
GMM-VRD: A Gaussian Mixture Model for
Dealing With Virtual and Real Concept Drifts

Gustavo H. F. M. Oliveira
Centro de Informática

Universidade Federal de Pernambuco
Recife, Pernambuco, Brazil

ghfmo@cin.ufpe.br

Leandro L. Minku
School of Computer Science

University of Birmingham
Birmingham, UK

L.L.Minku@cs.bham.ac.uk

Adriano L. I. Oliveira
Centro de Informática

Universidade Federal de Pernambuco
Recife, Pernambuco, Brazil

alio@cin.ufpe.br

Abstract—Concept drift is a change in the joint probability
distribution of the problem. This term can be subdivided into
two types: real drifts that affect the conditional probabilities
p(y|x) or virtual drifts that affect the unconditional probability
distribution p(x). Most existing work focuses on dealing with real
concept drifts. However, virtual drifts can also cause degradation
in predictive performance, requiring mechanisms to be tackled.
Moreover, as virtual drifts frequently mean that part of the old
knowledge remains useful, they require different strategies from
real drifts to be effectively tackled. Motivated on this, we propose
an approach called Gaussian Mixture Model for Dealing With
Virtual and Real Concept Drifts (GMM-VRD), which updates
and creates Gaussians to tackle virtual drifts and resets the
system to deal with real drifts. The main results show that the
proposed approach obtained the best results, in terms of average
accuracy, in relation to the literature methods, which propose to
solve that same problem. In terms of accuracy over time, the
proposed approach showed lower degradation on concept drifts,
which indicates that the proposed approach was efficient.

Index Terms—Gaussian Mixture Model, Data Streams, Virtual
Concept Drift, Real Concept Drift.

I. INTRODUCTION

In recent years, real-world applications have dealt with
tremendous growth in the amount of information, where data
arrive continuously and sequentially over time and tend to
evolve due to the dynamics of real-world activities. This type
of process is known as data streams [1]. Data streams present
several challenges for data modeling systems [2], because,
with drifts over time, the information used for modeling is
no longer useful for defining or deducing future behaviors.
This phenomenon is called a concept drift [3].

Concept drift can be subdivided into two types: real concept
drift and virtual concept drift [4]. The real concept drift
can be defined as a change in the conditional probabilities
p(y|x). Virtual concept drift can be defined as a change in the
unconditional probability distribution p(x). In practice, both
real and virtual concept drifts can occur simultaneously.

Most existing work on tackling concept drift focuses on
real concept drifts, which directly affect the performance of
the classifiers through changes in the true decision boundaries
of the problem [5]. Although virtual concept drift has attracted
much less attention from the research community, it can also
cause degradation of the classifier’s predictive performance.
This is because even though virtual drifts do not affect the

true decision boundaries of the problem, the appearance of
observations in regions of the search space that the classifier
does not know about can affect the suitability of the learned
decision boundaries. Therefore, it becomes important and
necessary to readjust the margins of the learned classifier to
avoid misclassification.

In general, existing approaches deal with concept drift
by learning new concepts from scratch [5]. This strategy is
ideal for real drifts where the new concepts do not share
similarities with the old ones. But, if the drift is virtual,
part of the past knowledge remains useful [2]. In that case,
learning the new concept entirely from scratch is not ideal.
It results in the system wasting potentially useful knowledge
and spending a lot of time to collect new data to recover
from the drift, hindering predictive performance. Therefore,
different strategies are better suited to deal with each of these
two types of drift.

An approach with the potential to deal with this type
of problem is the Gaussian Mixture Model (GMM). GMM
has probabilistic calculations of pertinence and classification,
which have been adopted in several pattern recognition prob-
lems, e.g., [6]. It can also represent complex distributions and
model both real [7] and virtual drifts [8], potentially enabling
us to adopt different strategies for each of these types of drift.
Besides that, it has been applied to non-stationary problems
for a long time [9] [10] [7].

Given the need to deal with both types of concept drift
and the potential of GMM, we aim to answer the following
research question: how to efficiently deal with virtual drifts
at the same time as preserving the ability to deal with real
drifts when using GMM? We hypothesize that combining the
probabilistic inferences of the GMM can be a way to handle
each type of drift in an appropriate way. Our hypothesis
results in a novel approach called Gaussian Mixture Model
for Dealing With Virtual and Real Concept Drifts (GMM-
VRD), which uses probabilistic pertinence to decide whether
to update and create new Gaussians to tackle virtual drifts,
and a drift detection method to decide whether to reset the
system to deal with real drifts. We evaluate our proposal
with approaches of the literature that claim to deal with the
same problem, using metrics such as average accuracy and
accuracy over time in both artificial and real datasets. Our

experiments show that GMM-VRD obtained the best overall
accuracy across datasets because of the different strategies
used for virtual and real drifts.

