
[COR: alpha] [COR: alpha]Graphical Abstract
Multi-Objective Software Performance Optimisation at the Architecture Level Using Randomised
Search Rules

Youcong Ni,Xin Du,Peng Ye,Leandro L. Minku,Xin Yao,Mark Harman,Ruliang Xiao

Highlights
Multi-Objective Software Performance Optimisation at the Architecture Level Using Randomised
Search Rules

Youcong Ni,Xin Du,Peng Ye,Leandro L. Minku,Xin Yao,Mark Harman,Ruliang Xiao

• Rule methods exclude good solutions owing to preset parameters existed in rule.
• Metaheuristic-based methods lack explicability due to ignoring practical knowledge.
• Integrating rule with metaheuristic methods can obtain more explicable and higher quality solu-

tions.

Multi-Objective Software Performance Optimisation at the
Architecture Level Using Randomised Search Rules
Youcong Nia,c, Xin Dua,c,∗∗, Peng Yeb,∗, Leandro L. Minkud, Xin Yaoe,
Mark Harmanf and Ruliang Xiaoa
aCollege of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, China
bCollege of Mathematics and Computer, Wuhan Textile University, Wuhan 430200, China
cFujian Provincial Engineering Technology Research Center for Public Service Big Data Mining and Application, Fujian
Normal University, Fuzhou 350007, Fujian, China
dDepartment of Informatics, University of Leicester, Leicester, LE1 7RH, United Kingdom
eDepartment of computer science and engineering, Southern University of Science and Technology, Shenzhen, 518055,
China
fDepartment of Computer Science, University College London, London, WC1E 6BT, United Kingdom

ART ICLE INFO
Keywords:
Software Architecture
Performance Optimisation
Multi-objective Evolutionary
Optimisation
Randomised Search Rule

Abstract
Architecture-based software performance optimisation can help to find potential
performance problems and mitigate their negative effects at an early stage. To
automate this optimisation process, rule-based and metaheuristic-based perfor-
mance optimisation methods have been proposed. However, existing rule-based
methods explore a limited search space, potentially excluding optimal or near-
optimal solutions. Most of current metaheuristic-based methods ignore existing
practical knowledge of performance improvement, and lead to solutions that are
not easily explicable to humans. To address these problems, we propose a novel
approach for performance optimisation at the software architecture level named
Multiobjective performance Optimisation based on Randomised search rulEs
(MORE). First, we design randomised search rules (MORE-R) to provide expla-
nation without parameters while benefiting from existing practical knowledge of
performance improvement. Second, based on all possible composite applications
of MORE-R, an explicable multi-objective optimisation problem (MORE-P) is
defined to enlarge search space and enable solutions explicable to architectural
stakeholder. Third, a multi-objective evolutionary algorithm (MORE-EA) with
an introduced do-nothing rule, innovative encoding and repair mechanism is de-
signed to effectively solve MORE-P. The experiments show that MORE is able
to achieve more explicable and higher quality solutions than two state-of-the-art
techniques. They also demonstrate the benefits of integrating search-based soft-
ware engineering approaches with practical knowledge.

E-mail addresses: youcongni@foxmail.com (Youcong
Ni), xindu79@126.com (Xin Du), whuyp@126.com (Peng
Ye)

∗Corresponding author
∗∗Principal corresponding author
ORCID(s):

List of Acronyms
DoF Degree of freedom
LQN Layered Queueing Network
MORE Multi-objective performance Optimisation based

on Randomised search rulEs
MORE-R Randomized search rules
MORE-P MORE optimisation Problem
MORE-EA Evolutionary Algorithm to solve MORE-P
PB Performance Booster
PCM Palladio Component Model
SA Software Architecture

Youcong Ni et al.: Page 1 of 40

Short Title of the Article

1. Introduction
Performance is not only an important quality at-

tribute of software systems (Chen et al., 2018), but
also a vital factor to determine success or failure of
a system. Cost and risk can be prominently reduced
when performance problems (e.g., high resource util-
isation, long response time and low throughput) are
found and their negative effects are mitigated at early
stages of the software life cycle. With that in mind,
architecture-based software performance optimisation
(Aleti, A. et al., 2013; Rahmoun et al., 2017; Arcelli
et al., 2018b) has been an active research topic among
academia and industry in the field of software engineer-
ing and performance engineering. However, as soft-
ware systems increase in size and complexity, the num-
ber of different architectural elements impacting sys-
tem performance also grows. The values of these ar-
chitectural elements can change within a certain range
(e.g., the processing rate of a processor varies from
1MHz to 3MHz). The number of combinations of all
possible values for all these architectural elements is
potentially very large, i.e., the space of possible archi-
tectural choices impacting system performance is very
large. More importantly, this space is intrinsically dis-
continuous, because other quality attributes (e.g., avail-
ability and cost) may be considered as constraints and
the values of variable architectural elements can only
be changed within a certain range. Manually search-
ing for software architecture (SA) with good perfor-
mance in such a large and discontinuous search space
is time-consuming and costly. To increase the de-
gree of automation of architecture-based software per-
formance optimisation, diagnosis methods, rule-based
and metaheuristic-based methods have been proposed
on the basis of quality evaluation at the SA level in the
past decades.

Diagnosis methods (Cortellessa et al., 2014; Tru-
biani et al., 2014; Sanctis, M. D. et al., 2017) can
find potential performance problems and provide cor-
responding candidate improvement solutions accord-
ing to performance antipatterns (Smith and Williams,
2003). Even though the performance problems and the

candidate solutions can be automatically given by di-
agnosis tools, software architects still need to manu-
ally choose the best candidate solution and apply it to
the SA model to be optimised. For more automation,
rule-based and metaheuristic-based methods have been
proposed to automatically optimise SA. In rule-based
methods (Xu, 2012; Du et al., 2015b,a; Arcelli et al.,
2018b,a), architecture-based software performance im-
provement knowledge from performance anti-patterns
or design tactics (Koziolek et al., 2011a; Koziolek,
2014) can be formally described and automatically ap-
plied in the form of rules. Each rule contains precon-
dition and action. The precondition is responsible to
diagnose the performance problems by the predefined
threshold, and the action is used to modify each el-
ement incurring problems by a certain improvement
amplitude. Rule-based methods use optimisation al-
gorithms (e.g., GA (Du et al., 2015b,a) or tree-based
search strategies (Xu, 2012)) to search for the SAs with
good performance by combining the predefined rules.
In metaheuristic-based methods (Koziolek et al., 2013;
Rahmoun et al., 2017; Du et al., 2017; Sedaghatbaf and
Azgomi, 2019), the types of variable architectural el-
ements (e.g., component allocation, hardware alloca-
tion, hardware configuration and component selection)
are regarded as degrees of freedom (DoFs). Instead,
the instances of DoFs (abbr. DoFIs) are treated as op-
timisation parameters and the ranges of the parame-
ter values determine the search space. Accordingly,
architecture-based performance optimisation is consid-
ered as a parameter optimisation problem. Some evo-
lutionary algorithms (e.g. NSGA-II (Koziolek et al.,
2013), (Rahmoun et al., 2017) and DE algorithm (Du
et al., 2017)) have been proposed. Design strategies
were further introduced to improve the solution quality
and convergence rate (Koziolek, 2014). Metaheuristic-
based methods have obtained good optimisation results
even when taking other quality attributes (e.g., avail-
ability and cost) than performance into account.

As a new feature of architecture-based performance
optimization method, explicability is discussed in our
paper. For all kinds of methods, the optimisation re-

Youcong Ni et al.: Page 2 of 40

Short Title of the Article

sults can be explained according to the differences be-
tween the initial SA and the resulting SA. The differ-
ences can be indicated by the modified SA elements.
We claim that all methods have the trivial explicabil-
ity (See Section 3.2.1). However, due to the applica-
tion of the knowledge about architecture-based soft-
ware performance improvement, diagnosis and rule-
based methods can obtain optimisation results which
can be used to explain how the resulting SA is obtained
from the initial SA step by step. The cause of modifi-
cation for SA can be known by stakeholders. We claim
these methods have the full explicability (See Section
3.2.1).

Additionally, diagnosis methods, rule-based and
metaheuristic-based methods also have several limita-
tions:

(1) Diagnosis methods: although the optimisation
process can be conducted semi-automatically by using
the diagnosis tools iteratively, software architects still
have the role of selecting good candidate improvement
solutions and applying them. Manual selection and ap-
plication of solutions is time-consuming, error-prone
and non-trivial. And this has great effect on the perfor-
mance improvements obtained in each iteration. Local
optimal SAs may be obtained, especially when the con-
straints of multiple quality attributes and cost need to
be compromised.

(2) Rule-based methods: in each rule, threshold in
the precondition and improvement amplitude in the ac-
tion need to be set before optimisation by software ar-
chitects. Setting an appropriate threshold is rather hard
because it needs a deep understanding of performance
improvement knowledge and SA to be optimized in
hand. At the same time, the explanation with threshold
is not particularly convincing and reliable for architec-
tural stakeholders. What’s more, in each rule, the pre-
defined threshold and improvement amplitude can po-
tentially prevent optimisation algorithms from search-
ing larger space. As a result, the better solutions may
be excluded.

(3) Metaheuristic-based methods: most of these
methods ignore the performance improvement knowl-

edge represented by performance antipatterns and ar-
chitectural tactics, and SA is randomly modified based
on DoFIs to some extent. Therefore, it is difficult for
stakeholders to understand the optimisation results and
select SAs when trading off other quality attributes.

To address the above mentioned limitations, we
propose a new approach to performance optimisation
at the SA level based on randomised rules, named
Multi-objective performance Optimisation based on
Randomised search rulEs (MORE). MORE considers
performance, availability and cost as different optimi-
sation objectives and is composed of three novel com-
ponents:

(1) Randomised search rules (MORE-R) are de-
signed by introducing the maximum or minimum in-
dices in precondition and randomizing modifications
in action while also considering the other quality at-
tributes (cost and availability). Unlike rules in the di-
agnosis methods and rule-based methods, MORE-R do
not need to set any parameters (thresholds and improve-
ment amplitudes) in rules and can improve representa-
tions of performance antipatterns or design tactics de-
rived from practical experiences. Thus, MORE-R not
only is easier to be used by software architects, but also
provides explanation without parameters.

(2) An explicable multi-objective optimisation
problem (MORE-P) is used to formulate architecture-
based performance optimisation using MORE-R. In
MORE-P, the explicability and its three metrics of
AvgNumMdf , avgNumRul+ and avgNumMdf+
are first proposed. Furthermore, an explicable solution
is defined as a variable-length sequence of rule applica-
tions satisfying some constraints, considering all pos-
sible composite applications of rules (e.g., the count,
order and modified elements of each rule application).
This can help to not only provide better explanations for
optimisation results to architectural stakeholders, but
also enlarge search space to obtain better solutions.

(3) A multi-objective evolutionary algorithm
(MORE-EA) is designed to efficiently solve MORE-P.
In MORE-EA, an explicable solution is represented as
a fixed-length encoding by introducing a do-nothing

Youcong Ni et al.: Page 3 of 40

Short Title of the Article

rule. The fixed-length encoding can reduce the
complexity of evolutionary operators compared to
a variable-length one. In addition, our evolutionary
operators with repair mechanism can potentially
improve the efficiency of MORE-EA and explanations
for optimisation results.

We applied MORE to six problem instances with
different scale and categories in order to comparewith a
representative metaheuristic-based method (PCM) and
a typical rule-based method (PB). Our experimental re-
sults show that:

(1) Compared to PCM, MORE obtained explica-
ble solutions of significantly better quality (p-value <<
0.05 based on Wilcoxon rank-sum tests (Arcuri and
Briand, 2011)) with high Vargha-Delaney Â12 (Gris-
som and Kim, 2005) effect size in all compared exper-
iments when optimising performance, cost and avail-
ability. At the same time, MORE obtained significantly
better (p << 0.05) explanations for results in terms
of the metric AvgNumMdf (the average number of
modifications to the initial SA), with very large Vargha-
Delaney Â12 effect size. The metric AvgNumMdf
was decreased by more than 17.5%, on all compared
problem instances.

