxes), the
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data, the ELM in the swarm with the best performance for these observations. The
ELM selected is used to predict the new instance. This procedure remains active until
a new batch is fulfilled for a retrain.

Algorithm 2 Storing Particles for Future Reuse

Input: gBest, MaxMemorySize, ExclusionThreshold
if (length(Memory) < MaxMemorySize) then
Memory < Add(gBest)
else
Neigh «— NearestNeighbor(Memory, gBest)
Dist + Distance(Neigh, gBest)
if (Dist < ExclusionThreshold) then
Memory <+ Remove(Neigh)
Memory + Add(gBest)
end if
end if

© ® 3> G Ne

= =
=

Finally, to handle with the concept drift problem, we use the generated Memory
to get the new gBest in NN Selection (Fig. 4) similarly to discussed in Section 4.4.

12



5 Experimental Setup

The datasets used in the experiments are presented in Section 5.1. The setup to
investigate the drift detection capability of the SISC-D approach (RQ1) is presented
in Section 5.5, and the setup to evaluate the forecasting ability obtained when using
SISC-P (RQ2) and SISC-M (RQ3) is presented in Section 5.11.

5.1 Data Sets

We used three groups of time series in our experiments: (i) artificial time series (5.2),
(ii) real-world time series with known concept drifts (5.3), and (iii) real-world financial
time series for which there is no prior knowledge on whether there is drift or not(5.4).
To enable comparison, all series were normalized in the range of 0 to 1.
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Figure 5: Representation of each time series with known drifts. Figs 5a, 5b, 5¢, 5d, 5e,
and 5f are the artificial time series. Vertical red lines represent known concept drifts.

5.2 Artificial Time Series

As in the real world it is difficult to really know where the drift happen, we elaborated
6 types of artificial (synthetic) time series with known drifts to assess the model’s
ability to find these drifts, and they can be seen in Fig. 5.

So, to guarantee the effectiveness and efficiency of the method in different varia-
tions of drifts, we generate thirty examples of each type, totaling 180 artificial times
series. The performance of these series is always presented by the average obtained

13



from the group. In general, each time series is composed of 10 concepts with 2,000 of
observations. From the sixth concept, the first, second, third, and fourth concepts are
repeated, making all of these series recurring. The procedure to generate and their
characteristics are discussed below, and the parameters used are shown in Table 1.

The linear series were simulated using an autoregressive (AR) process, defined by:
Tt = A1T(—1) + 02T (t—2) + .. + ApT(—p) + Wi, where aq, .., Gp are parameters of the
AR model and w; : t = 1,..,n is a white Gaussian noise; the variables w; belong to a
normal distribution.

The non-linear time series used in the experiments were generated by two
smoothing models [6]: NL1: 2; = [a12—1) + a2%(—2) + a32—3) + aap—gy] * [1 —
exp(—10z,-1)] 7! + wy and NL2: 2y = a12_1) + a2@p_2) + [asT(—1) + aaz_2)] *
[1—exp(—10z4_1)] " + wy.

The seasonal linear time series were simulated by a linear model using variables (s)
indicating the number of periods in the series. This model contains s seasons defined
by x = my + C14mod(t—1,s)) + W Where my represents the trend, (1 ymod(i—1,5)) the
seasonal factor, and w; the Gaussian noise.

Gradual drifts refers to the transition phase where the probability of observations
from the old concept decreases while the probability of the new one increases [18].
Abrupt drifts occur when at a moment in time ¢, the source distribution P(x,y); is
suddenly replaced by a different distribution in P(z,y)i41 (9]
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Figure 6: Real-world time series with known concept drifts. Vertical red lines repre-
sent known concept drifts.

5.3 Real-World Time Series with Known Concept Drifts

The two real-world time series with known concept drifts described in this section were
first studied in papers about change point detection, where time series are analyzed
in an off-line way (after the whole time series is collected) to determine the location
of the drifts (see Fig. 5).
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The first series is Dow Jones Industrial Average daily series studied in [27], and
illustrated in Fig. 6a. It has 735 points and abrupt drifts caused by the following
historical moments: 124 (condemnation of the advisors of former President Nixon, G.
Gordon Liddy and James W. McCord Jr. on January 30, 1973); 307 (initiation of the
OPEC embargo against the United States on October 19, 1973); and 510 (resignation
of former President Nixon on August 9, 1974).