This paper is further organized as follows. Section II
presents related work that claims to deal with both virtual and
real concept drifts. Section III presents background necessary
to understand our proposed approach. Section IV presents the
proposed approach in detail. Section V describes the experi-
ments. In Section VI discuss the results. Section VII presents
our conclusions and gives directions for further research.

II. RELATED WORK

The following two studies claim to deal with both virtual
and real concept drift: Oliveira et al.’s Incremental Gaus-
sian Mixture Model for Concept Drift (IGMM-CD) [7] and
Almeida et al.’s Dynamic Selection Based Drift Handler
(Dynse) [11].

IGMM-CD is an incremental approach based on GMM.
Iteratively, the approach classifies new instances that arrive
from the data stream. If the system classifies the instance
correctly, then the nearest Gaussian of the observation is
updated. If the system misclassified the observation and does
not have a Gaussian with the minimum distance (Cver) from
the observation, thus a new Gaussian with size (sigma ini) is
created. The authors claim that the creation of a new Gaussian
can be used to rapidly adapt the system to real concept
drift. In the same way, the update of the nearest Gaussian
of the observation is used to adapt the system to virtual drifts.
Besides that, the system has a mechanism to exclude obsolete
Gaussians based on the parameter T, that counts the number
of Gaussians existing per class. If that number exceeds, the
Gaussian with lower density is excluded. A key weakness of
this approach is that, on the presence of abrupt drifts, the
system can delay excluding obsolete Gaussians, which in turn
may degrade the system performance. Moreover, virtual drifts
resulting in misclassifications are treated in the same way
as real drifts, potentially causing the unnecessary addition of
new Gaussians, and leading to waste of knowledge when this
results in other existing Gaussians to be excluded.

Dynse is an approach based on Dynamic Classifier Se-
lection (DCS). DCS is the process to select a specific clas-
sifier/ensemble for each test instance according to its size
neighborhood (k) in a validation set. The validation set (M)
used on this method is represented by a sliding window which
traverses the incoming data excluding the oldest observations.
The authors claim that virtual drifts can be dealt with using a
window with a very large size, because it will contain many
observations corresponding to the current concept. On the
other hand, real drifts can be dealt with using a window with
a small size, since its observations can be excluded faster
by speeding up the switch to new data. New classifiers are
added into a pool (D) at each batch of m observations, once
the batch has been filled. The size of the batch (m) and the
sliding window (M) are user-defined. The disadvantage of this
is that the approach can only deal well with one of the types
of drift (virtual or real). The type of drift with which it deals

well depends on the pre-defined value chosen for m and M .
Moreover, the strategy used to learn a new concept (creating
a new classifier from scratch and adding it to the pool) is
not ideal for virtual drifts where part of the past knowledge
remains valid and could be used to help better learning the
new concept. Besides that, in the presence of abrupt drifts,
the system will degrade its performance because it delays to
collect new observations to train a new classifier.

Overall the approaches discussed above can have their
performance degraded over time because they do not use
strategies that are always specific to the needs of each type
of drift. Based on this, we elaborate on our proposal different
strategies to deal with each type of drift and avoid degradation
over time.

III. GAUSSIAN MIXTURE MODEL

In sections III-A and III-B we are going to discuss how the
GMM can be used to recognize patterns in unsupervised and
supervised problems, respectively.

A. Unsupervised learning

The GMM can be applied as a clustering method, in which
the Gaussians are created considering only the input data
without their respective labels. Each generated distribution is
seen as a cluster, also called a mixture component [7]. The
idea of combining several mixture components assumes that
not all real-world data can be modeled by a single Gaussian
distribution, but if multiple components are combined, a new
distribution can be modeled as follows:

P (x) =

K∑
i=1

P (x|Ci) · wi (1)

where K is the number of Gaussians and x is a multivariate
observation with d dimensions, formally represented by: xd =
{x1, x2, .., xd}. Each constant wi is a weight representing the
number of observations that constitute the mixture component
i, 0 ≤ wi ≤ 1 and

∑K
i=1 wi = 1.