(2) MORE retrieves a set of explicable solu-
tions with different trade-offs among quality metrics,
whereas PB retrieves a single solution. On average, in
all compared experiments, more than 40% of the so-
lutions from MORE’s set had significantly better re-
sponse time and cost (p << 0.05) than PB’s single re-
trieved solution, with very large Vargha-Delaney Â12
effect size. Meanwhile, for the better solutions, MORE
obtained significantly better (p << 0.05) explanations
for results in terms of the two metrics avgNumRul+
and avgNumMdf+ (the average number of rule ap-
plications in the set of optimal solutions, and the av-
erage number of modifications in rule applications in
the set of optimal solutions). The avgNumRul+ and
avgNumMdf+ were improved by at least 33% and
35% respectively.

These experimental results show that MORE is
able to achieve more explicable and higher quality so-

lutions than PCM and PB. They also demonstrate the
benefit of integrating search-based software engineer-
ing approaches with practical knowledge.

The rest of this paper is organised as follows.
Section 2 introduces the background on architecture-
based quality evaluation, architectural tactics for per-
formance improvement and the methods compared
against MORE. Section 3 presents our proposed ap-
proach MORE, including its randomised search rules,
MORE-P and MORE-EA. Section 4 explains the de-
sign of our experiments. Section 5 presents our ex-
perimental results and analysis. Section 6 presents the
threats to validity. Section 7 discusses the state-of-the-
art in architecture-based performance optimisation and
pinpoints shortcomings of current methods. Section
8 presents our conclusions and discusses opportunities
for future work.

2. Background
In this section, architecture-based quality evalua-

tion, architectural tactics for performance improvement
and the compared methods will be introduced.
2.1. Architecture-based quality evaluation

A few architecture-based quality evaluation meth-
ods adopting well-known models and tools have been
proposed in the past several years. These methods can
be used during the process of optimising performance.
In this section, we present the existing architecture-
based quality evaluation methods with respect to per-
formance, reliability and availability, and cost.
2.1.1. Performance evaluation

Performance evaluation is necessary for
architecture-based software performance optimisation
to acquire performance information. Architecture-
based performance evaluation methods (Brosig et al.,
2015) can automatically transform SAs, which are
described in various languages or tools (e.g., UML2,
AADL, PCM), into performance models, such as
queueing network (Kounev, 2006), layered queueing
network (LQN) (Tribastone, 2013), stochastic petri
net (Distefano et al., 2011), stochastic process algebra

Youcong Ni et al.: Page 4 of 40

Short Title of the Article

(Tribastone et al., 2012). The performance models are
then used to create performance reports from which
a few performance metrics (e.g., resource utilisa-
tion, response time or throughput) can be obtained.
Therefore, architecture-based performance evaluation
methods can support performance optimisation at the
SA level to get necessary performance information.

Although different methods use different models,
the core processes of performance evaluation are simi-
lar. First, a performance model (e.g., LQN) is derived
from a SA model by use of a specific extractor. Then,
a performance evaluation report is generated by using
a model-related solver. Finally, the performance index
values of software and hardware elements such as re-
sponse time, throughput and resource utilisation, are
acquired from the evaluation report. To compare with
PCM and PB (Section 2.3), we take LQN as the perfor-
mance model in this paper.
2.1.2. Reliability and availability evaluation

From an architecture point of view, reliability and
availability are both operational qualities of a software
system. Several measures are traditionally used for
availability and reliability, such as mean time to fail-
ure, mean time to repair and failure rate (Immonen
and Niemelä, 2008). Two categories of techniques
have been proposed for architecture-based reliability
and availability evaluation (Gokhale, 2007):

• Path-based approaches – in these approaches,
several execution paths through the application
are enumerated. Each path starts at the initial
component and ends at the final component. The
reliability of each path is obtained as a product
of the reliabilities of the components along the
path.

• State-based approaches – in these approaches,
the probabilistic control flow graph of the appli-
cation is mapped to a state space model. The
state space model used to represent the SA can
be a discrete-time Markov chain, a continuous
time Markov chain or a semi-Markov process.

However, in most path-based and state-based ap-
proaches, the influence of system usage profile (i.e.,
sequences of system calls and values of parameters
given as an input to these calls) on the control and
data flow throughout the architecture is not explic-
itly modelled. The unavailability of the underlying
hardware resources and communication failures across
network links is usually not considered either. To
eliminate these limitations, Brosch et al. (2012) pro-
posed a novel reliability and availability evaluation ap-
proach based on the Palladio ComponentModel (PCM)
(Becker et al., 2009). The approach (1) considers in-
dividual architectural impact factors on reliability, (2)
explicitly models the component usage profile and ex-
ecution environment, and (3) provides tools integrated
into PCM platform to support the transformation of SA
into a continuous time Markov chain and solve it to ob-
tain reliability and availability indices. Koziolek’s ap-
proach is adopted by our compared method (Koziolek
et al., 2013) and also used by our approach to evaluate
software availability through its architecture.
2.1.3. Cost evaluation

For architecture-based cost evaluation, develop-
ment effort and delivery cost can be estimated from
the structural, behavioural and deployment views in an
early phase of software lifecycle by using methods such
as COCOMO II (Boehm et al., 2009) and COSMIC
(ISO, 2011). Machine learning approaches (Shepperd
and Schofield, 1997;Minku and Yao, 2014; Sarro et al.,
2016) could also potentially be used for that. A few
architecture-based approaches (Poort and Vliet, 2015)
have been proposed to estimate cost for complex indus-
trial systems, which consist of multiple substantially
different software, infrastructure and often organisa-
tional elements, integrated to deliver a coherent set of
services. Some research (Slot, 2010) shows that us-
ing architectural information in cost estimation is cor-
related with higher accuracy of budget prediction. This
is because, in addition to functionalities, quality at-
tributes (i.e., performance, availability, etc.) are also
considered. However, architecture-based performance
optimisation approaches usually determine the trade-

Youcong Ni et al.: Page 5 of 40

Short Title of the Article

off between cost and performance by using simplified
cost estimation methods. To provide a fair comparison
between existing work with ours, we adopt the same
cost estimation method as the compared approaches in
this paper.
2.2. Architectural tactics for performance

improvement
Architecture-based performance knowledge accu-

mulated by research and practice over the past decades
has been systematically summarised in 12 performance
anti-patterns (Navarro et al., 2013; Smith andWilliams,
2003; Meier et al., 2004) and 17 performance improve-
ment tactics (Koziolek et al., 2011a). These tactics
integrate the anti-patterns with the performance im-
provement guidelines proposed byMicrosoft (Koziolek
et al., 2011a; Koziolek, 2014), and can be used to find
potential performance problems and give best practice
solutions.

Considering that SA usually describes the struc-
ture, behaviour and deployment of a system, we reor-
ganise the tactics from Koziolek (2014) into three per-
spectives as shown in Figure 1. The 6 tactics in the
deployment view involve the experience about the al-
location of components and the capability of resources.
The 6 tactics in the structure view are relevant to the
knowledge which helps software architects to modify
the structure of SA for better performance. The 5 tac-
tics in the behaviour view can enhance performance by
adjusting interaction behaviours, such as asynchronous
communication, concurrency and parallelisation, and
so on.

Furthermore, as mentioned in (Smith and
Williams, 2003) and (Koziolek, 2014), software
architects are encouraged to apply architectural tactics
and remove anti-patterns to obtain better results in a
process of architecture-based performance improve-
ment. However, it is still a difficult problem how to
combine architectural tactics automatically to obtain
the best results. In this paper, we try to address this
difficult problem.

Figure 1: Architectural tactics for performance im-
provement

2.3. Overview of compared methods
In this section, we firstly give the reasons for selec-

tion of the compared methods. Then they are briefly
introduced, respectively.
2.3.1. The reasons for selecting the compared methods

Among a variety of existing metaheuristic-based
methods (See Section 7.3) and rule-basedmethods (See
Section 7.2), the representative metaheuristic-based
method (Koziolek et al., 2013) based on Palladio Com-
ponent Model and the typical rule-based method (Xu,
2012) based on the tool named Performance Booster
(PB) are selected as the compared methods. In this pa-
per, the comparedmethods are abbreviated as PCM and
PB, respectively. The reasons for selecting them are
given below:

(1) PB and PCM methods use Unified Modeling
Language (UML) and Palladio Component Model to
describe SA, respectively. UML is a de facto standard
modeling language in the field of software engineer-
ing. While Palladio Component Model is widely ap-
plied and has become a commercial tool.

(2) Most of the problem instances used by PB and
PCMare from real world applications or systems of dif-
ferent categories. And their complexity and scale are
different. As a result, this can guarantee the diversity
of problem instances in order to obtain the convincing
experimental results. More details can be found in Ta-
ble 7.

(3) PB (Xu, 2012) and PCM (Koziolek et al., 2013;

Youcong Ni et al.: Page 6 of 40

Short Title of the Article

Koziolek, 2014) methods outperform other methods in
their respective categories. Furthermore, both of them
balanced between performance and other quality at-
tributes (such as availability and cost) during optimi-
sation.
2.3.2. PCM method

PCM method (Koziolek et al., 2013) can optimise
QoS of component-based software systems with the
objectives of minimising response time, maximising
availability and minimising cost. It considers three
types of DoFs- allocation of components, server con-
figuration and component selection. The different pos-
sible values for these DoFs form the search space. The
optimisation process is divided into analysis optimisa-
tion and evolutionary optimisation. The analysis opti-
misation takes a component-based architecture speci-
fied by a PCM instance as an initial candidate and opti-
mises it based on a simplified procedure. This simpli-
fied procedure investigates a limited search space and
simplified evaluation models, but is fast to run. It re-
sults in a set of different architectures with different
trade-offs between the three different objectives. This
set is then used as candidate solutions when initialising
a multi-objective evolutionary algorithm, which fur-
ther optimises the architectures denoted by candidate
solutions through investigating a larger search space.
The evolutionary algorithm uses LQN for deriving the
response time, discrete-time Markov chain for obtain-
ing availability, and predefined cost model to evaluate
the total cost. In this model, both hardware resources
and software components are needed to annotate their
costs of ownership and these costs were added together
to form the total cost. Especially, the hardware resource
cost is in proportion to the processing rate of processor.
Furthermore, if a server specified in the model is not
used, i.e. no components are allocated to it, its cost is
not added to the overall cost.
2.3.3. PB method

PB (Xu, 2012) is a rule-based automated software
performance optimisation method based on SA models
described by UML with Schedulability, Performance

and Time (SPT) profiles (OMG, 2017). In PB method,
a few rules for performance optimization are defined
based on performance antipatterns. PB can help to find
and remove the performance flaws (i.e., bottlenecks and
long execution paths) at the level of LQN model. In
addition, PB method adopted tree-based search optimi-
sation algorithms. Meanwhile, the cost is regarded as
a design constraint with respect to performance opti-
misation. The performance improvement rules, perfor-
mance optimisation algorithm and calculation of cost
used by PB method are briefly explained below.

(1) Performance improvement rules
Two categories of rules are defined based on LQN

model. The first category serves performance diagno-
sis and improvement for the LQN model. The second
is used to describe how the changes in LQN model are
interpreted as changes in the UML design model with
SPT annotation. As the second category of rules is used
only for synchronising the LQN and UML models, we
discuss only the first category in this paper.

Each rule contains precondition and action. For ex-
ample, the rule "More hardware" is stated as "If the util-
isation rateUp of processorP is greater than a threshold
Usat, then P ’s multiplicity is set to Mp.". And Mp is
equal to (1 + Δ) ∗ M ′

p and not greater than Mmax,p,
where M ′

p is the original multiplicity of P ; Δ and
Mmax,p represent improvement amplitude needed to set
and the upper bound of P ’s multiplicity, respectively.
Based on Usat in the precondition, the processors that
have bottleneck problem can be found. Meanwhile, the
action modifies P ’s multiplicity. From the example, it
can be seen that the thresholdUsat and the improvement
amplitude Δ can influence the result of application of
the rule "More hardware". However, they need to be
set by software architects before optimisation, which is
a non-trivial task because it needs a deep understand-
ing of performance improvement knowledge and SA to
be optimized in hand.

