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Abstract—Time series forecasting is a problem with many
applications. However, in many domains, such as stock market,
the underlying generating process of the time series observations
may change, making forecasting models obsolete. This problem is
known as Concept Drift. Approaches for time series forecasting
should be able to detect and react to concept drift in a timely
manner, so that the forecasting model can be updated as soon as
possible. Despite the fact that the concept drift problem is well
investigated in the literature, little effort has been made to solve
this problem for time series forecasting so far. This work proposes
two novel methods for dealing with the time series forecasting
problem in the presence of concept drift. The proposed methods
benefit from the Particle Swarm Optimization (PSO) technique
to detect and react to concept drifts in the time series data
stream. It is expected that the use of collective intelligence of PSO
makes the proposed method more robust to false positive drift
detections while maintaining a low error rate on the forecasting
task. Experiments show that the methods achieved competitive
results in comparison to state-of-the-art methods.

I. INTRODUCTION

A time series is a collection of observations measured
sequentially over time. In this kind of dataset, observations
are ordered in time and typically present serial correlation.
Several real-world processes measure data over time that can
be modeled as time series, such as company payroll [1], stock
price movements [2], exchange rates [3], temperatures of a
city, electroencephalogram, among others.

In the literature, most approaches proposed for time series
analysis model time series data as a static dataset. These
methods typically process the time series in offline mode [4],
through several passes on the historical data. However, in most
real-world time series applications, data arrives sequentially
as a stream. In this streaming scenario, data may flow at
high speed and evolve over time, making offline modeling
and forecasting methods innefective and innapropriate.

Dynamic data streams present several challenges for predic-
tive models [5]. Since the data generation process may change
over time, the historical observations are not always useful
for defining future behaviors, and may even be detrimental.
Changes in the underlying data generation process are known
as concept drifts [6]. This phenomenon is very comon in real-
world time series data streams. For instance, stock price time
series may change due to changes in political and economical

factors or changes in investors, psychology. In this case,
predictive models trained with the historical data become
obsolet in predicting future behaviors from the changing point.

Dynamic data streams require effective and efficient learn-
ing algoritms able to adapt to concept drift [7]. Effective
in the sense that the algorithm has to maintain predictive
performance by adapting to changes. Efficient in the sense that
it should not unnecessarily trigger adaptation when this is not
needed. Two major classes of drift handling methods are the
passive and active concept drift handling methods [7]. Passive
methods, also known as blind adaptive methods, adapt the
learned model without any explicit detection of changes [4].
These methods may be not efficient. Active adaptive concept
drift handling methods, on the other hand, use a mechanism to
explicitly detect drifts. These methods may be more efficient,
since they implement a detect-to-react mechanims. Another
advantage of active methods is the transparency.

Active concept drift handling methods rely on monitoring
some aspect of the data stream to explicitly detect changes
in data. One of the most used strategies is to monitor the
errors of a classifier or forecaster in an online fashion [8], [9],
[10]. The main assumption of these methods is that, when a
concept drift happens, the learned model is no longer effective
in describing data behavior and its prediction error tends to
increase. If the goal of the designer is to keep good forecasting
performance, monitoring the error may be an effective drift
detection scheme.

The main issue of existing active adaptive methods is that
they typically monitor the error of a single forecasting method.
If this single model was built as result of a poor training
process, the drift detection may be inaccurate. This may be due
to the fact that the error will reflect generalization problems,
such as overfitting or underfitting, instead of changes in the
data stream. Some detection delay may also be introduced
in the process, since the error of the single forecaster may
increase until some threshold level before a drift is detected,
which degrades the overall forecasting performance. A drift
detection approach based on monitoring the error of a single
forecaster may also present a high false positive detection rate
due to spurious variations in the error that are not caused by
drifts.