P (x|Ci), represents the conditional probability of observa-
tion x to belong to the mixture component Ci. This probability
is computed using the mean (µi) and the covariance (Σi) of
the cluster Ci as follows:

P (x|Ci) =
1

(2πd/2
√
|Σi|)

exp(−1

2
(x− µi)

T Σ−1i (x− µi))

(2)

The approach commonly used to make the adjustment of the
GMM over the data is called Expectation-Maximization (EM).
This approach initialises each component Ci on a random
subset from the training set, and then iteratively adjusts the
means and covariance of the mixture components in order to
maximize the probability of the data in the distribution created.
Details on this iterative procedure can be found at [12].

As a disadvantage, this approach is sensitive to noise, which
can cause the components to fit too tightly to the data, as an
overfitting.

Fig. 1: GMM-VRD’s Overall Procedure.

B. Supervised learning

The GMM can also be applied as a supervised learning
approach [7]. There are two ways to train the GMM model.
The first one is using only one Gaussian per class, where the
mean (µi), covariance (Σi) and weight (wi) are estimated for
each class [7]. The disadvantage of this approach it that it
cannot represent complex distributions, which in turn results
in poor performance. The second one is using one GMM
per class [7], where the unsupervised learning discussed in
Section III-A is adopted to model each class separately. The
disadvantage of this approach is the complexity to define the
optimum number of Gaussians to have a good modeling of
each class. In both cases, the Gaussians represent the decision
boundaries and the process to classify is based on the higher
posterior probability (Eq. 3) given by the Equation 4, where
K represents the number of Gaussians existing in the system.

P (Ci|x) =
P (x|Ci) · wi∑K
i=1 P (x|Ci) · wi

(3)

ŷ = argmaxi∈{1,2,··· ,K}P (Ci|x) (4)

IV. PROPOSED METHOD

Based on the necessity to deal with different types of drift,
we propose the GMM-VRD. The overall procedure of the
proposed approach is illustrated in Figure 1.

The proposed approach is divided into four parts: (i) the
procedure to train a new GMM model discussed in section
IV-A; (ii) the procedure to classify a new observation from
the data stream, discussed on section IV-B; (iii) the procedure
to deal with virtual drifts, discussed in section IV-C; and (iv)
the procedure to deal with real drifts, discussed in section
IV-D.

A. Model Creation

The model creation step has two substages: IV-A1: the
initialization of the classifier and; IV-A2: the initialization of
the drift detector.

Fig. 2: Training architecture proposed for GMM.

1) Classifier Initialization: We elaborate a training archi-
tecture for the GMM in order to overcome the problems
with noise and to choose the optimal numbers of Gaussians
discussed in section III. The architecture is illustrated in Figure
2 and is composed of two stages: (i) the pre-processing stage
and (ii) the model selection stage.

In the pre-processing stage, we use the approach k-
Disagreeing Neighbors (kDN) discussed in [13] to define the
hardness of each instance in the training dataset, as defined in
Equation 5. The kDN represents the fraction of the k nearest
neighbors of the query observation that do not share the same
class. Thus, by definition, the kDN assumes values in the range
of [0, 1], where values close to 0 indicate that the observation
is easy to classify and 1 is difficult. For our approach, we
have specified that observations with kDN greater than 0.75
tend to be noise and should thus be removed from the original
training set. After, the observations are separated by class to
train a GMM per class.

kDN(x) =
|x′|x′ ∈ kNN(x) ∧ label(x′) 6= label(x)

k
(5)

The model selection stage trains GMMs with numbers of
Gaussians ranging from 1 to Kmax using the EM approach
[12]. The best resulting model is chosen using the higher value
of the AIC criterion and is added to the final GMM model.
The AIC criterion is defined as follows:

AIC = 2 · p− 2 · L (6)

where p represents the number of model parameters. In a
GMM with only one Gaussian, the parameters are the mean,
covariance, and weight. So, for each existing Gaussian in a
GMM, the value of p is multiplied by three. The parameter
L represents the maximum likelihood function of the GMM,
defined by the Equation 7:

L =

m∑
i=1

log

K∑
j=1

P (xi|Cj) · wj (7)

where m represents the number of observations used for
training and K the number of Gaussians in the GMM model.