In addition, the performance improvement rules,
which are related to seven DoFs (redeployment, mul-
tiplicity of processor, multiplicity of software compo-
nent, call across network, partition, demand for proces-

Youcong Ni et al.: Page 7 of 40

Short Title of the Article

sor and asynchronous communication) for LQNmodel,
are divided into configuration improvement rules and
design improvement rules. The former rules are used
to find the bottleneck problems caused by unreason-
able utilisation or allocation of resources and eliminate
these problems by means of resource reconfiguration.
The latter rules are used to discover long path problems
(longer response time on the execution or internal path
than the required one) caused by inappropriate designs.

(2) Optimisation algorithm
The optimisation algorithm uses the above men-

tioned performance improvement rules and adopts tree-
based strategy to search the best solution. In Fig-
ure 2, r1, r2 and r3 are the configuration improvement
rules. And r4, r5, ..., r7 represent the design improve-
ment rules, respectively. The tree-based strategy is de-
scribed as a search tree and divided into several search
rounds. It starts from the root node LQN0 extracted
from the initial software architecture SA0. Firstly, in
the configuration space, the sequence of configuration
improvement rules is repeatedly applied to LQN0, un-
til no further performance improvement is obtained. At
this time, a candidate model can be obtained. Then, a
search round for this candidate model starts. In Figure
2, the dashed rectangle represents a search round.

In a search round, each of design improvement
rules is applied in parallel to this model, resulting in
a set of improved models. Each improved model is fur-
ther optimised by repeatedly applying the sequence of
configuration improvement rules. So, a set of candi-
date models is obtained and then evaluated in the end of
search round. There are two strategies to decide which
model will be selected to be the start model for the next
search round. One is cost first and the other is response
time first. In cost first, the candidate model with the
minimum accumulative cost from LQN0 to the cur-
rent model is selected. In response time first, the can-
didate model with the minimum response time is se-
lected. The whole search process terminates when the
performance indices satisfy the requirements or cannot
be improved. The PB methods with cost-first and re-
sponse time-first will be denoted by PBcost and PBtime

in this paper, respectively.

Figure 2: PB method’s search process

(3) Cost estimation
The cost of configuration improvements is defined

as zero, whereas the cost of design improvements and
their corresponding implementation effort is computed
as a proportion of the improvements obtained for LQN
elements. The motivation for considering cost as a pro-
portion of the improvements is illustrated with the fol-
lowing example. Consider that a service is designed
to respond to a request in 1 ms. In order to reduce the
response time by 20%, a more efficient algorithm may
need to be selected and much greater cost may need to
be paid than for reducing the response time by 10%.

The cost of design improvements and their imple-
mentation effort consider three factors. First, the action
in each design improvement rule is defined to modify
problematic elements by the predefined proportion of
the initial value. The larger the predefined proportion,
the larger the cost. Second, there are possibly differ-
ent rules to improve a given performance problem (e.g.,
long path). Different rules may require different efforts,
which are represented by the weights given by the PB
method. Third, when a design improvement rule is ap-
plied to different LQN models, the number of modi-
fied elements may be different. The more elements are
modified, the larger the cost. A more formal descrip-
tion of cost computation in the PB method is given be-
low.

The improvement cost of the root node equals to

Youcong Ni et al.: Page 8 of 40

Short Title of the Article

zero (Eq.(1)), because none of the rules has been used.

cost(root) = 0 (1)
For a non-root node nodei, the cost is calculated

from its parent node using Eq.(2):

cost(nodei) =
n
∑

k=1
wrj ∗ amplk (2)

where n is the number of LQN elements of nodei’s par-
ent node that were modified to generate nodei using a
given rule rj ; amplk is the improvement amplitude of
the ktℎ LQN element; and wrj represents a unit cost
and is defined by the architects when the rule rj is ex-
ecuted and SA is modified by a unit of improvement
amplitude.

The improvement cost of path l from the root node
is defined using Eq.(3). It is regarded as an accumula-
tive cost and used by PB method.

cost(l) =
∑

nodei∈l
cost(nodei) (3)

3. Our proposed approach MORE
This section presents our approach MORE, includ-

ing randomised search rules (MORE-R, Section 3.1),
MORE optimisation problem (MORE-P, Section 3.2)
and its solving algorithm (MORE-EA, Section 3.3).
3.1. Randomised search rules (MORE-R)

In this subsection, definition of randomised search
rules is presented firstly. Then selection and addition of
randomised search rules when considering other qual-
ity attributes are given. Finally, two examples of selec-
tion and addition of rules for MORE are shown.
3.1.1. Definition of randomised search rules for

architecture-based performance improvement
Based on architectural tactics for performance im-

provement in Figure 1, randomised search rules are de-
signed and shown in Tables 1, 2 and 3 where each rule
identified by a number contains precondition and ac-
tion, and the last column indicates whether the rules

need performance information from a performance
evaluation report.

To alleviate the problems incurred by threshold in
the precondition and improvement amplitude in the ac-
tion in rule-basedmethods (see Section 2.3.3), themax-
imum or minimum indices and randomised modifica-
tions are introduced to define precondition and action
of a randomised search rule, respectively. These in-
dices are related to design elements (shown in Rule 7,
Rule 8, Rule 12) and performance information (shown
in Rule 1, Rule 2, Rule 3, Rule 4, Rule 5, Rule 6, Rule 9,
Rule 11, Rule 14, Rule 16). They are automatically set
by analyzing the SA to be optimized or checking its per-
formance evaluation report. For example, the precon-
dition of Rule 1 is responsible for picking up the pro-
cessor P with highest utilization in a SA by checking
the performance evaluation report. The precondition
of Rule 7 is used to locate the call cal whose number is
the maximum among all calls across the network in a
SA by analyzing the structure of the SA. The precondi-
tion is used to locate the architectural element incurring
performance problems based on the current SA and its
performance information. Instead, the action can ran-
domly generate modifications to be applied to the cur-
rent SA if the precondition is satisfied.

These rules inMORE are organised by three views:
deployment, structure and behaviour. Table 1 shows
the deployment rules. They can address hardware and
software resource bottlenecks by randomly reallocat-
ing resources, adding multiplicity or instances of re-
sources, increasing the processing rate of resources,
etc. Table 2 shows the structure rules. These rules
can be applied to improve utilisation, throughput and
response time by randomly changing the structural el-
ements of SA, such as the port of component, connec-
tion and responsibility assignment. Table 3 shows the
behaviour rules. They can reduce response time by ran-
domly modifying behaviour elements, which can intro-
duce more asynchronous communication, concurrency
and parallelisation, etc.

Youcong Ni et al.: Page 9 of 40

Short Title of the Article

Table 1
Randomised search rules in deployment view. Column ‘requires performance report’
indicates whether the rule needs a performance evaluation report to decide whether its
conditions are satisfied.

No. Tactic
Name

Randomised search rule Anti-patterns
Relieved by the
Rule

Requires
Performance
Evaluation Reportcondition action

Rule 1 Component
Reallocation

Processor P has the highest
utilisation rate and a set of
components Coms are deployed
on P .

Select a component from Coms
at random and deploy it on the
processor with lowest utilisation
rate.

Extensive
Processing Yes

Rule 2 Component
Replication

Component C not only has the
highest utilisation rate but also
is the most accessed by other
components.

Add new instances of C at
random, respecting an upper
bound on the number of in-
stances of C, and randomly de-
ploy these new instances on
available servers.

One-Lane
Bridge Yes

Rule 3 Faster
Hardware

Processor P has the highest
utilisation rate.

Increase the processing rate of
P randomly, respecting an up-
per bound on the processing
rate of P .

Extensive
Processing Yes

Rule 4 More
Hardware

Processor P has the highest
utilisation rate.

Increase the multiplicity of P
randomly, respecting an upper
bound on the multiplicity of P .

One-Lane
Bridge Yes

Rule 5 Localisation
Component C1 has the high-
est utilisation rate and interacts
with a set of component Coms.

Randomly select a component
C2 from Coms and redeploy C1
on the processor where C2 is.

Extensive
Processing Yes

Rule 6 Resource
Pooling

Passive resource R with the
highest waiting delay.

Increase the capacity of R ran-
domly, respecting an upper
bound on the capacity of R.

One-Lane
Bridge Yes

3.1.2. Selection and addition of randomised search
rules when considering other quality attributes

(1) Selection of rules
Selection of randomised search rules depends on

Architectural Description Language (ADL) used to de-
scribe SA. Different ADLs have different syntax to de-
scribe SA with respect to structure, behaviour and de-
ployment at different abstract levels. Furthermore, for
the SA described in a specific ADL, only a few types of
variable architectural elements can be defined as DoFs
for performance improvement. Therefore, only a sub-
set of the 17 randomised search rules can be selected
due to limited description capability of an ADL and the
permitted DoFs in the process of performance optimi-
sation. Specifically, from Tables 1, 2 and 3, we select
the rules whose actions are dependent of the permitted
DoFs. Additionally, it’s worth noting that one DoF can
correspond to multiple rules.

(2) Addition of rules
The selected rules might potentially influence other

quality attributes such as availability and cost. In or-
der to enable the exploration of more trade-offs be-
tween performance and other quality attributes, the ad-

ditional randomised search rules may be designed to
improve other quality attributes and degrade perfor-
mance. There are two cases for designing the additional
rules.

One case is for the negative influence on other qual-
ity attributes incurred by the action of a selected rule in
the existence of empty servers in SA. By investigating
17 randomised search rules, we find that only Rule 1
falls into this case. Rule 1 improves performance by re-
allocating a component from the server with the highest
utilisation rate to the server with the lowest utilisation
rate. When Rule 1 is executed and the empty servers
exist in SA, a component must be reallocated to one of
empty servers because the empty servers have the low-
est utilisation. An empty server becomes the server that
holds only one component. If this definitely degrades
one of other quality attributes, it is necessary to de-
sign an additional rule to redeploy the component from
this server to a permitted non-empty server so that this
server becomes an empty server again. The additional
rule is designed as Rule 18 shown in Table 4. Another
case is when a selected rule whose action can deter-
ministically degrade one of other quality attributes, an

Youcong Ni et al.: Page 10 of 40

Short Title of the Article

Table 2
Randomised search rules in structure view. Column ‘requires performance report’ in-
dicates whether the rule needs a performance evaluation report to decide whether its
conditions are satisfied.

No. Tactic
Name

Randomised search rule Anti-patterns
Relieved by the
Rule

Requires
Performance
Evaluation Reportcondition action

Rule 7 Batching

Cal is a call across the network.
The number of Cal is the maxi-
mum among all calls across net-
work and is greater than 1.

Randomly reduce the number
of Cal and increase the size of
the data transmitted in Cal.

Empty Semi
Trucks

No

Rule 8 Caching
Cal is a call. The number of
Cal is the maximum among all
calls and is greater than 1.

Create an arbitrary number of
cache components for Cal.

Extensive
Processing and
Circuitous
Treasure Hunt

No

Rule 9 Partition Component C1 has the highest
utilisation rate.

Create a component C2 and
randomly move several opera-
tions from C1 into C2 , and
these operations don’t interact
with the remaining operations
in C1.

God
Class/Component
and Extensive
Processing

Yes

Rule 10
Coupling
and
Cohesion

Cals is a set of calls and the
number of each call in Cals is
greater than 1.

Select a call Cal from Cals ran-
domly and merge the two com-
ponents which are the caller
and callee of Cal.

Empty Semi
Trucks

No

Rule 11

Internal Data
Structures
and
Algorithms

Component C has the highest
utilisation rate and there is a
set of components Coms that
can replace C

Select a component C2 from
Coms randomly and replace C
with C2.

Extensive
Processing Yes

Rule 12
Remote Data
Exchange
Streamlining

Cal is a call across network and
the size of transferred data by
Cal is the largest.

Create two components C1 and
C2 to compress and decompress
data, respectively. The com-
pression rate of component C1
is set arbitrarily. C1 and C2 are
used for the caller and callee of
Cal.