In order to overcome those issues, we propose the use of
an active adaptive learning system for time series forecasting
based on monitoring the error of several forecasting models
generated by swarm intelligence. In batch learning forecasting
schemes, optimization algorithms, such as particle swarm
optimization (PSO) [11] can be used to build forecasting
models. PSO generates several particles representing different
models, which are evolved to optimize the performance in
training or validation data. When a concept drift happens,
the corresponding function to be optimized changes, making
optimal solutions outdated. Therefore, we hypothesize that
when a change in the underlying time series generation process
happens, the search space faced by PSO reflects this change.
So, instead of monitoring the error of a single forecasting
method, we can identify concept drift by monitoring a larger
area of the optimization search space through the several
forecasting models generated by PSO.

We expect this approach to improve drift detection and
forecasting performance of the learning system, because moni-
toring a larger area of the search space may improve robustness
against individual variations in the error caused by the training
of a single model. In order to validate this hypothesis, we
propose two drift detection approaches: (i) detection based on
swarm behavior and (ii) detection based on the evaluation of
some particles (called sensors). The proposed methods were
evaluated with both artificial and real-world time series in
terms of drift detection accuracy and forecasting performance.

The rest of this paper is organized as follows. Section
II discusses some related work. Section III describes the
proposed methods in detail. Section IV describes the exper-
imental setup, the computational experiments performed and
the results obtained. Section VI concludes the paper and gives
directions for further research on this topic.

II. RELATED WORK

Despite the fact that the concept drift problem is not a new
research area, concept drift detection in time series forecasting
is not widely investigated. Boracchi and Roveri [12] used the
self-similarity feature to identify concept drifts in time series.
The proposed approach measures the self-similarity between
time series segments and uses the values of this feature as
the change detector variable. The Intersection of Confidence
intervals (ICI) test is used as concept drift test (CDT). ICI is
used to monitor and detect changes in this feature as a proxy
for changes in the time series generation process. However,
this approach monitors only one aspect of time series behavior
and its applicability is restricted to time series that present
self-similarity. This work is concerned with drift detection,
and does not investigate how to handle the detected changes
in order to improve forecasting performance.

Cavalcante et al. [13] also applied a CDT to monitor time
series features and identify concept drifts. They used a set
of statistical time series features to characterize concepts and
monitor the diferences between subsequent feature vectors
extracted from the time series in an online manner. A CDT is
then applied to the stream of differences to identify significant

changes in the underlying time series generation process. This
work is also concerned with drift detection and not with
forecasting performance.

Cavalcante and Oliveira [10] investigated the use of an
online, explicit drift detection method to handle concept drift
in financial time series. They proposed the use of some existing
CDTs to monitor the error of extreme learning machines
(ELM) [14] to detect concept drifts in time series and adapt
the learned model. However, they did not evaluate the drift
detection accuracy of the proposed methods.

In the literature, several studies have investigated how to use
bioinspired and collective intelligence to improve forecasting
accuracy of time series predictors. Most of existing methods
implicitly or explicitly assume that the environment modeled
is stationary. With this assumption, their goal is to find local or
global optima in the search space, which typically represents
the best configuration for the forecasting algorithm. However,
as discussed above, many real-world problems are dynamic,
i.e., non-stationary. The function to be optimized can change
over time, which makes the optimal solutions obsolete [15].
In the optimization literature, these problems are known as
dynamic optimization problems (DOPs). In particular, some
work has investigated the use of PSO to detect changes
in benchmark optimization functions, such as the Moving
Peaks Benchmark (MPB). Hu and Eberhart [16], Richter [17]
and Fouladgar and Lotfi [18] proposed methods to detect
changes in MPB by reevaluating sensors of the swarm. Other
researchers, such as Janson and Middendorf [19], tried to
detect changes in MPB based on the behavior of the swarm.
Nasiri et al. [20], on the other hand, investigated how to
combine these two strategies to detect changes.