The second series is the financial S&P500 studied in [28], and illustrated in Fig. 6b.
It has 4229 points and gradual drifts caused by the following historical moments: 448
and 508: Increase and decrease in volatility following the October 1987 stock crash;
2826: Asian Summer Crisis of 1997; and 4119: May 2002, an increase in volatility
due to the collapse of the internet bubble and the fraudulent bankruptcies of Enron
and WorldCom.

5.4 Real World Financial Time Series

Three other real-world time series available at https://finance.yahoo.com were used:
(i) the Dow Jones Industrial Average, a daily series, containing 8139 points, with the
data collected from January 29, 1985 until May 12, 2017; (ii) Nasdaq, also a daily
series, containing 11667 points, with data collected from May 2, 1985 until May 12,
2017; (iii) S&P 500, a daily series, containing 16,857 points, with data collected from
May 15, 1950 through May 12, 2017. As there is no prior knowledge about drifts
in these time series, they were used to evaluate only the forecasting ability of the
proposed approach.

5.5 Drift Detection Evaluation

This section explains the instruments to investigate RQ1, which concerned improving
concept drift detection by monitoring swarm models.

5.6 Comparison approaches

SISC-D was compared with six drift detectors from the literature: DDM [19], ECDD
[7, 19], FEDD [6, 7], IDPSO-ELM-B [7], IDPSO-ELM-S [7], and RPSO [14]. The
first five methods were chosen because they have been applied in the context of time
series forecasting, representing baselines and the state-of-the-art in this area. The last
method was chosen because it is based on swarm intelligence.

5.7 Parameter Setup

For a fair comparison, all drift detectors were combined with the same predictive
model (ELM), which was executed 30 times for each time series with known drifts. To
assign an appropriate value for the drift detectors to learn the ELM training error, we
evaluated m = [100, 200, 300, 400, 500]. The value that produced the best forecasting
error was m = 300. As the real-world time series with known concept drifts are short,
we fixed m = 100. The parameters used in the experiments were: RPSO-ELM: ¢ = [1,
2, 3, 4]; ELM-DDM: ¢ = [2, 4, 6, 8]; ELM-FEDD: ¢ = [0, 0.25, 0.5, 0.75]; ELM-ECDD,
IDPSO-ELM-B, IDPSO-ELM-S and SISC: ¢ = [0.25, 0.5, 0.75, 1].
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Table 1: Parameters used to generate the artificial time series. From the sixth
concept, the first, second, third, and fourth concepts are repeated.