Empty Semi
Trucks

No

additional rule must be designed by defining its precon-
dition and action that are opposite to the counterparts
of this selected rule, as mentioned by (Koziolek et al.,
2011a).
3.1.3. Examples of selection and addition of

randomised search rules for MORE
Selection and addition of rules for MORE are in-

fluenced by four factors, including ADL, DoFs, other
quality attributes and their own evaluation methods.
However, it is impossible to demonstrate all possible
combinations of four factors. To serve the comparative
experiments (See Section 4.4), we choose PCM and PB
as two references to decide the four factors for MORE.
Therefore, we consider the same four factors as the ref-
erenced method.

(1) Selection and addition of rules for MOREwhen
using PCM as a reference

In PCM, allocation of components (AC), server
configuration (SC) and component selection (CS) have
been considered as three types of DoFs. Correspond-

ingly, we find that Rule 1 and Rule 5 are related to AC,
and Rule 3 is relevant to SC. The three rules can be se-
lected from Table 1. Moreover, Rule 11 associated to
CS can be selected from Table 2.

Based on the two cases for designing additional
rules in Section 3.1.2, we need to design additional
rules for Rule 1 and Rule 3, respectively, after inves-
tigating the four selected rules. According to the first
case, the action of Rule 1 makes an empty server be-
come a non-empty server. This increases cost because
the cost of the non-empty server must be added to the
overall cost based on cost evaluation used in PCM (See
Section 2.3.2). So, Rule 18 can be used to reduce
cost because this non-empty server becomes an empty
server. For the second case, Rule 19 in Table 4 is de-
signed for Rule 3. Specifically, the precondition of Rule
3 is used to find the processor with the highest utilisa-
tion rate, and the action of Rule 3 is responsible to ran-
domly increase processing rate of the processor. Based
on cost evaluation used in PCM (See Section 2.3.2),
cost must rise as the processing rate of processor in-

Youcong Ni et al.: Page 11 of 40

Short Title of the Article

Table 3
Randomised search rules in behaviour view. Column ‘requires performance report’
indicates whether the rule needs a performance evaluation report to decide whether its
conditions are satisfied.

No. Tactic
Name

Randomised search rule Anti-patterns
Relieved by the
Rule

Requires
Performance
Evaluation Reportcondition action

Rule 13 Asynchronous
Communication

The response time of service
Srv is greater than an expected
value and there is a set of syn-
chronous calls Cals that can
be changed into asynchronous
calls in Srv’s call path.

Select one or more calls from
Cals randomly and change
them into asynchronous calls.

Concurrent
Processing
Systems

Yes

Rule 14 Concurrency
Parallelisation

Component C has the highest
utilisation rate and has a thread
pool.

Increase the size of C’s thread
pool randomly, respecting an
upper bound.

Concurrent
Processing
Systems

Yes

Rule 15 Fast Pathing

The response time of service
Srv is greater than an expected
value and Srv contains multi-
ple execution paths denoted by
Patℎs.

Randomly select a path whose
response time is not the longest
in Patℎs, and introduce ad-
ditional components for this
path.

Extensive
Processing Yes

Rule 16 Locking
Granularity

Component C has the highest
utilisation rate and there is a
set of actions Acs which can re-
duce the time of acquiring and
releasing lock in C’s internal be-
haviours.

Select several actions from Acs
randomly and modify the be-
haviours of acquiring and re-
leasing lock in them.

One-Lane
Bridge Yes

Rule 17 State
Management

Component C1 is a state com-
ponent and there is a group of
components Coms that can re-
place C1.

Randomly select a component
C2 from Coms and replace C1
with C2.

One-Lane
Bridge and
Excessive
Dynamic
Allocation

No

creases. Therefore, Rule 19 decreases processing rate
of processor with the lowest utilisation rate because we
expect that costs are saved, while performance is de-
graded as slightly as possible.

Table 4
The additional randomised search rules for MORE
when using PCM as a reference

No.
Randomised search rule

condition action

Rule 18 Only one component C is
deployed on Server S

Randomly redeploy C from S
to one of permitted non-empty
servers

Rule 19 Processor P has the lowest
utilisation rate

Decrease the processing rate of
P randomly, respecting a lower
bound on the processing rate of P

(2) Selection and addition of rules for MOREwhen
using PB as a reference

In PB, redeployment, multiplicity of processor,
multiplicity of software component, call across net-
work, partition, demand for processor and asyn-
chronous communication have been considered as
seven types of DoFs. Thus, based on the seven DoFs,
Rule 1, Rule 4, Rule 6, Rule 7, Rule 9, Rule 11 and Rule
13 are selected from Tables 1, 2 and 3 correspondingly.

No additional rules are designed for MORE when

PB is used as a reference. The reasons are given as fol-
lows. Only the tradeoff between performance and cost
should be considered in MORE because the annotation
related to availability has not been specified in PB. Cost
in PB is evaluated as an accumulative cost and is based
on the use of each rule in the process of optimisation.
However, we cannot predict which of the seven selected
rules will be used during optimisation and there is no
deterministic degradation of cost incurred by these se-
lected rules. Moreover, although Rule 1 is selected for
MORE, cost evaluation of PB does not consider hard-
ware resource cost so that Rule 18 is not regarded as an
additional rule.
3.2. The MORE optimisation problem (MORE-P)

In this subsection, the related concepts to explica-
bility are introduced. And based on these concepts, we
give the novel formulation of architecture-based perfor-
mance optimisation using randomised search rules.
3.2.1. The related concepts to explicability

(1) The explicability
Explicability is a new feature of architecture-based

performance optimization method proposed in our pa-

Youcong Ni et al.: Page 12 of 40

Short Title of the Article

per. It is used to characterize the ability of optimiza-
tion method to provide feedback to stakeholders. All
kinds of methods have the trivial explicability because
the optimisation results can be explained according to
the difference between the initial SA and the resulting
SA. Instead, rule-based methods have the full expli-
cability because performance improvement knowledge
can be applied to explain the optimisation results to
stakeholders. Consequently, the stakeholders can un-
derstand how the resulting SA is obtained from the ini-
tial SA step by step.

The reason why rule-based methods have the full
explicability is illustrated as follows.

• Rules are used to represent performance im-
provement knowledge which can find potential
performance problems and give best practice so-
lutions. The precondition of rule is responsible
to diagnose the performance problems in a con-
text including a SA and its performance informa-
tion, while the action of rule is used to modify
SA elements incurring problems based on best
practice solutions.

• A rule application can be used to explicitly rep-
resent that a rule is applied once in a context.
It potentially includes the applied rule, its exe-
cution context, and the corresponding modifica-
tions to SA elements. So, a rule application not
only indicates why to modify SA and which ar-
chitectural elements need to be modified by the
precondition of rule, but also decides the results
of modifications by the action of rule.

• Any process of obtaining the resulting SA from
the initial SA can be regarded as continuous ap-
plications of rules. Naturally, these continuous
applications can be properly represented by a
sequence of rule applications when the context
of each rule application in this sequence is cor-
rectly built based on its precursor one, except for
the first rule application. After an optimisation
result is represented as a sequence of rule appli-

cations, it can be well explained to the architec-
tural stakeholders step by step.

Instead, metaheuristic-based methods, as represen-
tative black-box methods, have only the trivial explica-
bility, due to absence of explanation for causes of mod-
ifications.

(2) The metrics of explicability
In our paper, explicability is embodied by ex-

planations for optimisation results. Based on op-
timisation results, different metrics, AvgNumMdf ,
avgNumRul+ and avgNumMdf+, are designed to
achieve comparison on explicability between different
methods. ThemetricAvgNumMdf , which represents
the number of modifications to the initial SA in the set
of optimal solutions, is proposed to measure trivial ex-
plicability. So, this metric is used for comparison be-
tween a rule-based method and a metaheuristic-based
method, or between two metaheuristic-based methods.
The metrics of avgNumRul+ and avgNumMdf+ are
designed to evaluate the number of rule applications
and the number of modifications in rule applications in
the set of optimal solutions, respectively. The two met-
rics are both used for comparison between two rule-
based methods because the trivial and the full explica-
bility should be considered together.

Meanwhile, the two metrics of avgNumRul+ and
avgNumMdf+ are encouraged to be used together in
order to avoid two situations that have potentially nega-
tive influence on the explainations for the results. In the
first situation, when avgNumRul+ is regarded as sole
metric, themethodwith smaller value of avgNumRul+
is better. This means the results obtained by this
method include fewer rule applications. However, it is
possible that more modifications are generated by these
rule applications. In the second situation, given that
avgNumRul+ is sole metric, the method with smaller
value of avgNumMdf+ is better, but the results ob-
tained by this method possibly include more rule ap-
plications.

The three designed metrics are shown in Table
5, where rule-based method and metaheuristic-based
method are denoted by RM and MM, respectively.

Youcong Ni et al.: Page 13 of 40

Short Title of the Article

Considering that the set of Pareto optimal solutions
may be acquired by the compared methods, we adopt
arithmetic mean in the definitions of these metrics. The
smaller the values of these metrics, the better the expla-
nations for results.

Table 5
Three metrics of explicability in comparison of dif-
ferent methods based on their optimisation re-
sults (RM: rule-based method, MM: metaheuristic-
based method)

Metric Description Comparison of
methods

AvgNumMdf the average number of
modifications to the ini-
tial SA in the set of op-
timal solutions

RM vs MM or
MM vs MM

avgNumRul+ the average number of
rule applications in the
set of optimal solutions

RM vs RM

avgNumMdf+ the average number of
modifications in rule ap-
plications in the set of
optimal solutions

RM vs RM

3.2.2. The formulation of MORE-P
Based on the explicablity and its metrics, formula-

tion of MORE-P will be presented. Notations used by
MORE-P are given in Table 6.
Definition 1. (Rule Application) A rule application,
shorted by rulApp, is represented by a 3-tuple (r, ctx,
E) where r, ctx andE are a rule number, an execution
context and the modifications when applying rule r in
the context ctx.

For ease of description, rulApp[r], rulApp[ctx]
and rulApp[E] represent the rule number, the context
and the modification of rulApp, respectively. Further-
more, the function exe(r, ctx) is used to define the re-
turnedmodificationsE when applying rule r in the con-
text ctx. As a result, a rule application rulApp not only
indicates why to modify SA and which architectural el-
ements need to be modified by the precondition of rule
rulApp[r], but also decides the result of modification
E by randomised action of rule rulApp[r] in its con-
text rulApp[ctx].

Table 6
Notations used by MORE-P

Symbol Description

SA0 The initial SA.
n The number of randomised search rules.
r r is the rule number (1⩽ r ⩽ n).
E Modifications are defined as a set of id-value pair

which describe the ID and new value of a modi-
fied element (a DoF instance), respectively.

ids(E) Function that returns the set of IDs which occur
in E.

ctx An execution context of a randomised search
rule, which comprises a SA and its performance
information. ctx1 is defined as the initial context
which is made of SA0 and its performance infor-
mation. ctx[SA] represents the SA taken from
ctx .

exe(r, ctx) Function that returns the modifications E when
applying rule r in the context ctx.

bldCtx(E, ctx) Function that builds a new context by two steps:
First, modification E is applied into ctx[SA] and
a new SA can be obtained; Second, the perfor-
mance information corresponding to this new SA
can be acquired by performance evaluation, and
then the new context is built.

m The number of quality indicators considered in
the architecture-based software performance op-
timisation problem. In this paper, three quality
indicators (response time, 1-availability and cost)
are considered.

qIdxj(SA) Evaluation function returns the value of the
jtℎ(1 ≤ j ≤ m) quality indicator of SA. For con-
venience and without loss of generality, we define
that the smaller the value of qIdxj , the better
the quality indicator.

Definition 2. (Explicable Solution) As shown in
Eq.(4), an explicable solution X for performance op-
timisation problem based on randomised search rules
is defined as a sequence of rule applications, satisfy-
ing the constraints on length, contexts, and explana-
tions shown in Eq.(5), Eq.(6) and Eq.(7), respectively.
In Eq.(4), xk represents the ktℎ rule application in X.