Algorithm 1 GaussianClose()

Input: observation (xt, yt)
1: aux = ∅
2: for each gaussian in GMM do
3: if gaussian ∈ yt then
4: aux ← P (xt|gaussian) . Eq. 2
5: else
6: aux ← 0
7: end if
8: end for
9: gaussian = argmax(aux)

10: if aux[gaussian] > 0 then
11: UpdateGaussian(gaussian, xt)
12: else
13: CreateGaussian(xt, yt)
14: end if

2) Drift Detector Initialization: We use Exponentially
Weighted Moving Average Charts (ECDD) [14] as the drift
detection method in our approach. This drift detector was
chosen due to its capability to monitor the error and trigger
alarms at both warning (w) and drift (c) levels. Therefore,
it enables different strategies to be used to cope with these
two situations. In addition, ECDD obtained good results in
existing works, e.g., [15]. Other drift detection methods could
be investigated in future work.

B. On-line Classification

In the second part, as more incoming instances arrive, the
trained model is used to predict their respective labels. The
prediction is done using Equation 4. The predicted label can
be used by users for decision-making.

C. Adaptation to Virtual Drifts

This component of the proposed approach performs the
maintenance of useful knowledge. This mechanism is triggered
whenever a misclassification has occurred. A misclassification
can be a signal that the evolution of the data may be degrading
the system’s performance.

To activate the more appropriate strategy, for each incoming
observation, we need to know where it is located in relation
to existing Gaussians. For that, we use the routine Gaussian-
Close() described in Algorithm 1.

This routine computes the conditional probability given by
Equation 2 for all Gaussians existing in the current GMM,
corresponding to lines 1 to 9. If there is a Gaussian near,
then the model is updated according to line 11 and to the
subsection IV-C1. If there is not, then another Gaussian is
created, according to line 13 and as explained in subsection
IV-C2. Both situations are illustrated in Figures 3c, 3d, 3e and
3f.

1) Update a Gaussian: When the nearest Gaussian has
pertinence greater than zero for the observation consulted,
then it will be updated. The process of updating a Gaussian is
done using modified equations of the EM approach proposed

by [16]. These modifications are necessary because in the
presence of data streams it is costly to store data groups
to update these parameters. The difference between these
equations and the old ones is that the Gaussian can be updated
based on a single new observation x and the Gaussian’s
current parameters (mean µt

i, covariance Σt
i and weight wt

i).
Another parameter necessary is the variable spti that will store
the accumulated posterior probability of each Gaussian. The
Equations to update the Gaussian are shown below:

spti = spt−1i + P (Ci|x) (8)

wt
i =

spti∑K
j sptj

(9)

µt
i = µt−1

i +
P (Ci|x)

spti
+ (x− µt−1

i) (10)

Σt
i = Σt−1

i − (µt
i − µt−1

i)T (µt
i − µt−1

i)

+
P (Ci|x)

spti
· [Σt−1

i − (x− µt
i)

T (x− µt
i)]

(11)

2) Create a Gaussian: When no Gaussian has pertinence
for the observation consulted, then it is necessary to create
another Gaussian to represent the new region in the feature
space. The new Gaussian is initialised using spi and wi = 1,
µi = xi and Σi = 0.5 · I , where I represents the identity
matrix, which has the same number of dimensions as x. The
value 0.5 represents the size of the Gaussian circumference
and can be defined according to the problem.

After the Initialisation of the new Gaussian’s parameters, it
is necessary to update the weights of all existing Gaussians to
re-normalize the weights. This is done using Equation 9.

3) Remove Gaussians: With the data stream evolution over
time, existing Gaussians may become obsolete, because the
Gaussian no longer represents new observations in that region
of space. Thus, with the normalization of the weights it tends
to have weight next to zero. In that case, it is necessary to
exclude these Gaussians. A Gaussian is deleted when it has its
weight extremely small, next to zero. This process is repeated
whenever the adaptation virtual drifts is triggered.

D. Adaptation to Real Drifts

We consider that the real drifts requiring treatment will
significantly degrade the system’s predictive performance.
Given the adoption of the mechanisms explained in IV-C, we
also consider that virtual drifts will not degrade the system’s
predictive performance so much as real drifts. Therefore, the
proposed approach detects the need for treating real drifts
through a drift detection method that monitors the error of
the system over time. In this work, ECDD [14] was used
as the drift detection method. If ECDD detects a drift, the
system collects new data to learn its knowledge from scratch.
ECDD has as parameters the tolerance levels defined by c and
w, which represent the drift and warning levels, respectively,
and can be tuned so that ECDD will detect real drifts. Each

(a) Initial Model (b) Model redefined (c) Update (Before) (d) Update (After) (e) Create (Before) (f) Create (After)

Fig. 3: Illustration of the adaptation to real and virtual drifts. On Figures 3c, 3d, 3e, 3f the star-shaped observation represents
the new test instance. The text G0, ..Gn represent the number of the Gaussian.