Time Series Concept a P
1 {0.007,-0.253,0.855,0.391} 4
2 {-0.443,0.447,1.352,-0.356 } 4
3 {0.003,-0.328,0.146,1.172} 4
Linear Gradual 4 {0.333,-0.113,0.054,0.715} 4
5 {-0.634,0.335,1.36,-0.074} 4
6 {-0.441,0.074,1.257,0.108} 4
a P
1 70.149, 0.051, 0.433, 0.367} 4
2 {-0.318, 0.413, 1.148, -0.245} 4
3 {0.003, -0.328, 0.146, 1.172} 4
Linear Abrupt 4 {-0.443, 0.447, 1.352, -0.356} 4
5 {-0.027, 0.22, -0.038, 0.845} 4
6 {-0.479, 0.856, 0.025, 0.598} 4
a Model
1 0.02, 0.149, 0.122, 0.691} NL 1
2 {0.214, 0.175, 0.256, 0.349} NL 1
3 {0.675, 0.04, 0.129, 0.141} NL 1
Non-linear Gradual 4 {0.259, 0.187, 0.251, 0.291} NL 1
5 {0.333, -0.113, 0.054, 0.715} NL 1
6 {0.178, -0.091, 0.363, 0.545} NL 1
« Model
1 {-0.067, 0.234, 0.155, 0.677} NL 1
2 {-0.507, 0.259, 1.397, -0.15} NL 1
3 {-0.439, 0.375, 1.333, -0.269} NL 1
Non-linear Abrupt 4 {0.07, -0.052, 0.635, 0.334} NL 1
5 {-0.443, 0.447, 1.352, -0.356} NL 1
6 {-0.276, 0.334, 0.41, 0.532} NL 1
¢ s
I 134, 32, 30, 28, 26, 24, 22, 24, 26, 28, 30, 32} 12
2 {34, 26, 18, 10, 18, 26, 10} 7
3 {34, 26, 18, 10, 18, 26} 6
Seasonal 4 {34, 26, 18, 10, 2, -6, -14, -6, 2, 10, 18, 26} 12
5 {34, 10, -14, 10} 4
6 {38, 28, 18, 8, 0, -8,-18,-8, 0, 8, 18, 28} 12
a, € Model
1 70.003, -0.005, 1.0} AR
2 {Last 3 observations} Seasonal
. 3 0.059, 0.086, 0.62, 0.21 NL 2
Hybrid 4 ¢ {0.018, 0.95, 0.032} J AR
5 {Last 3 observations} Seasonal
6 {0.55, 0.024, 0.41, 0.009} NL 1

5.8 False Positive Detection (FPR)

It consists of the number of times that a real drift was detected, and after that a false
detection occurred.

5.9 Detection Delays (DD)

It is the amount of instances the approach needed until it can detect the occurrence
of a known drift. We compute it as the sum of the approach’s delays considering all
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drifts that exist in the time series. When a miss-detection occurs, all the time series
observations that belong to the concept are counted as the method’s delay.

5.10 Drift Detection Curve

These curves show the behavior of the approaches for all parameter settings inves-
tigated [29]. Each point on the graph is formed by the coordinate (FPR, DD) for a
specific parameter executed for a time series. So, the methods with the best detection
performance are those with curves nearest to the point (0,0) of the graph, which are
those with small DD and few FPR.

To assign an adequate value to the number of observations used to train the ELM,
the values m = 100, 200, 300, 400 and 500 were tested. The value that produced the
best forecasting error on the test was m = 300. For the real-world time series with
known concept drifts, we assign m = 100, since the series are short and values greater
than 100 cover some concept drifts.

5.11 Time Series Forecasting Evaluation

This section explains the instruments to investigate both RQ2 and RQ3. RQ2 requires
to check whether the reuse of swarm models can improve forecasting ability (SISC-
P). RQ3 requires to check whether the reuse of past best swarm models can improve
forecasting ability when there are recurring concepts (SISC-M).

5.12 Comparison approaches

In addition to the approaches discussed in 5.5, we added the SISC-D method, which
uses only the drift detection (without SISC-P and SISC-M), to evaluate whether
SISC-P and SISC-M improve the system’s predictive performance.

5.13 Parameter Setup

We performed preliminary experiments in the artificial time series to select the best
forecasting parameters. The grid search done was presented in Section 5.5. For ELM’s
parameters we fixed k = 5 for input neurons, [ = 10 for hidden neurons, and the
sigmoid as activation function. For the approaches parameters: RPSO-ELM: o = 1;
ELM-DDM: ¢ = 8; ELM-FEDD, ELM-ECDD, IDPSO-ELM-B, IDPSO-ELM-S: ¢ =
0.25; SISC-P, SISC-M: ¢ = 0.25 and w = 0.1. For SISC-M, we fixed 30 slots for solution
allocation (Memory) and 3 for the solution exclusion threshold (exclusionT hreshold).
For the methods that use IDPSO or PSO: 50 iterations (K,qs), 30 particles (Swarm
size), 3 iterations without improvement as stop criterion. For IDPSO: wipnitiai = 0.8;
Wend = 0.4; ¢1 = co = 2; max_position = max_velocity = 0.3; and min_position =
min_velocity = -0.3, p = 100. For PSO, w = 0.8.