X =< x1,⋯ , xk,⋯ , xl >, (4)

l ≤ s =
n
∑

i=1
ui,

0 ≤ ℎi(X) ≤ ui (1 ≤ i ≤ n)

(5)

x1[ctx] = ctx1 ∧ Ek = exe(xk[r], ctxk) ∧
xk+1[ctx] = bldCtx(Ek, ctxk), (1 ≤ k ≤ l − 1)

(6)

(∀i, xi[E]) ≠ � ∧ 1 ≤ i ≤ l) ∧ (∀k, 2 ≤ k ≤ l ∧
xk−1[r] = xk[r]⟶ ids(xk−1[E]) ≠ ids(xk[E]))(7)
(1) The constraints on length
The length of an explicable solution X is equal to

Youcong Ni et al.: Page 14 of 40

Short Title of the Article

the number of rule applications in X. Thus, to set the
maximum length s ofX, architects have to consider the
number of applications of each selected rule. If ui rep-
resents the maximum allowed number of applications
of selected rule i, s is equal to the sum of ui as shown in
Eq.(5) where n is the number of selected rules. At the
same time, the actual number of applications of rule i
in X, denoted by ℎi, should be not greater than ui.

It is very important to set a reasonable value to ui
(1 ≤ i ≤ n) because the results and elapsed time of
optimisation will be appreciably affected. If ui is too
large, MORE has to find solutions in a very huge search
space and the whole optimization becomes too time-
consuming. If ui is too small, the size of search space
becomes very small and the good solutions are possibly
excluded. In order to alleviate this problem, a heuris-
tic approach to setting ui is given. Specifically, rule i
is related to its DoFs (the types of variable architec-
tural elements). The instances of these DoFs, shorted
by DoFIs, can be often determined by the initial SA and
its constraints, and potentially have equal chances to be
modified by the randomised action of rule i. Thus, the
number of DoFIs can be regarded as the heuristic infor-
mation on setting ui. Section 4.4 gives an example for
setting ui.

(2) The constraints on contexts
In Eq.(6), the context of each rule application xk in

an explicable solutionX is determined by its precursor
one, except for the first rule application. Specifically,
ctx1 is the first context including SA0 and its perfor-
mance information. Since it is based on the context
xk[ctx](1 ≤ k ≤ l−1), the context of xk+1[ctx] should
be built by the function bldCtx through two steps.
Firstly, modificationEk, got by executing the rule xk[r]
in the context ctxk, is applied into the ctxk[SA], and
ctxk+1[SA] can be obtained. Secondly, performance
information corresponding to ctxk+1[SA] can be ac-
quired by performance evaluation, and then ctxk+1 is
built.

(3) The constraints on explanations
To obtain better explanations for results in terms

of the metrics of AvgNumMdf , avgNumRul+ and

avgNumMdf+, an explicable solution X should sat-
isfy the constraints defined by Eq.(7), which is a con-
junctive formula and includes two predicates. The
two predicates are used to assert that there are no use-
less and redundant rule applications inX, respectively.
Specifically, in Eq.(7), � is the empty set, xk[r] and
xk[E] are the rule number and modifications of the ktℎ
rule application in X, respectively. While ids(xk[E])
represents the IDs of modified elements E of the ktℎ
rule application in X. The two predicates are elabo-
rated as follows.

• For any rule application xi inX, if the modifica-
tions xi[E] is empty set when applying rule xi[r]
in the context xi[ctx], xi is regarded as a useless
rule application in the context xi[ctx].

• For any two adjacent rule applications in X,
xk−1 and xk, if the rule numbers, xk−1[r] and
xk[r], are same and IDs of modified elements,
denoted by ids(xk−1[E]) and ids(xk[E]), are
also same, this means that the same rule was se-
quentially applied twice, and the same elements
were modified. In this case, the rule application
xk−1 is regarded as a redundant rule application.

Definition 3. (Domination) An l1-length explicable
solution X1 dominates (Srinivas and Deb, 1994) an-
other l2-length explicable solutionX2 if and only if the
condition defined by Eq.(8) is satisfied.

∀j, qIdxj(rltSA1) ≤ qIdxj(rltSA2) ∧
∃k, qIdxk(rltSA1) < qIdxk(rltSA2),

wℎere j, k ∈ {1, 2,⋯ , m},
rltSA1 = ctxl1+1[SA]

rltSA2 = ctxl2+1[SA].

(8)

In Eq.(8), qIdxj is the evaluation function which
returns the jtℎ quality index of the inputted SA. Two
resulting SAs of rltSA1 and rltSA2 are taken out from
ctxl1+1 and ctxl2+1 obtained by the function bldCtx
with the modifications and contexts in the last rule ap-
plication, respectively.

Youcong Ni et al.: Page 15 of 40

Short Title of the Article

Definition 4. (Explicable ParetoOptimal Solutions)
The set of explicable Pareto optimal solutions, Opt∗, is
defined as Eq.(9).

Opt∗ = {X|X is an explicable solution and
non − dominated by any otℎer explicable

solutions in tℎe searcℎ space}
(9)

Definition 5. (Architecture-based Performance
Optimisation Using Randomised Search Rules)
This is a multi-objective optimisation problem which
consists in finding the explicable Pareto optimal
solutions defined by Eq.(9).

3.3. The MORE multi-objective evolutionary
algorithm (MORE-EA)
To solve MORE-P defined in the above section, a

multi-objective evolutionary algorithm namedMORE-
EA is proposed based on NSGA-II (Deb et al., 2002).
NSGA-II, a classic multi-objective algorithm, has been
cited more than 30000 times from Google Scholar. It
has been applied to many real-world and difficult multi-
objective optimization problems (Deb, 2011), and has
found near the true Pareto optimal solutions.

MORE-EA’s main framework shown in Algorithm
1 is similar to NSGA-II’s. However, there are some dif-
ferences between them in the four steps: encoding (line
1), decoding (lines 4-6), evolutionary operations with
repair mechanism (line 19) and the postprocessing step
(lines 23-26). The last step is responsible to generate
the set of explicable Pareto optimal solutions from the
set of Pareto optimal encodings based on Eq.(7). While
the first three steps will be presented as follows.
3.3.1. Encoding

In this section, a novel fixed-length encoding is in-
troduced firstly. Then its example is given. Finally, the
generation of random individuals in the initial popula-
tion is presented.

(1) A fixed-length encoding
A candidate explicable solution can be represented

as a fixed-length encoding by introducing a do-nothing
rule. The do-nothing rule is numbered by 0 and does
not modify any architecture elements when executed in

x' p j... x'i ... x's ... pi ... ps

X X X strtPos

Figure 3: An encoding X′

any context. To represent the 0-length explicable so-
lution (see an example of fixed-length encoding in this
section), the do-nothing rule can be used s times atmost
where s is equal to the maximum possible length of any
explicable solution, as defined by Eq.(5).

An encoding X ′ has three segments, as shown in
Figure 3. The first segment X ′(R) with gray back-
ground is used to store the integer rule numbers 0 ≤
x′i ≤ n and has size s. The second segment X′(P)
with white background represents the pointers to the
modified elements and has also size s. After the rule
x′i denoted by the segment X′(R) is executed, the cor-
responding modifications Ex′i are referred by pi in the
segment X′(P). The last segment X’(strtPos) with
pink background is a single element used to deter-
mine where to start executing the sequence of rules de-
noted by X′(R) in order to save the computation cost
of rule execution by avoiding recomputation of Ex′i (
1 ≤ i < X′(strtP os)) when X′(strtP os) > 1. There-
fore, if all rules specified byX′(R) have been executed,
X′(strtP os) will be set as s + 1. So, the range of
X′(strtP os) is between 1 and s + 1. From Figure 3,
we see the length of an encodingX′ is equal to 2s+1.

(2) An example of a fixed-length encoding
Any variable-length explicable solutionX with the

maximum length s can be represented as a (2s + 1)-
length encoding by the following four steps: Firstly,
rule numbers in all rule applications of X are sequen-
tially stored on the elements in X′(R). Secondly, all
the elements in X′(P) are filled with the pointers to
empty set. Thirdly, X′(strtP os) is set as 1. Fourthly,
if the length of X is l and l < s, the last (s − l) ele-
ments inX′(R) are respectively filled with 0. The filled
0 inX′(R) are related to the do-nothing rules, and they
don’t change the meanings of X.

An example is shown in Figure 4 where s and l

Youcong Ni et al.: Page 16 of 40

Short Title of the Article

Algorithm 1:MORE-EA
Input: The initial SA SA0, population sizeNp, mutation rate pm, crossover rate pc
Output: The set of explicable Pareto optimal solutions1: g = 0, Initialise(Pg), Qg = �; // Pg and Qg are the gtℎ population and its offspring population, respectively2: while (termination condition is not met) do3: // Merge the parent and its offspring population

Tg = Pg
⋃

Qg ;4: for (each encoding X′ in Tg) do5: decode(X′, SA0); //decode X′ based on SA0, and acquire the corresponding objective values (i.e. quality//indices).6: end for7: F = NondominatedSort(Tg); // Get all nondominated fronts of Tg by the nondominated sort according to the
// objective values of each individual in Tg , and store those fronts in order of//ranking in F = {F1, F2, ...}8: Pg+1 = �, i = 1; // Initialise the next parent population9: while ((|Pg+1| < Np) ∧ (|Pg+1| + |Fi| ⩽ Np)) do10: Pg+1 = Pg+1 ∪ Fi; // Put the individuals of front Fi into the population Pg+111: i = i + 1;12: end while13: if ((|Pg+1| < Np) ∧ (|Pg+1| + |Fi| > Np)) then

14: calculateCrowdingDistance(Fi); // Compute the crowding distance in front Fi15: sortByCrowdingDistance(Fi); // Sort the individuals in front Fi by descending order based on// crowding distance16: Pg+1 = Pg+1 ∪ Fi[1:(Np − |Pg+1|)]; // Add the first (Np − |Pg+1|) elements of Fi into Pg+117: end if18: Qg+1 = parentsSelection(Pg+1); // Get Qg+1 from Pg+1 according to the binary tournament selection with
//crowded-comparison operator as in NSGA-II19: Qg+1 = makeNewPop(Qg+1); // Generate a new Qg+1 using the defined crossover and mutation operators with

// constraint checking and repairing according to probabilities pc and pm20: g = g + 1;21: end while22: Opt∗ = �; // Opt∗ is the set of explicable Pareto optimal solutions23: for each X′ ∈ F1 do24: Generate an explicable solution X∗ based on X′ and Eq.(7);25: Opt∗ = Opt∗ ∪ {X∗};26: end for27: Output Opt∗.

are 2 and 5 respectively, and indicates that a 2-length
explicable solution can be represented as a fixed 11-
length encoding. The elements with blue background
in X′(R) are filled with 0 and the elements with green
background in X′(P) are the pointers to empty set.
Moreover, the element with pink background is set as
1. It is not difficult to figure out the 0-length explicable
solution can also be represented when all elements in
X′(R) and in X′(P) are respectively filled with 0 and
the pointers to empty set.

Based on the above four steps, any explicable solu-
tion with the maximum length s can be represented as a
(2s+1)-length encoding by introducing the do-nothing
rule, and our fixed-length encoding does not decrease
the size of the search space. What’s more important,
a fixed-length encoding can also reduce the complex-
ity of evolutionary operators compared to a variable-
length one, as presented by Jong (2016).

p p p p p

X = r ctx E r ctx E

Figure 4: An example of a fixed-length encoding for
an explicable solution

(3) The generation of random individuals
Based on our fixed-length encoding, an individual

X′ in the initial population is generated by the follow-
ing three steps. Firstly, each element in X′(P) is set as
a pointer to the empty set, which means that the modi-
fications in the contexts have not been computed yet.
Secondly, X′(strtP os) is set to 1, indicating the se-
quence of rules denoted byX′(R) starts to execute from
its first rule. Thirdly, X′(R) can be initialized by using

Youcong Ni et al.: Page 17 of 40

Short Title of the Article

Algorithm 2 so that it can satisfy the constraints on the
maximum number of applications of each rule defined
in Eq. (5).