TABLE I: Dataset descriptions.
Type Datasets Classes Attributes Examples Drift Type Drifts Concept Size

Synthetic

Circles 2 2 8000 Gradual 4 2000
Sine1 2 2 10000 Abrupt 5 2000
Sine2 2 2 10000 Abrupt 5 2000

Virtual 5 Drifts 3 2 10000 Virtual 5 2000
Virtual 9 Drifts 3 2 10000 Virtual 9 1000

SEA 2 3 8000 Gradual 4 2000
SEAREC 2 3 16000 Recurrent (Repeat SEA) 8 2000

Real
PAKDD 2 29 50000 - - -
ELEC 2 4 27549 - - -
NOAA 2 9 18159 - - -

tolerance level yields a different response: (i) for the normal
error level the model remains untouched; (ii) for the warning
error level, the system begins to collect incoming observations
to retrain the model using these new observations in case of a
concept drift; and (iii) for the drift level, m new observations
are collected and added to the observations collected during
the warning level to train a new model.

This process is illustrated in Figures 3a and 3b. In the
second case (3b) the model had to be redefined because it
was degrading.

V. EXPERIMENTAL SETUP
Experiments were performed with the objective of evalu-

ating the proposed approach against related work in terms
of predictive performance and sensitivity to parameters. The
datasets used in the experiments are described in section V-A.
The performance metrics are presented in section V-B. The
setup for comparing the approaches in terms of predictive per-
formance is presented in section V-C. The setup for analyzing
their sensitivity to parameters is explained in section V-D.

A. Datasets

Both synthetic and real world datasets were used. The
datasets are summarised in Table I.

1) Synthetic datasets: We used 7 synthetic datasets with
varied types of drift to investigate how each compared ap-
proach behaves. With exception of the virtual datasets, all of
them were generated using the Tornado framework proposed
by [17] and available on GitHub1. The virtual datasets were
generated for this paper, to understand how virtual drifts can
affect the approaches. An example of virtual drift dataset is
shown in Figure 4.

2) Real datasets: The real datasets used on this paper are
available in [18]. Only one modification was made on ELEC
dataset, that had missing values. The missing values were
removed resulting in the number of examples in Table I.

1https://github.com/alipsgh/tornado

Fig. 4: Illustration of the virtual 9 drifts dataset.

B. Metrics

To evaluate the predictive performance of the approaches,
we used two metrics: average accuracy and accuracy over time.
To attest the significance of the results we used Friedman and
Nemenyi statistical tests.

1) Average Accuracy: is a performance indicator to evalu-
ate how the system behaved across the data stream, according
to Equation 12. In order to increase the discriminative power
of the metric, the standard deviation between the several
accuracies is also reported. This metric was used in several
works as [19, 7, 11].

accuracy =
Number of correct predictions

Total number of predictions made
(12)

2) Accuracy Over Time (AOT): is a time series that shows
the system’s accuracy over time, on which each plotted value
represents the predictive performance of the system over a
batch of past observations as shown in the Equation 13. This
metric enables us to investigate the evolution of the system’s
accuracy over time, and was also used in several previous
studies as [19, 7, 11].

AOT = {accuracy(batch1), ..., accuracy(batchn)} (13)

3) Friedman and Nemenyi tests: Friedman [20] is a non-
parametric statistical test that can be used to compare multiple
approaches accross multiple datasets. If the null hypothesis is
rejected, then the Nemenyi post-hoc is used to check which

of the approaches is different from each other. Both tests are
used with a significance level of α = 0.05.

C. Comparison in Terms of Predictive Performance

To evaluate the performance of the proposed approach, we
compare it with the two existing approaches that propose to
solve the same problem of this paper, i.e., to deal with both
virtual and real concept drifts. The existing approaches are
Dynse [11] and IGMM-CD [7], both discussed in section
II. The parameters of all approaches were chosen based on
experiments with several different combinations using a grid
search. The best parameters were considered as the ones that
reached the best average accuracy across datasets, and are
shown in Table II.

TABLE II: Best parameters found for the compared ap-
proaches.