5.14 Prequential Evaluation

After batch training on an initial fraction of the series, we use each instance first to
test the model, and then to train the model. In our proposed method, we do not
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retrain in each new observation, only when a complete batch is stored after the drift.
To measure the predictions made, we use MAE (Eq. 3), because it calculates only the
subtraction of the predicted by true value, allowing to analyze in detail the variation
caused by the drift.

5.15 Runtime

Difference in seconds between the end time and the start time of an approach. Machine
used has 8GB of ram and processor Intel Xeon E3-1220 v5.

5.16 Friedman and Nemenyi Tests

We use the Friedman’s non-parametric test with significance level a = 0.05 across time
series, following the advice in [30]. If the null hypothesis that there is no statistical
difference between the approaches is rejected, the pairwise comparison is used with
Nemenyi test with a significance level a = 0.05.

6 Results and Discussions

Sections 6.1, 6.2 and 6.3 present the analyses to validate the answers to RQ1, RQ2,
and RQ3, respectively.

6.1 RQ1 — Impact of Drift Detection with Swarm Intelligence

Artificial Time Series

Figs. 7a, 7b, 7c, 7d, 7e and 7f show the drift detection curves for all drift detection
methods for artificial time series. We first compare the results obtained by IDPSO-
ELM-S, IDPSO-ELM-B, SISC-D, and ELM-ECDD, as they are all based on ECDD.
The difference between them is that IDPSO-ELM-S, IDPSO-ELM-B and SISC-D
monitor several swarm models, whereas ELM-ECDD monitors a single model. As can
be seen in Fig. 7a, 7b, 7c, 7d, IDPSO-ELM-B obtained a low detection performance
because its detection rule is based on the average of the models’ performance. The
average is sensitive to outlier points, which has led to high FPR. The curves for
IDPSO-ELM-S and SISC-D are closer to the optimal point (0,0), indicating that it
is worth to monitor swarms models separately. SISC-D achieved better results than
IDPSO-ELM-S, because it uses the majority vote for detecting, instead of requiring
a drift detection for all swarm models. The use of majority vote reduced DD without
affecting FPR too much, confirming the advantage of our proposed use of majority
vote.

ELM-DDM and RPSO-ELM obtained the worst results, with their curves far from
the optimal point (0, 0). Although RPSO-ELM is a swarm-based method, its drift
detector only monitors the average performance of the best model, not benefiting from
the swarm as a whole for drift detection purposes. Both of these methods use mean
and standard deviation to detect a concept drift. These metrics are very sensitive to
outlier points, and this can generate either a very long DD or high FPR, depending
on the error obtained by ELM in training.
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Figure 7: Drift Detection Curves. Each point on the graph is formed by the coordi-
nate (FPR, DD) for a specific parameter executed for a time series. The parameters
presented here were presented in the Section 5.5. So, the methods with the best detec-
tion performance are those with curves nearest to the point (0,0) of the graph, which
are those with small delays and few false positive detections. The squared symbols
are the points closest to (0,0) for each approach.



When comparing SISC-D against ELM-FEDD, ELM-FEDD achieved better de-
tection performances for the following kinds of time series: (i) linear gradual (Fig.
7a), (ii) linear abrupt (Fig. 7b) and (iii) non-linear gradual (Fig. 7c). These are the
time series with less variability. ELM-FEDD works better for this type of time series
because it analyzes the statistical characteristics of the time series (e.g. time series
variance, partial autocorrelation function, correlation function and others), enabling
it to identify smaller concept drifts better than the other methods. On the other
hand, SISC-D achieved better scores for (i) non-linear abrupt time series (Fig. (7d),
(ii) seasonal time series (Fig. 7e), and (iii) hybrid time series (Fig. 7f), where a bet-
ter balance between DD and FRP was achieved. These time series has severe drifts,
which are large variation in the distribution of the data from one concept to another.
SISC-D works better for this type of time series because error-based methods depend
on the model degradation to identify a concept drift, thus the more severe the drift,
the faster the model wears off, thereby favoring its detection tests.