Other researchers have investigated the use of PSO to
build and train an artificial neural network to perform in
dynamic environments [21], [22]. The proposed methods were
applied to a dynamic classification problem. In these studies,
the detection modules are based on sensors. These sensors
evaluate some fixed point in search space in order to find
some variation, which are interpreted as changes in the space.
In the case of changes, the neural network is updated to model
the new space. However, swarm intelligence has never been
investigated in the context of time series forecasting with
concept drift.

III. PROPOSED METHODS

This work proposes and investigates the use of two ap-
proaches for concept drift detection based on the swarm
behavior: (i) detection based on the whole swarm behavior
(IDPSO-ELM-B); and (ii) detection based on the evaluation
of some particles used as sensors (IDPSO-ELM-S). In both
cases each swarm particle consists of an ELM artificial neural
network model [14], which is trained based on the Improved
Self-Adaptive Particle Swarm Optimization (IDPSO) [11].
The use of PSO was motivated by works like [23] where
this technique performed better for training the ELM initial
weights than the canonical random assignment. Furthermore,
the algorithm IDPSO has been chosen because some works



report good results of the IDPSO in comparison to other state-
of-art optimization methods.

In this work, IDPSO is responsible for finding the weights
of the ELM connections between the input and the hidden
layer. So, assuming that m+ 1 is the number of inputs (also
considering the bias) for each ELM model and being n the
size of the hidden layer, the IDPSO search is performed in a
(m + 1) ∗ n dimensional space. Figure 1 depicts the IDPSO
particle coordinates representation.

Fig. 1. Particle representation.

The training phase involves: (i) the swarm initialization,
where each particle is assigned a random vector of input
weights, and (ii) the swarm search, where the particles fly
in the search space aiming at optimizing the fitness function.
Mean Average Error (MAE) for the time series prediction on
the training set was adopted as the fitness function. If the
best training error among the whole swarm remains the same
during a predefined number of consecutive swarm iterations,
the search is interrupted. Finally, the particle with the lowest
training error (gBest) is used as the forecasting model.

Once a model is elected for forecasting via the aforemen-
tioned training phase, this model must forecast each new
arriving instance. In the future, when a concept drift takes
place, the current forecasting model is reset and replaced by a
new model trained using data that belong to the new concept
[4]. However, while the system does not have access to enough
examples belonging to the new concept for such retraining to
start, the old forecasting model keeps being used to perform
estimations. The number of new instances enough to define
the new concept is a pre-defined parameter.

Algorithm 1 presents the overall training procedure. The
present work proposes two methods for concept drift detec-
tion in time series forecasting and Algorithm 1 is a general
procedure applicable to both methods. This general procedure
receives as inputs the data stream X , the size of the training
set n, the swarm size and specific parameters of the methods
that will be hereafter presented in Sections III-A and III-B.
Initially, the training set (tr) is built and a swarm of ELM
models is used to search for the best forecasting model. Next,
statistics of the models errors for the training set are computed
to support the concept drift detection in the future. At this
point, the best particle is used as the forecasting model and
the system monitors the data stream in order to detect changes.
Once a concept drift occurs, a new swarm of ELMs is trained.

Figure 2 depicts the on-line forecasting process for a time
series containing several simulated concept drifts. The yellow
time intervals represent the periods in which the system is
performing the on-line forecast. When the system detects a
concept drift (blue vertical dashed line for a true positive
detection and pink vertical dashed line for a false positive
case), the retraining period starts and the system begins

gathering data from the new concept in order to train the new
forecasting model.

Algorithm 1 Overall procedure
1: Input: X, n, swarm size, spec parameters
2: tr = X(t : t+ n)
3: Execute on tr the IDPSO swarm S = {p1, p2 ..
pswarm size}

4: Compute the swarm error and determine the best model
gBest

5: for each new arriving data xt do
6: x̂t = prediction given by the gBest model
7: changed = DetectChange(spec parameters, x̂t)
8: if (changed) then
9: Wait for the next n training examples and set tr =

X(t : t+ n)
10: Execute on tr the IDPSO swarm S = {p1, p2 ..