Algorithm Parameters Grid Search Synthetic Real

IGMM-CD
Sigma ini [0.5, 1, 2, 5, 10] 0.05 10

Cver - 0.01 =
T [1, 5, 7, 9, 13] 13 =

Dynse

D - 25 =
m [50, 100, 200, 300, 400] 50 =
M - 100 =
k - 5 =

CE - A Priori =
PE - Age Based =
BC - Gaussian Naive Bayes =

GMM-VRD

m [50, 100, 200, 300, 400] 50 200
EM it. - 10 =
kmax [2, 3, 5, 7, 9] 2 =
kDN - 5 =

Detector - ECDD =
c - 1 =
w - 0.5 =

For the IGMM-CD, the parameter Cver does not have an
important impact on GMMs according to [7]. For the Dynse,
due to the large number of parameters only the most important
parameters have been experimented, the others were fixed to
the default configurations defined by [11]. The A priori method
was used as classification engine (CE), since it was the best
technique of Dynamic Classifier Selection (DCS) described
in [11]. As the pruning technique (PE) was used the default
Age-Based method, which excludes the oldest classifier from
the pool. For comparison purposes, we use as Base Classifier
(BC) a similar classifier to our approach, that is Gaussian
Naive Bayes.

For the synthetic datasets, 30 different data streams were
generated to evaluate the predictive performance of the ap-
proaches. For real datasets, a modified version of cross-
validation for data streams [19] was used. It consists in leaving
out an observation from every 30 observations to construct
the training stream. That is, in both cases 30 runs for each
approach were executed.

D. Parameters Sensitivity Analysis

To analyse the impact of parameters on the predictive
performance of the compared approaches we varied its most
important parameters for each synthetic dataset using a grid
search according the Table II. The synthetic datasets were cho-
sen for this analysis because they enable a better understanding
about the behavior of the approaches since it is possible to

TABLE III: Average accuracy for approaches compared.

Datasets GMM-VRD IGMM-CD Dynse-priori
Circles 0.787 (0.007) 0.609 (0.033) 0.741 (0.033)
Sine1 0.817 (0.004) 0.536 (0.023) 0.603 (0.090)
Sine2 0.722 (0.006) 0.538 (0.024) 0.584 (0.073)
Virtual 5 changes 0.815 (0.003) 0.755 (0.003) 0.792 (0.004)
Virtual 9 changes 0.845 (0.005) 0.804 (0.007) 0.805 (0.007)
SEA 0.779 (0.008) 0.667 (0.008) 0.795 (0.004)
SEARec 0.777 (0.004) 0.674 (0.004) 0.801 (0.003)
PAKDD 0.708 (0.009) 0.420 (0.001) 0.462 (0.002)
ELEC 0.685 (0.008) 0.783 (0.001) 0.651 (0.001)
NOAA 0.702 (0.016) 0.604 (0.007) 0.660 (0.002)

Fig. 5: Friedman ranking from left to right. Any pair of
approaches whose distance between them is larger than CD
are considered to be different.

observe each type of drift existing in the data stream, unlike
the real datasets.

VI. RESULTS AND DISCUSSION

A. Comparison of Predictive Performance

The results of the comparison of the approaches are pre-
sented in Table III. The proposed method (GMM-VRD) ob-
tained the best results in 5 out of 7 synthetic datasets, and in 2
out of 3 real datasets. Friedman detects significant differences
in average accuracy with a p-value of 7.51e-18. The Nemenyi
post-tests are shown in Figure 5. According to the test, the
proposed method’s average accuracy was significantly better
than that of the other approaches.

To better understand the reason for the better performance
of the proposed method we illustrate the behavior of the
approaches using the accuracy over time in Figure 6.

In the datasets with abrupt drifts (Figures 6b and 6c) we note
that the proposed method has less degradation compared to the
other approaches. One of the reasons for this is that the model
is constantly updated due to its mechanism of adaptation to
virtual drifts. Different from GMM-VRD, Dynse has a sharp
drop in accuracy upon abrupt drifts. This is because Dynse
still does not have a classifier trained on this concept. Once
a new classifier is trained on the new concept, its predictive
performance increases again. Since IGMM-CD does not have
a mechanism to recycle its knowledge more quickly, it tends
to accumulate obsolete Gaussians which tend to decrease its
performance.