Real-world Time Series

Figs. 7g and 7h show the drift detection curves for real-world time series. In Fig.
Tg, it can be observed that the SISC-D reached the best detection performance. It
occurs because these series present severe drifts, thus degrading the model perfor-
mance quickly which favor SISC-D as it is an error-based method. Observing Fig. 7h,
ELM-FEDD obtained the best detection performance, while methods based on error
obtained the worst. It occurs because this series has less variability, which does not
affect the performance of the models. Therefore, as ELM-FEDD finds small variations
in the characteristics of the series, it was able to better identify the drifts.

RQ1 Answer: SISC-D achieved better detection performance in time series with
severe drifts, as this type of drift degrades the model faster, favoring error-based
methods. SISC-D reached better detection performance than other error-based
methods because it (i) monitors a group of models rather than a single model,
reducing the number of false alarms; and (ii) triggers a detection based on the
majority of models rather than all, reducing the detection delay.

6.2 RQ2 — Impact of Reusing Swarm Models to Improve Time
Series Forecasting

Artificial Time Series

Tables 2, 3 presents the MAE, and runtime for all compared approaches. Fig. 8
presents the Friedman and Nemenyi tests for these two metrics. According to Fig. 8a,
SISC-P reached the second position on Friedman rank for MAE. This implies that
regardless of the type of concept drifts, the reuse of a swarm models significantly im-
proves prediction performance over non-use (see SISC-D performance). Also, we see
for runtime in Fig. 8c that the SISC-P positioned itself at the end of the ranking.
This is because (i) several models are created during training, and (ii) models are
reevaluated during the drift moment. Methods like ELM + drift detector are high-
speed due to instant ELM training through a single calculation. However, for MAE,
ELM methods trained by IDPSO reached in general better rankings than standard
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ELM training (Fig. 8a). These findings show that training by swarm intelligence may
improve ELM predictions.

Real-world Time Series

SISC-P obtained the best MAE for all real-world time series with exception for the
S&P500 series (Table 2). Fig. 8b attests statistical difference between SISC-P and all
compared approaches except for SISC-M. To understand in more detail how the SISC
methods work in a practical example, we analyze Fig. 9, which presents (i) SISC-D
which do not select the best ELM models when drift takes place (Fig. 9a), and (ii)
SISC-P which selects the best ELM models when drift takes place (Fig. 9b). Note in
Fig 9a, when the SISC-D informs a concept drift, its forecasting error tend to increase.
This behavior does not happen with the same intensity in Fig 9b, because SISC-P
select for each new test instance a best suited model to make the next prediction.

RQ2 Answer: We observed that: (i) training ELM with swarm intelligence in
general improved ELM forecasting performance compared with methods that do
not use it; and (ii) in the presence of concept drift, replacing the obsolete model with
another model in the swarm significantly improved SISC-P performance compared
with swarm-methods that do not reuse models (SISC-D); and (iii) SISC-P showed
to be particularly relevant in time series with no recurrent drifts.
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Figure 8: Friedman ranking of the approaches across time series (TS). Smaller ranks
are better ranks. Friedman’s p-values were 3.69E-191, 2.65E-154, 4.84E-391, respec-
tively, rejecting the null hypothesis. Any pair of approaches whose distance between

them is larger than the critical distance (CD) is significantly different according to
the Nemenyi posthoc tests.
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Table 2: Average and standard deviation of the MAE obtained by all methods. Values
in bold represent the lowest MAEs.