pswarm size} using tr
11: Compute the swarm error on tr and determine the

best model gBest
12: end if
13: end for

A. Concept Drift Based on Swarm Behavior (IDPSO-ELM-B)

Given the convergence of the swarm for a particular so-
lution, it is possible to assume that the swarm has learned
the current concept. Being S a swarm composed of particles
pi and each of these particles compute their own vector
of prediction errors for the n observations contained in the
training set (tr), the mean µp and standard deviation σp of the
errors of each particle p are computed. This method is based
on the assumption that the average error changes when a new
concept is introduced [8]. Therefore, the average training error
provided by the particles form a distribution that statistically
changes as a new concept takes place. To monitor the swarm
error behavior, the mean µS = 1/swarm size

∑
p µ

p and the

standard deviation σs =
√

1/swarm size
∑
p (µ

p − µs)2 of
the average errors of the particles are employed.

In order to detect a concept drift, the detection module
adapts the equations introduced in the ECDD [9] which applies
the Exponentially Weighted Moving Average (EWMA), which
consists in an estimator of the mean of a sequence of variables
such that the more recent variables are considered more impor-
tant. Therefore, the detection condition is Zt > µS + c ∗ σZt ,
where Zt = (1 − λ) ∗ Z(t−1) + λ ∗ est , s.t. t > 0 and

σZt
=
√

λ
2−λ (1− (1− λ)2t)σS . In this Equation, the pre-

defined constant c increases or decreases the tolerance level
for the forecasting error. λ indicates the importance level given
to more recent prediction errors and est stands for the average
swarm error for a single new example arriving at time t.

Ultimately, the assumption that this method overcomes the
state-of-art methods, since it operates monitoring a statistical
error distribution, in contrast to other methods, that monitor
only a single model outcome, is investigated.



Fig. 2. Procedure for online forecasting in time series with concept drift.

B. Concept Drift Based on Sensors (IDPSO-ELM-S)

For this method, the idea is to pick a set of best particles
(sensors - S) and monitor these particles in an isolated
manner. This method has two main differences compared to
the IDPSO-ELM-B: (i) only the best particles are considered
and (ii) a concept drift is detected only when all the sensors
agree. In this case, a concept drift only takes place when Zt >
µp+c∗σZt

, ∀ p ∈ S - where Zt = (1−λ)∗Z(t−1)+λ∗ept
and σZt =

√
λ

2−λ (1− (1− λ)2t)σp - is satisfied for all the
sensors.

Different from the IDPSO-ELM-B method, individually
each particle uses the mean of the errors (µp) and standard
deviation (σp) on the training set and the current error of the
particle (ep). As all best particles must agree that a concept
drift has been detected, we expect this method to reduce the
number of false positive drift detections further with respect
to IDPSO-ELM-B.

IV. EXPERIMENTAL SETUP

This section describes the objectives of the experiments,
the metrics and the parameter choice used in the experiments.
The objectives are the following: (i) Evaluate the accuracy of
the concept drift detection in comparison to state-of-the-art
methods; (ii) evaluate the accuracy of the proposed methods
for the forecasting task in the presence of concept drift.

A. Concept Drift Detection Ability

The first objective of the experiments consists in comparing
the proposed methods in terms of concept drift detection
accuracy. The idea is to confirm the hypothesis that monitoring
the statistics of the swarm error is effective for decreasing
the number of false positive (FP) occurrences. Furthermore,
this work tries to check the reliability of the methods also
in terms of delay and transparent operation for the user [24]
(i.e., the ability to explicitly inform whether a concept drift
has occurred or not). Some methods automatically adapt to the
new concept without informing the occurrence of the concept
drift, these methods are not considered transparent.

As concept drift is not widely investigated in time series
forecasting, there is a lack for time series datasets affected
by concept drift. So, for these experiments, 120 artificial
time series containing concept drifts were generated. For each
time series, each detection method was executed 10 times

and the computed averages were used for comparison. Using
synthetic series makes possible a more accurate analysis of
the performance of the concept drift detection methods since
the points where the concepts change are known in advance.
These datasets are detailed in Section IV-C.