When analyzing the accuracy of the approaches on the
virtual datasets (Figures 6d and 6e), we observe that the
proposed GMM-VRD obtained good results, presenting less
accuracy degradation than the other approaches, highlighting
the benefits of its virtual drift handling mechanism. We also
observe that IGMM-CD obtained more competitive perfor-
mance compared to the other approaches than for the abrupt

(a) Circles (b) Sine1 (c) Sine2 (d) Virtual 5 drifts (e) Virtual 9 drifts

(f) SEA (g) SEARec (h) PAKDD (i) ELEC (j) NOAA

Fig. 6: Mean of accuracy over time for all methods on each dataset. The standard deviation is represented by shadow lines of
the same color. Each point represents the accuracy for a batch with 250 observations.

drifts discussed in the previous paragraph. Its procedure of
creating new Gaussians accommodates well the drifts existing
in the virtual drifts datasets.

In the datasets 6f and 6g, we observe that Dynse obtained
the best results. This is explained by the fact that the drifts
are gradual, not offering so much degradation to the models.
Therefore, Dynse, which maintains a pool of models and
uses a DCS technique to choose the best classifier for each
test instance, is an adequate strategy. Although GMM-VRD’s
accuracy does not degrade with drifts, a single classifier
generally tends to perform less well than a pool.

Finally, when analyzing the real datasets, we observe
that the proposed approach GMM-VRD performed well for
PAKDD (Figure 6h). One of the reasons for this is the com-
plexity of the data and drifts of this dataset. As GMM-VRD
is able to model complex distributions and always recycles
Gaussians when needed, it tends to be accurate. The other two
approaches, which do not have this capability, tend to perform
poorly. On the other hand, in the ELEC dataset (Figure 6i),
IGMM-CD performed best. The ELEC dataset has gradual
changes happening often [21]. This favors IGMM-CD, due
to its ability to create Gaussians faster. In the NOAA dataset
(Figure 6j), Dynse’s and IGMM-CD’s accuracy declined at
certain points, demonstrating less robustness to drifts.

B. Parameter Sensitivity Analysis

Figure 7 presents the average accuracy of each approach on
each dataset, when varying their parameters.

For GMM-VRD, the train size parameter (Figure 7a) tends
to lead to better average accuracy when adopting larger values,
reaching convergence in the value 200. This is understandable
– more data for training results in a more stable system, thus
leading to better accuracy. The Kmax (Fig. 7b) parameter leads
to worse results with larger values, with exception for the
sine2 dataset that has a complex distribution needing more
Gaussians. This is because the criterion AIC tends to choose
a number of Gaussians that overfits the data.

(a) GMM-VRD’s Tr. Size (m) (b) GMM-VRD’s Kmax

(c) Dynse’s Batch Size (m) (d) IGMM-CD’s T

Fig. 7: Each bar represents the average accuracy of the 30 runs
for a given data set. The bars were grouped by parameters. The
blue line represents the mean across datasets.

For Dynse (Figure 7c), we observe that if the size of the
training batch is increased, the system tends to lose perfor-
mance. Dynse depends on the quick creation of the classifiers
to be able to adapt to drifts. A larger batch means that it
takes longer time to create new classifiers, hindering predictive
performance in non-stationary environments. Besides that, the
Dynse is more sensitive to this parameter than GMM-VRD
was to its parameters m and Kmax, given the larger changes
in accuracy obtained when varying m.

For IGMM-CD (Figure 7d), the more Gaussians are created,
the faster it adapts to concept drifts. Therefore, larger T values
allowed it to recycle its knowledge faster, leading to better
predictive performance.

VII. CONCLUSION

We proposed an approach called Gaussian Mixture Model
for Dealing With Virtual and Real Concept Drifts (GMM-
VRD). Our experiments show that GMM-VRD obtained the
best overall accuracy across datasets because of the different
strategies used for virtual and real drifts. We observed that the
proposed approach performed less well than the others in terms
of accuracy over time in the datasets SEA and SEARec. De-
spite the fact that the proposed approach sometimes performed
less well, its stability across datasets was higher – the other
approaches sometimes performed very well and sometimes
very poorly.

We also investigated the impact of parameters in the ap-
proaches’s average accuracies. In particular, for GMM-VRD
we showed that: (i) The use of many Gaussians can represent
complex distributions but can lead to overfitting. (ii) The use
of more instances to train can improve the model stability
increasing the accuracy over time.

Future work includes a study of GMM-VRD on perfor-
mance critical applications; an analysis of GMM-VRD’s time
complexity; other virtual drift adaptation mechanisms; an
approach to create Gaussians more quickly; a study using other
drift detection methods; a pool to store old Gaussians for reuse
on similar concepts; and an approach to deal with real drifts
by excluding only the more degraded Gaussians.

ACKNOWLEDGMENT

The authors would like to thank CNPq and FACEPE (Brazil-
ian Research Agencies) for their financial support. Leandro
Minku was supported by EPSRC Grant No. EP/R006660/1.