Algorithm 2: Generation of random se-
quence of rule numbers

Input: The array u used to store the maximum
number of applications of each rule from 0 to n

Output: The array rulNums with size s used to store
the sequence of rule numbers from X′(R)1: Initialise the list of candidate rules candidates to contain the rule
numbers from 0 to n;2: Clear the array napplications with size n + 1 used to record the
number of applications of each rule from 0 to n;3: for m = 1 to s do4: k is set as a rule number randomly selected from candidates;5: rulNums[m] = k;6: napplications[k] = napplications[k] + 1 ;7: if (napplications[k] == u[k]) then8: Delete the rule number k from candidates ;9: end if10: end for11: Output rulNums.

3.3.2. Decoding
Decoding takes an encoding X′ and the initial SA

SA0 as inputs, and outputs the corresponding objec-
tive values. During decodingX′, the sequence of rules
denoted byX′(R)will be executed sequentially and the
context for each executed rule need to be correctly built.
The process of decoding is shown in Figure 5 and it
includes: build the starting context, execute rules and
change contexts, and output objective values (such as
response time, 1-availability and cost).

(1) Build the starting context
The starting context ctxi includes SAi−1 and its

performance information where i = X′(strtP os). The
starting context can be built by two steps. Firstly, we
determine SAi−1. If i equals to 1, SAi−1 is SA0. Oth-
erwise, SAi−1 is set as SA that is obtained by sequen-
tially applying the modifications pointed by p1, p2 ⋯,
pi−1 to SA0. Secondly, performance information can
be got based on SAi−1.

(2) Execute rules in the changing contexts
Based on the built starting context ctxi, rule x′i is

executed and the corresponding modifications Ex′i canbe obtained. Then, the context ctxi+1 for the next rule
x′i+1 will be constructed according to ctxi. Specifically,
Ex′i is applied to ctxi[SA] to generate SAi. Perfor-

i >

X strtPos s

Ctxs rltSA

SAi

p pi

SAi SA

rltSA

SAi ctxi

SAi

SAi ctxi+

i X strtPos

i s

numbered x i X

pi

ctx ctxi+

i = i+

The context ctxi

SA

SA -

X

Figure 5: The process of decoding

mance information corresponding to SAi can be got by
performance evaluation. For each of remaining rules,
it is executed and the context for its next rule is built in
above mentioned way.

(3) Output objective values
After all rules are executed, X′(strtP os) is set to

s + 1, and the resulting SA rltSA can be acquired by
applying Ex′s into ctxs[SA]. Then objective values areobtained by evaluating rltSA.
3.3.3. Evolutionary operators with repair mechanism

The evolutionary operators of MORE-EA are one-
point crossover and one-point mutation with repair
mechanism. Their applications, detailed descriptions

Youcong Ni et al.: Page 18 of 40

Short Title of the Article

and advantages are presented, respectively.
(1) The applications of evolutionary operators with

repair mechanism
The application of one-point crossover and one-

point mutation with repair mechanism are presented by
executing crossover or mutation operations, setting the
start position of decoding, clearing incorrect modifi-
cations, constraint checking and repairing. First, the
traditional one-point crossover or one-point mutation
(Eiben and Smith, 2003) is performed in the X′(R) of
the parent individuals and intermediate individuals are
generated. Second, theX′(strtP os) of all intermediate
individuals are set as the minimum value between the
positions of crossover or mutation and theX′(strtP os)
of the parent individuals. Third, the modifications be-
tween the X′(strtP os) position and the last position
in X′(P) are cleared. Fourth, each element from the
X′(strtP os) to the last position in the X′(R) of the in-
termediate individuals is checked to decide whether it
disobeys the constraint of the maximum number of ap-
plications of each rule defined in Eq.(5). Fifth, if the
constraint is violated, these corresponding elements are
set to 0. In the next paragraphs, the examples are given
to illustrate the evolutionary operators of MORE-EA.
Three rules r1, r2 and r3 are used, and their maximum
allowed number of applications are defined as u1 = 3,
u2 = 2 and u3 = 3, respectively. So the length ofX′(R)
in each individual is 8.

(2) One-point crossover operator
The crossover operator will be applied to two indi-

viduals X′
1 and X′

2, which have already been decoded
and are shown in Figure 6. The crossover point is ran-
domly set as the 5tℎ element in the segment X′(R).
Two intermediate individuals X′

11 and X′
21 are pro-

duced by exchanging the elements from 5tℎ to 8tℎ po-
sitions in the segment X′(R) of X′

1 and X′
2, and their

X′(strtP os) are set to 5. And p15, ⋯ ,p18, and p25,
⋯, p28 are cleared. Then, constraint checking is done
on X′

11 and X′
21, as illustrated in Figure 7. The 8tℎ el-

ement in individual X′
11 and the 5tℎ element in indi-

vidual X′
21 disobey the constraints defined by Eq.(5),

because ℎ3(X′
11) = 4 > u3 and ℎ2(X′

21) = 3 > u2.

Therefore, these two elements are set to 0. As a result,
two offspring individuals X′

3 and X′
4 are generated as

shown in Figure 8.
(3) One-point mutation operator
Suppose one-point mutation is applied to an indi-

vidualX′
4 obtained through the above crossover opera-

tor. The mutation point is selected randomly as 2 which
meansmutationwill occur at the 2nd element in the seg-
mentX′(R). The rule number 2 is chosen uniformly at
random to replace rule number 1 at the mutation point.
Then the intermediate individual is obtained and its
X′(strtP os) is set to 2. And the modified elements p23,
⋯, p28 are cleared. Furthermore, constraint checking is
performed from the 2nd element to the 8tℎ element in
the X′(R) of X′

41. The 3rd element disobeys the con-
strains defined by Eq.(5) because ℎ2(X′

41) = 3 > u2, as
illustrated in Figure 9. Finally, the 3rd element is set to
0. Then the offspring individual named X′

5 is formed
as shown in Figure 10.

(4) The advantages of our evolutionary operators
with repair mechanism

Based on our proposed repair mechanism, the in-
valid encodings generated by crossover and mutation
can be transformed into valid ones by use of the do-
nothing rule. It brings two advantages: firstly, the effi-
ciency of MORE-EA can be improved due to the re-
pair mechanism. This is a consensus in the field of
evolutionary computation (Salcedo-Sanz, 2009): the
EAs with repair mechanism perform better than other
kind of EAs in handling optimisation problem with
constraints. Secondly, our repair mechanism can po-
tentially improve explanations for optimisation results.
This will be elaborated as follows. It is possible that
some encodings derived from evolutionary operator
with repair mechanism are in the set of Pareto optimal
encodings. When they are transformed into explicable
solutions by the postprocessing step (See lines 23-26 in
Algorithm 1), the rule applications associated with the
do-nothing rule will be removed and explanations for
results can be improved based on the metrics defined
in Table (5). More details can be found in the defini-
tion of explicable solution in Section 3.2.2.

Youcong Ni et al.: Page 19 of 40

Short Title of the Article

X'

X' p ... p

X X strtPos

p ... p

X

Figure 6: Two parent individuals before crossover at
the 5tℎ position

X'

X' p ... p

X X strtPos

p ... p

X

Figure 7: Two intermediate crossover individuals and
their constraint checking

X'

X' p ... p

X X strtPos

p ... p

X

Figure 8: Two offspring individuals generated
through crossover and repair

X' ... p

X X strtPosX

p

Figure 9: Intermediate mutated individual generated
and their constraint checking

X' ... p

X X strtPosX

p

Figure 10: Offspring individual generated through
mutation and repair

3.3.4. Computational Complexity of MORE-EA
MORE-EA is a multi-objective evolutionary algo-

rithm (MOEA). The main difference between MORE-
EA and traditional MOEA is solving objective value
which is acquired by decoding. The process of decod-
ing of MORE-EA in Figure 5 includes 3 stages: build
the starting context, execute rules in the changing con-
texts, and output objective values (such as response

time, 1-availability and cost). Among them, obtain-
ing performance information in the stage 2 is the most
time-consuming. Specifically, traditional MOEA only
needs to obtain performance information once when
solving objective value. However, MORE-EA needs
to obtain performance information many times when
solving objective value. The number of acquirement
of performance information in MORE-EA relates to
X′(strtP os) inX′(R) shown in Figure 5. Suppose that
X′(strtP os) inX′(R) of offspring individual generated
through crossover or mutation has equal probability in
each position. Then, the average number of obtaining
performance information is equal to 1

s
s
∑

i=1
(s − i + 1) =

s+1
2 , where s is the size ofX′(R). So, the computational

complexity of solving objective value in MORE-EA is
s∕2 times that of traditional MOEA.
4. Experimental design

This section demonstrates the design of our exper-
imental study. Specifically, Section 4.1 presents the re-
search questions we set out to answer and the assess-
ment methods. Section 4.2 introduces the statistical
test methods used to support our analysis. Section 4.3
gives information about the six problem instances that
we have used. Section 4.4 presents the experimental
setup. In order to explain the comparison results con-
veniently, the explicable solutions and the set of expli-
cable Pareto optimal solutions obtained by MORE in
Section 4 and Section 5 are called the solutions and the
set of Pareto optimal solutions, respectively.
4.1. Research questions and assessment methods

MORE is a rule-basedmethod. And it adopts meta-
heuristic algorithm to search the best solutions. There-
fore, MORE has the features of both rule-based and
metaheuristica-based methods. In order to validate the
effectiveness ofMORE, a representativemetaheuristic-
based method (PCM) in Section 2.3.2 and a typical
rule-based method (PB) in Section 2.3.3 are selected
as compared methods for experimental study. The
two comparisons, PB vs MORE and PCM vs MORE,
need to be separately done. This is because there are
several differences in the two comparisons, including

Youcong Ni et al.: Page 20 of 40

Short Title of the Article

the adopted rules, the optimisation objectives, the pa-
rameter settings, the DoFs and the problem instances.
Therefore, we set four research questions for quality of
solutions and explanation of the results, and defined
the corresponding assessment criterion to answer these
questions as follows.
4.1.1. RQ1: Comparison between PCM and MORE on

the quality of solutions
How effective isMORE compared to PCM in terms

of response time, cost and availability? For MORE
to be adopted, its exploration of the space defined by
randomised search rules should lead to better solutions
than PCM method.

To provide the quantitative assessment for this
question, we employ three quality indicators to evaluate
the performance of the concerned algorithms, namely
Contribution (IC), Generational Distance (IGD) and
Hypervolume (IHV). To compute these indicators, we
normalise objective values to avoid unwanted scaling
effects (Durillo and Nebro, 2011) .

The contribution CONT defined in (Meunier et al.,
2000) is the contribution that quantifies the domination
between two sets of non dominated solutions. It is rep-
resented as IC . Let A1 and A2 be two compared al-
gorithms. The contribution CONT (A1

A2
) of algorithm

A1 relatively to A2 is roughly the ratio of non domi-
nated solutions produced by A1. Let S be the set of
solutions in A1 ∩ A2. Let W1 be the set of solutions
by A1 that dominate at least one solution of A2. Simi-
larly, let L1 be the set of solutions by A1 that are dom-
inated by at least one solution of A2. The set of so-
lutions in A1 that are not comparable to solutions in
A2 is N1 = A1 ⧵ {S ∪ W1 ∪ L1}. The set of solu-
tions in A2 that are not comparable to solutions in A1
is N2 = A2 ⧵ {S ∪W2 ∪ L2} where the definitions of
W1 and L1 are similar toW2’s and L2’s. The contribu-
tion IC is defined by Eq.(10). The higher IC , the better
A1’s solution set is in comparison to A2’s.

IC = CONT (
A1
A2
) =

|S|∕2 + |W1| + |N1|

|S| + |W1| + |N1| + |W2| + |N2|
(10)

The IGD quality indicator (Zitzler et al., 2003)
computes the average distance in the objective space
between the set S and the reference set RS. S is the
set of non-dominated points obtained by the measured
algorithm. RS is the set of non-dominated points ob-
tained by the union of all measured algorithms (Fon-
seca et al., 2005). The average distance between S and
RS in a m objective space is computed as the average
m-dimensional Euclidean distance between each point
in S and its nearest neighbouring point in RS. To
keep consistent with other two quality indicators that
the larger IGD value means better, we modify the origi-
nal IGD. Themodified IGD is defined in Eq.(11), where
d(x, y) is the Euclidean distance between the points x
and y.