In order to enable the first analysis of the experiment, the
methods DDM [8], ECDD [9] and FEDD [13] are compared
to the proposed methods according to a curve of False Positive
Rate (FPR) vs Detection Delay (DD) introduced in [25]. These
curves show the behavior of the compared methods for all the
parameter configurations investigated, so there is no need to
fix or chose the best parameters for each method. Each point
in the curve corresponds to a different parameter setting. The
best methods are those with curves close to the axes of the
graph, which are those with small delay and false positive
detections. For the comparison to be fair, all the experimented
detection methods used ELM artificial neural networks as the
regression methods.

The parameters used in this experiment are as follows:
IDPSO-ELM-B: c = 0.25, 0.5, 0.75, 1; IDPSO-ELM-S: c =
0.25, 0.5, 0.75, 1; ELM-ECDD: c = 0.25, 0.5, 0.75, 1; ELM-
FEDD: c = 0, 0.25, 0.5, 0.75 and; ELM-DDM: ω = 3, 5, 6, 8.
The constant c controls the tolerance for the forecasting error.
High values for c increase the detection delay (DD) rate. If
a low value is given, less tolerance to error is allowed, thus
increasing the FPR rate. The constant ω behaves similarly to
c, however, for the method DDM.

Aimed at assigning a proper value for the number of
observations for training the regression models, the values
200, 300, 400, 500 were experimented and the value 300
yielded the best results. So, this value was then fixed for
the remaining of the experiments. For the methods employing
IDPSO, preliminary experiments were performed to find the
best parameters regarding the forecasting accuracy. The best
parameters were as follows: 50 iterations; 30 particles (swarm
size); 3 iterations without improvement as stop criterion;
ωinitial = 0.8; ωfinal = 0.4; c1 = c2 = 2; max position
= max velocity = 0.3; and min position = min velocity
= -0.3;

B. Time Series Forecasting Ability

The second goal of the experiments is to assess the accuracy
of the proposed methods in terms of time series forecasting
error in the presence of concept drift. This experiment is aimed



at validating the hypothesis that using swarms to monitor
the concept drift phenomenon may improve the forecasting
performance.

The same experimental procedure described in Section IV-A
was used for this experiment. However, for this case, the
prediction error metric Mean Absolute Error (MAE) was con-
sidered. Furthermore, to statistically attest the significance of
the results, the Friedman non parametric test, with significance
level α = 0.05 was used, as proposed by [26]. Friedman’s test
was used to rank the algorithms for each dataset separately
and if the null hypothesis was rejected (ranks are significantly
different) a Nemenyi test was employed by comparing all
algorithms with each other, performing pairwise tests. The
Nemenyi test was then used with significance level α = 0.05.

Preliminary tests were performed in order to obtain the best
ELM parameters considering the forecasting accuracy. The
best found configuration used 10 hidden neurons (h), 5 input
neurons (l) and the sigmoid as activation function. Moreover,
the remainder of the parameters were assigned according to
Section IV-A.

In addition to the synthetic data sets used to address the first
objective of the experiments (section IV-A), three time series
containing stock market index, described in Section IV-C, were
used for this experiment. For each time series, 30 executions
were performed. The number of executions was chosen due
to the small number of time series for this experiment. This
amount of executions enables a more reliable analysis of the
results. A comparison to an ELM network without concept
drift detection was also performed in order to highlight the
benefits of concept drift detection.

Lastly, the parameters that yielded the best error prediction
for each method on the real world time series were: IDPSO-
ELM-B: c = 0.25; IDPSO-ELM-S: c = 0.25; ELM-ECDD: c
= 0.25; ELM-FEDD: c = 0.25 e; ELM-DDM: ω = 3. The best
ELM topology used h = 10 and l = 5.