REFERENCES

[1] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learn-
ing in nonstationary environments: A survey,” IEEE
Computational Intelligence Magazine, vol. 10, no. 4, pp.
12–25, 2015.

[2] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,”
ACM computing surveys (CSUR), vol. 46, no. 4, p. 44,
2014.

[3] L. L. Minku and X. Yao, “Ddd: A new ensemble
approach for dealing with concept drift,” IEEE TKDE,
vol. 24, no. 4, pp. 619–633, 2012.

[4] P. M. Gonçalves Jr, S. G. de Carvalho Santos, R. S.
Barros, and D. C. Vieira, “A comparative study on con-
cept drift detectors,” Expert Systems with Applications,
vol. 41, no. 18, pp. 8144–8156, 2014.

[5] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, and
K. Ghédira, “Discussion and review on evolving data
streams and concept drift adapting,” Evolving systems,
vol. 9, no. 1, pp. 1–23, 2018.

[6] T.-W. Lee, M. S. Lewicki, and T. J. Sejnowski, “Ica
mixture models for unsupervised classification of non-
gaussian classes and automatic context switching in blind
signal separation,” IEEE TPAMI, vol. 22, no. 10, pp.
1078–1089, 2000.

[7] L. S. Oliveira and G. E. Batista, “Igmm-cd: a gaussian
mixture classification algorithm for data streams with
concept drifts,” in BRACIS, 2015 Brazilian Conference
on. IEEE, 2015, pp. 55–61.

[8] S. W. Choi, J. H. Park, and I.-B. Lee, “Process monitor-
ing using a gaussian mixture model via principal com-
ponent analysis and discriminant analysis,” Computers
& chemical engineering, vol. 28, no. 8, pp. 1377–1387,
2004.

[9] T. Chen and J. Zhang, “On-line multivariate statistical
monitoring of batch processes using gaussian mixture
model,” Computers & chemical engineering, vol. 34,
no. 4, pp. 500–507, 2010.

[10] G. Ditzler and R. Polikar, “Semi-supervised learning in
nonstationary environments,” in IJCNN, The 2011 IJCNN
on. IEEE, 2011, pp. 2741–2748.

[11] P. R. Almeida, L. S. Oliveira, A. S. Britto Jr, and
R. Sabourin, “Adapting dynamic classifier selection for
concept drift,” Expert Systems with Applications, vol.
104, pp. 67–85, 2018.

[12] T. K. Moon, “The expectation-maximization algorithm,”
IEEE Signal processing magazine, vol. 13, no. 6, pp. 47–
60, 1996.

[13] F. N. Walmsley, G. D. Cavalcanti, D. V. Oliveira,
R. M. Cruz, and R. Sabourin, “An ensemble genera-
tion methodbased on instance hardness,” arXiv preprint
arXiv:1804.07419, 2018.

[14] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J.
Hand, “Exponentially weighted moving average charts
for detecting concept drift,” Pattern recognition letters,
vol. 33, no. 2, pp. 191–198, 2012.

[15] G. H. Oliveira, R. C. Cavalcante, G. G. Cabral, L. L.
Minku, and A. L. Oliveira, “Time series forecasting in
the presence of concept drift: A pso-based approach,”
in ICTAI, 2017 IEEE 29th International Conference on.
IEEE, 2017, pp. 239–246.

[16] P. M. Engel and M. R. Heinen, “Incremental learning
of multivariate gaussian mixture models,” in BRACIS.
Springer, 2010, pp. 82–91.

[17] A. Pesaranghader, H. Viktor, and E. Paquet, “Reservoir of
diverse adaptive learners and stacking fast hoeffding drift
detection methods for evolving data streams,” Machine
Learning, vol. 107, no. 11, pp. 1711–1743, 2018.

[18] “Real datasets with concept drift. [online],”
https://en.wikipedia.org/wiki/Concept drift#Real.

[19] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao,
“Online ensemble learning of data streams with gradually
evolved classes,” IEEE TKDE, vol. 28, no. 6, pp. 1532–
1545, 2016.

[20] J. Demšar, “Statistical comparisons of classifiers over
multiple data sets,” Journal of Machine learning re-
search, vol. 7, no. Jan, pp. 1–30, 2006.

[21] I. Zliobaite, “How good is the electricity benchmark
for evaluating concept drift adaptation,” arXiv preprint
arXiv:1301.3524, 2013.