IGD(S) = exp(−
Σy∈RSminx∈S (d(x, y))

|RS|
) (11)

The IHV quality indicator (Zitzler and Thiele,
1999) calculates the volume (in the objective space)
covered by members of a non-dominated set of solu-
tions from an algorithm of interest. Zitzler et al. (2003)
demonstrates that this hypervolume measure is also
strictly ’Pareto compliant’, whose nice theoretical qual-
ities make it a rather fair indicator. Let S be the set
of final nondominated points obtained in the objective
space by an algorithm, and r = (r1, r2,⋯ rm)T be a ref-
erence point in the objective space which is dominated
by any point in the set S. Then the hypervolume indi-
cator value of S with regard to r is the volume of the
region dominated by S and bounded by r, and can be
described as Eq.(12). Given a reference point r, the
larger IHV value means better quality. In our experi-
ments, r is selected from all the solution sets obtained
by the union of compared algorithms for a certain prob-
lem instance. f = [f1,⋯ , fm]T is used to store m ob-
jective values obtained.

IHV (S, r) = volume

(

⋃

f∈S
[f1, r1] ×⋯ [fm, rm]

)

(12)

Youcong Ni et al.: Page 21 of 40

Short Title of the Article

4.1.2. RQ2: Comparison between PB and MORE on
the quality of solutions

How does MORE perform in comparison to PB
method (including PBcost and PBtime) in terms of re-
sponse time and cost?

PBcost and PBtime, introduced in Section 2.3.3, are
two subcategories of PB methods that adopt cost-first
and RT-first (response time first) search strategies to
obtain the single best solution, respectively.

As explained in Section 2, availability is not con-
sidered by the PB methods (both PBcost and PBtime)
and the two problem instances from PB’s experiments
(Xu, 2012) have no specification for availability. There-
fore, it is impossible for us to obtain the objective value
of availability for PB methods. And RQ2 only evalu-
ates MORE’s solutions in comparison to PB methods
in terms of response time and cost.

�cost = {X∗ ∣ X∗ ∈ Opt∗∧time(X∗) ≤ time(scost)∧

cost(X∗) < cost(scost)}

�time = {X∗ ∣ X∗ ∈ Opt∗∧time(X∗) < time(stime)∧

cost(X∗) ≤ cost(stime)}

DRcost =
|�cost|
|Opt∗|

DRtime =
|�time|
|Opt∗|

(13)

To answer RQ2 in a quantitative manner, the dom-
inance ratios DRcost and DRtime are proposed as two
measurements and formally defined as Eq.(13). DRcost
and DRtime are the percentages of solutions which are
better than PBcost’s and PBtime’s, respectively, in the
set of Pareto optimal solutions obtained by MORE.

In Eq.(13), scost and stime are the solutions obtained
by PBcost and PBtime, respectively. Opt∗ is the set of
Pareto optimal solutions acquired byMORE. The func-
tions time and cost return the objective values of re-
sponse time and cost of a solution, respectively.

If DRcost and DRtime are both larger than 0, it
means that MORE finds at least one solution that is
better than PBcost’s and at least one solution that is
better than PBtime’s. Then we denote the percentages
of maximal, average and minimum improvement of re-
sponse time and cost in comparison with PBcost and

PBtime as timemax%, timeavg%, timemin%, costmax%,
costavg%, costmin%, respectively. These metrics will be
used to evaluate how well MORE does in comparison
with PBcost and PBtime.
4.1.3. RQ3: Comparison between PCM and MORE on

the explanations for results
How does MORE perform compared to PCM in

terms of the explanations for results? While out-
performing PCM may be a valuable technical result,
MORE should also enable a better explanation on how
to obtain a resulting SA from the initial SA.

Considering that PCM only has the trivial explica-
bility, the metric AvgNumMdf shown in Table 5 of
Section 3.2.1 is used to compare the explanations for re-
sults between MORE and PCM. This metric is defined
as the average number of modifications to the initial SA
in the set of optimal solutions.

However, it is worth noting that, MORE can pro-
vide more useful explanations to software architects by
informing them of the sequence of randomised search
rules applied to the initial SA and the modified ele-
ments after the application of each rule. This sequence
and their corresponding modifications provide good
explanatory power because each randomised rule is de-
rived from anti-patterns or design tactics provided by
the performance optimisation practices.
4.1.4. RQ4: Comparison between PB and MORE on

the explanations for results
How does MORE perform compared to PBcost and

PBtime in terms of the explanations for results? Soft-
ware architects incline to adopt MORE, if MORE can
acquire a few solutions that not only have better re-
sponse time and lower cost, but also better explicability
than PBcost and PBtime.

For quantitatively comparing the explicability
given by MORE and PB methods, the metrics of
avgNumRul+ and avgNumMdf+ shown in Table 5
of Section 3.2.1 are used. The avgNumRul+ and
avgNumMdf+ are defined as the average number of
rule applications in the set of optimal solutions, and the
average number of modifications in rule applications in

Youcong Ni et al.: Page 22 of 40

Short Title of the Article

the set of optimal solutions, respectively.
PBcost and PBtime can only output a single best

solution in their sets of optimal solutions. In compar-
isons of MORE vs PBcost and MORE vs PBtime on
avgNumRul+ and avgNumMdf+, �cost and �time de-
fined in Eq.(13) are regarded as the sets of optimal so-
lutions for MORE, respectively.
4.2. Statistical tests

In this paper, nonparametric statistical tests are
used to analyze the results, as recommended by Ar-
curi and Briand (2011). To compare groups, the
nonparametric Wilcoxon rank-sum test (Arcuri and
Briand, 2011) is used to check for statistical signifi-
cance. Wilcoxon test is a safe test to apply (even for
normally distributed data), since it raises the bar for sig-
nificance, by making no assumptions about underlying
data distributions. We set the level of significance � at
0.05.

Furthermore, we use the Vargha-Delaney Â12 met-
ric for effect size, as recommended by Grissom and
Kim (2005). Vargha-Delaney Â12 also makes few as-
sumptions and is highly intuitive. Â12(A1, A2) is sim-
ply the probability that algorithm A1 will outperform
algorithm A2 in a head-to-head comparison.
4.3. Problem instances

To obtain convincing experimental results, we
should guarantee the diversity of problem instances.
Therefore, six problem instances with different scale
and categories have been selected in our experiments:
STE (Software Design and Quality Group, Karlsruhe
Institute of Technology), MS (Brosch et al., 2011),
BRS (Koziolek et al., 2013), PCS (Koziolek et al.,
2011b), WebApp (Xu, 2012) and IES (Xu, 2012). The
first four problem instances are described in Palladio
component model and annotated with specification of
performance, availability and cost. Therefore, they can
be used in comparison between MORE and PCM. In-
stead, the last two problem instances are specified by
LQN model and have no annotation for availability.
So, we use the two problem instances when comparing
MORE with PB.

All problem instances are real world applications or
systems, except for STE, which is an illustrative one. At
the same time, these problem instances cover various
categories, such as enterprise information system , in-
dustrial processes management and images processing
and so on. Table 7 shows the complexity and scale of
the six problem instances. It can be seen that six prob-
lem instances have different scale, as shown in the last
column that indicates the lower bound of size of search
space for each problem instance. Each lower boundwas
estimated by the number of instances of DoFs in the ini-
tial SA of each problem and the range of value of each
instance.

Table 7
Comparison of the complexity and scale of the six
problem instances

Compared
method

Problem
instance

N.S. N.C. Category |Ω|

PCM

STE 3 3 IMS > 105
MS 3 4 Security > 107
BRS 4 9 EIS > 109
PCS 5 11 IPM > 1012

PB
WebApp 5 6 Web application > 107
IES 4 10 Images processing > 109

N.S.: The number of Servers
N.C.: The number of Components
|Ω|: The size of search space
IMS: Information management system
IPM: Industrial processes management
EIS: Enterprise information system

4.3.1. STE
A business trip management system is used as Sim-

ple Tactics Example (STE) (Software Design andQual-
ity Group, Karlsruhe Institute of Technology) when
presenting the optimisation tool of PCM method. In
this problem instance, the user’s business trip can be ef-
ficiently arranged by three subsystems of booking, pay-
ment and business management. Resource demands
were defined as an illustrative example. Figure 11 gives
the initial deployment view of STE.
4.3.2. MS

MS (Brosch et al., 2011) is a plain Java web ap-
plication for storing and retrieving audio or video files
using a MySQL database. The model reflects a use

Youcong Ni et al.: Page 23 of 40

Short Title of the Article

Figure 11: The initial deployment view of STE

case where a digital watermark is added to download
files for copy protection. The model contains a hard
disk resource accessed when retrieving files. Resource
demands for the Media Store have been measured us-
ing manual instrumentation of the Java implementa-
tion. Figure 12 shows the initial deployment view of
MS.

Figure 12: The initial deployment view of MS

4.3.3. BRS
Business Reporting System (BRS) (Koziolek et al.,

2013) lets users retrieve reports and statistical data
about running business processes from a data base.
It represents a typical enterprise system. The an-
alyzed configuration comprises two usage scenarios,
nine components, and four servers. Users can retrieve
live business data from the system and run statistical
analyses. Resource demands of the BRS are based on
estimations. Figure 20 (a) shows the initial deployment

view of BRS.
4.3.4. PCS

Process control system (PCS) (Koziolek et al.,
2011b) is a distributed system tomanage industrial pro-
cesses, such as power generation, oil refinement, or
pulp and paper processing. The model focuses on the
server-side part of the system, which is implemented in
C++ using Microsoft technologies. It features four us-
age scenarios, for example for transferring sensor data
or managing alarm events. Resource demands were de-
termined usingWindows PerformanceMonitor. Figure
13 presents the initial deployment view of PCS.

Figure 13: The initial deployment view of PCS

4.3.5. WebApp
In WebApp (Xu, 2012), users access the pages de-

ployed on Web Server (WS) through their browser.
When the WS loads and deals with these pages, it will
call business services deployed on application servers
App1 and App2. These business services will call data
management services deployed on database servers
DB1 and DB2. Resource demands were determined by
the architect. Its initial LQN model is shown in Figure
23 (a).
4.3.6. IES

IES (Xu, 2012) processes images bearing creden-
tial information such as scans of identification cards,
signatures, or legal documents. It converts images to
a common format, encrypts them and places them on
a public server for a partner to pick up. An operator

Youcong Ni et al.: Page 24 of 40

Short Title of the Article

Figure 14: The initial LQN model of IES (Xu, 2012)

should be able to process a batch of images every 15
minutes, which we will call the cycle time c (c < 900
seconds). This gives a throughput requirement for ten
sites of f = 10∕c > 10∕900∕ s. Resource demands
were defined by the architect. Figure 14 shows the ini-
tial LQN model of IES.
4.4. Experimental setup

To compare MORE with PCM and PB, we need
to do three works. Firstly, we define the randomised
search rules, and this has been done in Section 3.1.3
by selection and addition of rules for MORE. Sec-
ondly, we set the maximum allowed number of ap-
plications of each selected rule based on the heuris-
tics described in the definition of explicable solution in
Section 3.2.2. Table 8 shows the selected and added
rules and their maximum allowed number of appli-
cations in the problem instances of STE, MS, BRS
and PCS. Instead, Table 9 shows the selected rules
and their maximum allowed number of applications in
the problem instances of WebApp and IES. Here, we
take BRS as an example to demonstrate how to set
the maximum allowed number of applications of se-
lected rule. As shown in Figure 20 (a), there are 4 sev-
ers (i.e., server1, server2, server3 and server4) and
9 components in the initial SA of BRS. Rule 1 is re-

lated to allocation of components (AC) and is selected
shown in Table 8. The range of each instance of AC
is {server1, server2, server3, server4}. Each compo-
nent has the chance to be reallocated to these 4 severs
according to the action of Rule 1. Therefore, the num-
ber of each instance of AC is considered as the value of
the maximum allowed number of applications of Rule
1 in BRS. The cell in the first row and the fourth column
in Table 8 is filled with 4. Similarly, the maximum al-
lowed numbers of applications of other selected Rules
in Table 8 and Table 9 can also be filled. Thirdly, we
set the parameters of each compared method. PCM’s
and PB’s parameter settings are same as the ones used
in their corresponding papers (Koziolek et al., 2013;
Xu, 2012). The parameters of MORE-EA are set to the
same values used in the PCM paper (Koziolek et al.,
2013) and are shown in Table 10.