C. Datasets Description

This section details the datasets used in the experiments.
Four types of artificial time series were generated: (i) linear;
(ii) non linear; (iii) seasonal; and (iv) hybrid (containing all
the three previous concepts). For each of the four cases,
30 time series containing 20000 observations were gener-
ated. Each dataset is composed of 10 concepts, each one
comprising 2000 observations. The linear time series were
simulated using an autoregressive (AR) process defined by:
xt = a1x(t−1)+a2x(t−2)+ ..+apx(t−p)+wt, where a1, .., ap
are parameters of the AR model and wt : t = 1, .., n is
a Gaussian white noise where the variables wt belong to
a normal distribution and are Independent and Identically
Distributed (IID).

The non linear time series used in the experiments were
generated by two non linear smooth models, given by [13]:
xt = [a1x(t−1) + a2x(t−2) + a3x(t−3) + a4x(t−4)] ∗ [1 −
exp(−10xt1)]−1 + wt and xt = a1x(t−1) + a2x(t−2) +[
a3x(t−1) + a4x(t−2)

]
∗ [1− exp (−10xt−1)]

−1
+ wt. The

seasonal linear time series were simulated by a linear model

using variables (s) indicating the number of periods of the
series. This model contains s seasons defined by xt =
mt+β(1+mod(t−1,s)) +wt where mt represents the tendency,
β(1+mod(t−1,s)) the seasonal factor and wt the Gaussian noise.

The parameters of the models were varied in order to
represent concept drift. Table I contains the investigated
parameters as well as the respective equations. In order to
simulate recurrent concepts, from the sixth concept onwards,
the concepts generated were repeated. Figure 3 illustrates some
time series containing the referred concepts.

TABLE I
PARAMETERS USED ON THE TIME SERIES MODELS

α p

Linear

1 {0.42, 0.28, 0.005} 3
2 {0.003, -0.005, 1.0} 3
3 {0.018, 0.95, 0.032} 3
4 {0.11, 0.32, -0.028, 0.038, 0.48} 5
5 {0.032, 0.41, -0.24, -0.22, 1.0} 5
6 {0.14, -0.29, 0.0025, 1.0} 4

α Model

Non linear

1 {0.55, 0.024, 0.41, 0.009} NL 1
2 {0.059, 0.086, 0.62, 0.21} NL 2
3 {0.47, 0.57, 0.14, -0.19} NL 1
4 {0.55, 0.024, 0.41, 0.009} NL 1
5 {0.059, 0.086, 0.62, 0.21} NL 2
6 {0.55, 1.0, 0.0028, -0.58} NL 2

β s

Seasonal

1 {34, 32, 30, 28, 26, 24, 22, 24, 26, 28, 30, 32} 12
2 {34, 26, 18, 10, 18, 26, 10} 7
3 {34, 26, 18, 10, 18, 26} 6
4 {34, 26, 18, 10, 2, -6, -14, -6, 2, 10, 18, 26} 12
5 {34, 10, -14, 10} 4
6 {38, 28, 18, 8, 0, -8,-18,-8, 0, 8, 18, 28} 12

α, β Model

Hybrid

1 {0.003, -0.005, 1.0} AR
2 {Last 3 observations} Seasonal
3 {0.059, 0.086, 0.62, 0.21} NL 2
4 {0.018, 0.95, 0.032} AR
5 {Last 3 observations} Seasonal
6 {0.55, 0.024, 0.41, 0.009} NL 1

Fig. 3. Examples of the four time series types used in this work.

Lastly, three real time series were experimented: Dow Jones
from January-29-1985 to May-12-2017, Nasdaq from May-
02-1985 to May-12-2017 and S&P 500 from May-15-1950
to May-12-2017. These time series are available on Yahoo
Finance 1.

V. RESULTS AND DISCUSSION

This section presents the results of the experiments that are
organized as follows: (i) concept drift detection evaluation; (ii)

1https://finance.yahoo.com/



time series forecasting ability in the presence of concept drift
evaluation and; (iii) time series forecasting ability for real time
series evaluation.