Bases ELM-DDM ELM-ECDD ELM-FEDD IDPSO-ELM-B IDPSO-ELM-S SISC-D SISC-P SISC-M RPSO-ELM
Linear Gradual 0.0257 (0.009) 0.0306 (0.018) 0.0186 (0.004) 0.0147 (0.002) 0.0147 (0.002) 0.0147 (0.002) 0.0129 (0.002) 0.0116 (0.001) 0.0167 (0.004)
Linear Abrupt 0.0179 (0.005) 0.0176 (0.003) 0.0135 (0.003) 0.0134 (0.003) 0.0132 (0.002) 0.0128 (0.003) 0.0105 (0.002) 0.0091 (0.001) 0.0124 (0.004)

(
Non-linear Gradual ~ 0.0351 (0.005)  0.0353 (0.006) ~ 0.0332 (0.004)  0.0329 (0.004) 0.033 (0.004)  0.0327 (0.004)  0.0315 (0.004)  0.0313 (0.002)  0.036 (0.004)
0.0483 (0.035)  0.0438 (0.031)  0.0467 (0.04)  0.0179 (0.004) 0.0173 (0.003)  0.0187 (0.005)  0.0131 (0.003)  0.0118 (0.002)  0.0181 (0.004)
0.0782 (0.007)  0.0726 (0.005)  0.0659 (0.002)  0.0663 (0.002) 0.0666 (0.002)  0.0668 (0.002)  0.0647 (0.002)  0.0596 (0.002)  0.0834 (0.004)
0.0511 (0.034)  0.0644 (0.049) ~ 0.0834 (0.060)  0.0413 (0.02) 0.0328 (0.013)  0.0317 (0.011)  0.0163 (0.003)  0.0129 (0.002)  0.0246 (0.004)

Dow Jones-Drift 0.1905 (0.1572)  0.167 (0.1196)  0.2039 (0.1375) 0.0593 (0.0248) 0.0501 (0.0153) 0.0428 (0.02) 0.0301 (0.0027) 0.0226 (0.0019)  0.0356 (0.008)
S&P500-Drift 0.031 (0.0319)  0.0326 (0.0321)  0.0343 (0.0295) 0.0298 (0.0325) 0.0316 (0.0328)  0.0305 (0.0328) 0.0063 (0.0002) 0.0075 (0.0006) 0.0113 (0.005)
Dow Jones 0.0097 (0.0021)  0.0098 (0.0023)  0.0612 (0.0437) 0.0076 (0.0017) 0.0088 (0.0025)  0.0087 (0.0022) 0.0033 (0.0002) 0.0043 (0.0005) 0.0047 (0.0008)
Nasdaq 0.009 (0.0027)  0.0097 (0.0046)  0.0075 (0.0022) 0.0052 (0.0013) 0.0066 (0.0015)  0.0061 (0.0011) 0.0026 (0.0003) 0.0032 (0.0005) 0.0037 (0.0006)
S&P500 0.0063 (0.0026)  0.0053 (0.0011)  0.0074 (0.0024) 0.0055 (0.002) 0.0044 (0.001) 0.005 (0.0014)  0.0018 (0.0001) 0.0022 (0.0002) 0.0023 (0.0004)

Table 3: Average and standard deviation for runtime (seconds) for all methods. Values
in bold represent the best time.

Bases ELM-DDM_ELM-ECDD ELM-FEDD IDPSO-ELM-B IDPSO-ELM-S SISC-D _ SISC-P__ SISC-M _RPSO-ELM
Tinear Gradual 3.9 (0.2) 2.7 (0.1) 108 (14) 10.9 (0.7) 5.1 (27 5.4 (21) 324 (6.7) 23.1(38) 275 (0.3)
Linear Abrupt 3.9 (0.6) 2.6 (0.1) 39 (1.9) 10.6 (0.7) 15.2 (1.9) 156 (2.3) 313 (5.9) 222 (41)  27.7(0.3)

Non-linear Gradual 5.1 (0.5) 2.5 (0.1) 42,9 (1.8) 11 (0.7) 111 (1.7) 116 (2.2) 214 (45) 158 (4.6)  27.2(0.2)
Non-linear Abrupt 4.2 (0.5) 2.6 (0.1) 40.7 (1.5) 108 (1) 13.5 (5.2) 135 (6.5) 284 (12.4) 19.6 (13.4)  27.5 (0.3)
Linear Sazonal 5.1 (0.5) 2.8 (0.1) 42.4 (2.8) 11.8 (0.7) 24.3 (5) ( 55.2 (12.3) 45.8 (11.8)  27.6 (0.2)