A. Concept drift detection evaluation
Figure 4 compares the proposed methods with the methods

DDM, ECDD and FEDD regarding concept drift detection.

Fig. 4. Evolution of the models in terms of false positive rate and detection
delay when varying the models parameters. Each value near the curve points
indicates the parameters used for the model. For each method, the red squares
present the minimum prediction error and the yellow triangles represent the
best trade-off between DD and FPR (i.e., the nearest points to the perfect
case, both, DD and FPR, equal to zero).

According to the analysis carried out in [25], the most
efficient method is the one whose the curve is nearer to the
coordinate (0, 0). This figure shows that the method IDPSO-
ELM-S (30) presented the better results in terms of concept
drift detection, substantially outperforming the methods ELM-
DDM e ELM-FEDD and slightly improving the results in
comparison to the ELM-ECDD.

Figure 5 shows the influence of the number of sensors on
the number of false alarms and a predefined error tolerance
parameter c = 0.75. The base detector is the case where the
number of sensors is equal to 1 (depicted in the first bar). It
is possible to conclude that increasing the number of sensors
decreases the number of false alarms. Furthermore, the drift
delay (DD) is not affected. This confirms the hypothesis that
monitoring several swarm particles is effective for improving
the number of false positive cases.

Fig. 5. Influence of varying the number of sensors in the false alarms number.

It is important to note that the proposed method based
on swarm behavior (IDPSO-ELM-B) did not yield a good

detection curve. It can be explained by the fact that the IDPSO-
ELM-B result is based in the average outcome of the swarm.
This approach consider good solutions, however, gives the
same importance to bad solutions in the swarm (particles),
i.e., particles presenting a high error level may substantially
affect the final result. On the other hand, the methods ELM-
ECDD and ELM-DDM monitor the error only for one model
that is supposed to be a good model.

B. Time Series Forecasting Ability in the Presence of Concept
Drift Evaluation

This experiment is aimed at validating the hypothesis that
using the concept drift detection improves the forecasting error
given that once a concept has changed it is possible to generate
new, and more suitable, models for the new concept. Table
II presents the results for the models with better forecasting
accuracy. This is the models represented by red squares in
figure 4. The best values, statistically tested, are presented in
boldface.

According to Table II, IDPSO-ELM-S(1) overcomes ELM-
ECDD (Figure 6 can better depict this performance). The
only difference between the methods is the use of swarms
for training the IDPSO-ELM-S(1). So, this demonstrates the
benefit of using swarms. Furthermore, this table also shows
that method IDPSO-ELM-B presented the best average result.
This can be explained by the low delay. As the concept drift
is detected earlier the model can be updated faster, thereby
avoiding using an outdated model for data of an unknown
concept. In addition, having high false alarms is outweighed by
the fact that the old model continues to be used until there are
new examples to train a new model. This enables the proposed
method to be robust to false alarms.

The Friedman test was conducted to confirm the results and
according to it, with a p-value of 2.57e−28 the null hypothesis
is rejected, i.e., the methods are statistically different. Further-
more, the Nemenyi test, presented in Figure 6, confirms that
the proposed methods are statistically better than the ELM-
ECDD, ELM-DDM and ELM-FEDD.

Fig. 6. Nemenyi test for the best models obtained for the artificial datasets.

C. Time Series Forecasting Ability for Real Time Series Eval-
uation

Table III presents the results obtained for the real time series
where the best results are in boldface. According to this table,



TABLE II
MEAN ABSOLUTE ERROR FOR THE ARTIFICIAL DATASETS

Parameter - best MAE
Dataset ELM-FEDD ELM-DDM ELM-ECDD IDPSO-ELM-B IDPSO-ELM-S (1) IDPSO-ELM-S (30)
Linear 0.02 (0.006) 0.02 (0.006) 0.024 (0.01) 0.018 (0.003) 0.019 (0.003) 0.02 (0.004)