Hybrid 5.7 (1.7 2.5 (0.6) 36.6 (11.3) 12,1 (2.2) 14.6 (1.6) ( 20.6 (6.3) 20.3 (2.8)  27.7(74)
Dow Jones-Drift 0.1 (0) 0.1 (0) 0.3 (0) 1(0.2) 1.5 (0.2) 28(0.2)  1.9(0.5) 1.8 (0.3)
S&P500-Drift 0.6 (0) 0.5 (0) 3.9 (0) 6.8 (0.8) 3(0.4) 23(0.8)  1.7(0.3) 2.1 (0.7)

Dow Jones 2.2 (0.5) 1.2 (0.2) 12.8 (1.4) 7.8 (1.4) 117 (1.7) 17.7(3)  202(31) 123 (25)

Nasdaq 3.1 (0.9) 1.6 (0.3) 15.5 (3.6) 10.7 (4.2) 11.8 (2.8) . 213 (43) 235 (45)  17.2(3.7)

S&P500 47 (2) 2.2 (0.9) 22.6 (9.4) 19.1 (7.1) 15.8 (6.1) 16.3 (6.6) 25.7 (1L1) 29.6 (12.4)  24.3 (0.4)

6.3 RQ3 — Impact of Reusing Past Swarm Models to Deal
With Recurring Concepts in Time Series Forecasting

Artificial Time Series

The artificial time series have recurrent concepts from the sixth concept onwards (see
Section 5.1). This allowed SISC-M to achieve the best Friedman rank for MAE (Fig
8a), due to its long-term memory, which stores models trained in past concepts, thus
being able to reuse them whenever the same concept reappears.

Real-world Time Series

We observe that SISC-M obtained the best MAE only for the S&P500 time series
with concept drift (Table 2). This implies that this series has some segments that
may be correlated, or rather, recurrent due to the performance obtained by SISC-M
in recurring artificial time series. According to the statistical test (Fig. 8b), SISC-
M is not statistically different from SISC-P and RPSO-ELM in terms of MAE. This
indicates that in addition to recurring drifts, other types of drifts may also be favored
by reusing past swarm models.

RQ3 Answer: We observed that: (i) saving the best swarm model in memory
after each retraining reached the best forecasting performances for time series with
recurring drifts, due to the reuse of models in memory already trained in similar
distributions; and (ii) adaptation to other types of drift was also helped by that,
as the nearest neighbor filter favors to store models in memory that have different
capacities to respond to new concepts, increasing the chances of at least one being
sufficient.
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Figure 9: Difference in the execution of SISC-D (does not select models in the drift)
for SISC-P (selects models in the drift). The upper block shows the forecast and true
values in a part of the Dow Jones time series. The bottom block shows the MAE for
the forecast.

7 Conclusion

We proposed SISC, the first approach that uses dynamic swarm intelligence tech-
niques to help dealing with concept drift in time series forecasting. Dynamic swarm
intelligence is usually applied to optimization functions and its use in real applica-
tions is often unviable. In this work, we were able to use its inspiration to apply it to
the real problem of time series forecasting.

SISC has a drift detection strategy based on multiple swarm models (SISC-D), and
two possible different strategies to adapt to concept drifts: (i) SISC-P, that employs
different current swarm models to better react to concept drift; and (i) SISC-M, that
stores past best swarm models to be reused especially for recurring concepts. SISC-
M and SISC-P achieved the best forecasting performances in all tested time series,
whereas SISC-P achieved the best drift detections in time series with severe drifts,
besides being competitive for non-severe drifts.

Future work includes: (i) how to accelerate the training process of the swarm mod-
els, e.g., by resetting only the worst particles rather than all; and (ii) combining the
swarm particles into ensembles of models. We also believe that SISC can inspire other

23



novel approaches for handling concept drifts based on dynamic swarm intelligence in
both time series forecasting and classification problems.
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