Non Linear 0.045 (0.007) 0.045 (0.002) 0.045 (0.002) 0.044 (0.002) 0.044 (0.002) 0.043 (0.002)
Seasonal 0.066 (0.008) 0.066 (0.002) 0.067 (0.002) 0.064 (0.002) 0.064 (0.002) 0.064 (0.001)
Hybrid 0.066 (0.009) 0.056 (0.034) 0.07 (0.052) 0.034 (0.008) 0.04 (0.015) 0.04 (0.014)

the proposed methods outperform the remaining methods in
terms of Mean Absolute Error (MAE). This result is confirmed
by the Friedman test with p-value 1.32e− 72 which indicates
that the methods are different. Furthermore, Figure 7 details
how different the methods are. The Figure 7 indicates that the
methods IDPSO-ELM-B and IDPSO-ELM-S (30) statistically
presented better results than the methods ELM-ECDD, ELM-
DDM, ELM-FEDD and ELM.

Fig. 7. Nemenyi test for the best models obtained for the real datasets.

Figure 8 depicts some of the problems faced by the methods
in the real time series. The method ELM suffered from the first
problem in the figure. In this case, the method did not treat the
concept drift and hence is not updated. Therefore, the model
becomes obsolete. This problem can be seen as an extreme
case of miss-detections.

The problem 2 in Figure 8 depicts a case where a very
subtle concept drift takes place. In this case, the model remains
effective, i.e., the error rate remains acceptable. Such situations
may difficult the task of concept drift detection for methods
based on the model error, however, if the model remains
efficient it is not necessary to perform a new training phase.

A known issue about the ELM-FEDD is that it uses the
FEDD to monitor the concept drift phenomenon. Unlike the
other considered approaches, the FEDD is not concerned about
the model error, it is based solely on the time series values to
tackle the concept drift problem. It presents a good accuracy
regarding the concept drift detection, however, the model may
become inadequate even if a concept did not change. The
problem 3 in Figure 8 depicts this case. The detection module
is able to detect the concept changes, however, the model
degradation is not considered.

Another problem depicted in Figure 8 is the high rate of
false positive cases (problem 4). Usually, detection modules

based on the error such as ECDD and DDM are based only on
the error level to monitor a change of concept. This may often
not reflect a real concept change, since detection is dependent
on the level given to the detection parameter, which can result
in many false alarms. Assigning to this task an individual
analysis of various models as in the IDPSO-ELM-S method
may result in more robust decisions regarding the false alarm
rate.

VI. CONCLUSION

This work has introduced two PSO-based approaches for
time series forecasting for problems with concept drift. With
this aim, ELM neural networks partially trained by the IDPSO
swarm intelligence method are used as regressors models. The
methods explicitly inform the system when a concept drift
occurs so that the regressors models can be updated with
the new concept. The first method is called IDPSO-ELM-B
(behavior) and monitors statistics of the whole swarm. The
second one is called IDPSO-ELM-S (sensors) and monitors
statistics of a set of best particles.

The experiments reported in this paper compared the pro-
posed methods with other state-of-the-art methods, such as
ELM-ECDD and ELM-DDM and also to another method
developed in this work for comparison purposes, called ELM-
FEDD. The results showed that the proposed method IDPSO-
ELM-S(30) yielded the best concept drift detection accuracy
and a good predictive accuracy.

In addition, some important aspects were discovered and we
can conclude that: (i) using several sensors improves the FPR
rate without affecting the DD rate; (ii) the best concept drift
detection method does not necessarily implicates in the best
forecasting performance; (iii) low drift delay rates result in
better predictions, since the model detects the change earlier
and can update itself faster; and, (iv) using swarms to train
the weights of the first ELM network layer improves the
forecasting accuracy in relation to train using the canonical
method (i.e., randomly assignment of values).

Two possible future works are (i) using the entire swarm in
order to create an ensemble of forecast models and (ii) storing
old forecast models to consider recurring concepts and avoid
unnecessary retraining.
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