For each problem instance, MORE-EA and PCM
are independently run 30 times. While PBcost and
PBtime are deterministic and so only one run is nec-
essary.

5. Experimental results and analysis
This section presents the experimental results and

analysis done to answer the four research questions pro-

Youcong Ni et al.: Page 25 of 40

Short Title of the Article

Table 8
The selected and added rules and their maximum al-
lowed number of applications in the problem instances
of BRS,MS, PCS and STE

Rule STE MS BRS PCS
Rule 1 3 6 4 5
Rule 3 9 9 10 10
Rule 5 1 2 2 3
Rule 11 1 3 2 1
Rule 18 2 3 2 5
Rule 19 2 3 2 2

Table 9
The selected rules and their maximum allowed num-
ber of applications in the problem instances of We-
bApp and IES

Rule WebApp IES

Rule 1 3 3
Rule 4 3 3
Rule 6 12 12
Rule 7 1 1
Rule 9 3 3
Rule 11 6 3
Rule 13 6 3

Table 10
The parameter settings of MORE-EA and PCM

Parameter MORE-EA PCM(NSGA-
II)

Population size 30 30
Crossover rate 0.8 0.8
Mutation rate 0.6 0.6
Max generations 200 200

posed in Section 4.1.
5.1. Results for RQ1 (Comparison between PCM

and MORE on the quality of solutions)
Table 11 shows that MORE achieved superior

mean values for all three quality indicators (IC , IGD
and IHV) compared to PCM, on all four problem
instances (STE, MS, BRS and PCS). The Wilcoxon
rank−sum tests reported in Table 12 confirm that
all these differences are significant (p-value <<0.05),
which can also be seen from Figure 15. At the same
time, the values of the Vargha-Delaney Â12 effect size
in Table 13 show that to a very high extent, MORE out-
performs PCM in all 12 experiments under the three

indicators and the four problem instances.

Table 11
Mean values of the quality indicators of IC , IGD and
IHV for PCM and MORE on the problem instances of
STE, MS, BRS and PCS. MORE is significantly bet-
ter than PCM at the level of significance of 0.05 on all
these values, according to the Wilcoxon Rank−sum
tests shown in Table 12.

problem
instance

IC IGD IHV

PCM MORE PCM MORE PCM MORE

STE 0.1070 0.8930 0.9762 0.9960 0.8429 0.8615

MS 0.1526 0.8474 0.9634 0.9872 0.8224 0.8536

BRS 0.2089 0.7911 0.9685 0.9880 0.8374 0.8656
PCS 0.1520 0.8480 0.8474 0.9703 0.4912 0.6743

Table 12
The p-values of the Wilcoxon Rank−Sum tests to
compare MORE against PCM in terms of quality in-
dicators contribution IC , generational distance IGD
and hypervolume IHV on the problem instances of
STE, MS, BRS and PCS. All p-values show statisti-
cally the significant difference at the level of 0.05.

problem
instance

IC IGD IHV

STE 3.0199E-11 0.0003E-07 0.0024E-07
MS 3.0199E-11 0.0098E-07 0.0003E-07
BRS 14.6431E-11 33.2415E-07 1174.7192
PCS 2.9822E-11 0.0003E-07 0.0003E-07

Table 13
Effect size Â12 of the quality indicators of IC , IGD
and IHV for PCM and MORE on the four problem
instances of STE, MS, BRS and PCS

problem
instance

IC IGD IHV

STE 1.0000 1.0000 0.9767

MS 1.0000 0.9933 1.0000

BRS 0.9822 0.8500 0.7900
PCS 1.0000 1.0000 1.0000

In more detail, we observe that for all four prob-
lem instances, the values of the effect size of IC are
higher than those of IGD and IHV , which are reflected
in their relative positions of boxes shown in Figure
15(a). Compared to other three problem instances, the

Youcong Ni et al.: Page 26 of 40

Short Title of the Article

lowest value of the effect size was obtained for BRS as
shown in Figure 15(b). Whilst, the outliers, which are
achieved byMORE in BRS and STE problem instances
and presented in Figure 15(c), contribute to the lower
values of effect size of IHV . The consistent results can
be intuitively and qualitatively observed from the refer-
ence Pareto surfaces obtained by PCM and MORE for
four problem instances and shown in Figure 16.
5.2. Results for RQ2 (Comparison between PB

and MORE on the quality of solutions)
The single best response time and cost obtained by

PBcost and PBtime for WebApp and IES are shown in
Table 14, respectively.

Table 14
The best response time and cost obtained by PBcost
and PBtime in WebApp and IES problem instances

WebApp IES

response time cost response time cost

PBcost 35.5 17 199902 57

PBtime 29.88 25 199783 60

Wilcoxon Rank−Sum tests were performed to de-
termine whether DRcost > 0 and DRtime > 0. The re-
sults are shown in Table 15, and confirm that MORE
can achieve at least a few better solutions in the set
of Pareto optimal solutions, compared to PBcost and
PBtime for both WebApp and IES. The best, average
and worst percentage of MORE’s solutions which are
better than PBcost’s and PBtime’s in the set of Pareto
optimal solutions for WebApp and IES are presented in
Table 16. From Table 16, we observe that MORE al-
ways obtained no less than 20% of solutions which are
better than PBcost’s and no less than 15% of solutions
which are better than PBtime’s in the set of Pareto opti-
mal solutions. On average, for both WebApp and IES,
MORE obtained more than 44% solutions in the set of
Pareto optimal solutions which are better than PBcost
and PBtime.

For the solutions obtained by MORE and are bet-
ter than PBcost’s and PBtime’s, their objective values
of response time and cost compared with PBcost’s and

PCM MORE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
STE

PCM MORE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MS

PCM MORE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BRS

PCM MORE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PCS

(a)

PCM MORE

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
STE

PCM MORE

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
MS

PCM MORE

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
BRS

PCM MORE

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
PCS

(b)

PCM MORE

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

STE

PCM MORE

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

MS

PCM MORE

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

BRS

PCM MORE

0.4

0.45

0.5

0.55

0.6

0.65

0.7

PCS

(c)

Figure 15: Boxplots using the quality indicators IC
(a), IGD (b) and IHV (c) applied to PCM (left) and
MORE (right) for the four problem instances STE,
MS, BRS and PCS, respectively.

PBtime ’s are presented in Figures 17 and 18. Fur-
thermore, Table 17 shows the percentages of the maxi-
mum, average and minimum improvement of response
time and cost by comparing MORE’s solutions with
PBcost’s and PBtime’s. It can be seen that the response

Youcong Ni et al.: Page 27 of 40

Short Title of the Article×10-4

6
5.5

1-availability

5
4.5

4

STE

145.03

145.02
cost

145.01

145

6

4

3

2

5

1

re
s
p
o
n
s
e
 t
im

e

MORE

PCM

(a)

×10-4

4.4

1-availability

4.3

4.2

4.1

4145.04

MS

145.03
145.02

cost

145.01
145

22

20

18

16

14

24

re
s
p

o
n

s
e

 t
im

e

MORE

PCM

(b)

×10-4

1.58

1-availability

1.57

1.56

1.55

1.541400

BRS

1200
1000

800

cost

600
400

200

0.8

1

1.2

1.4

1.6

0.2

0.4

0.6

re
s
p
o
n
s
e
 t
im

e

MORE

PCM

(c)

×10-4

1.8

1-availability

1.6

1.4

1.2

PCS

800
600

400

cost

200
0

2.5

3

0

0.5

1

1.5

2

3.5

re
s
p

o
n

s
e

 t
im

e

MORE

PCM

(d)

Figure 16: Pareto surfaces obtained by PCM (depicted by the stars) and MORE
(depicted by the triangles) for four problem instances of STE (a), MS (b), BRS (c)
and PCS (d)

Table 15
The p-values of the statistical experiments of
DRcost > 0 and DRtime > 0 on the problem instances
of WebApp and IES for comparing MORE against
PBcost and PBtime at the level of significance of 0.05

experiments
p-value

WebApp IES

DRcost > 0 1.2118E-12 1.2118E-12
DRtime > 0 1.2118E-12 1.2118E-12

time and cost can be improved by no less than 20% and
67% in the average case, respectively.
5.3. Results for RQ3 (Comparison between PCM

and MORE on the explanations for results)
The mean AvgNumMdf across 30 runs are

shown in Table 18. The results of Wilcoxon
Rank−Sum test from Table 19 show that, for the
four problem instances of STE, MS, BRS and PCS,
the values of AvgNumMdf for MORE were signif-

Table 16
The best, average and worst values of DRcost and
DRtime (the percentage of solutions which are better
than PBcost and PBtime in the set of Pareto optimal
solutions obtained by MORE) for WebApp and IES
problem instances, considering 30 runs

WebApp IES

best average worst best average worst

DRcost 94% 61% 20% 65% 44% 33%

DRtime 100% 59% 15% 65% 44% 33%

icantly better than those of PCM. Figure 19 further
confirms that MORE outperforms PCM in terms of
AvgNumMdf with the highest effect size of Â12 = 1
in all problem instances. Furthermore, Table 18 shows
that the decreasing AvgNumMdf ratio of MORE
to PCM, AvgNumMdfPCM−AvgNumMdfMORE

AvgNumMdfPCM
, varies from

17.5% in BRS to 52.6% in MS.
Besides using the number of elements modified

from the initial SA as a kind of trivial explicability, the

Youcong Ni et al.: Page 28 of 40

Short Title of the Article

costPB MORE

re
s
p
o
n
s
e
 t
im

e

24

26

28

30

32

34

36

webApp

costPB MORE

c
o
s
t

4

6

8

10

12

14

16

webApp

costPB MORE

re
s
p
o
n
s
e
 t
im

e

×105

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

IES

costPB MORE

c
o
s
t

10

15

20

25

30

35

40

45

50

55

IES

(a) (b)

Figure 17: Boxplots using the response time and
cost to evaluate the quality of solutions of PBcost
(left) and MORE (right) in the problem instances of
WebApp (a) and IES (b)

time
PB MORE

re
s
p
o
n
s
e
 t
im

e

21

22

23

24

25

26

27

28

29

30

webApp

time
PB MORE

c
o
s
t

5

10

15

20

25

webApp

time
PB MORE

re
s
p
o
n
s
e
 t
im

e

×105

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

IES

timePB MORE

c
o
s
t

10

15

20

25

30

35

40

45

50

55

IES

(a) (b)

Figure 18: Boxplots using the response time and
cost to evaluate the quality of solutions of PBtime
(left) and MORE (right) in the problem instances of
WebApp (a) and IES (b)

full explicability derived from predefined randomised
search rules inMORE can be further presented through
an example. In this example, the two solutions with the
best response time are selected from the Pareto optimal
sets obtained byMORE and PCM in BRS, respectively.
Based on the two solutions, Figure 20 shows the result-
ing deployment views of BRS obtained by PCM and
MORE. In Figure 20, the modified elements with re-
spect to the initial SA are marked in red. And it can be
seen that MORE modified fewer elements than PCM.
Moreover, unlike PCM, MORE can also explain how

Table 17
Mean values of timemax%, timeavg%, timemin%,
costmax%, costavg% and costmin% (the percentage of
the maximum, average and minimum improvement
of response time and cost by comparing MORE with
PBcost and PBtime, respectively) for WebApp and
IES, considering 30 runs

the percentage of
improvement

WebApp IES

PBcost PBtime PBcost PBtime
timemax% 43% 33% 41% 41%

timeavg% 30% 20% 32% 32%

timemin% 12% 5% 7% 7%

costmax% 87% 90% 86% 87%

costavg% 67% 73% 75% 76%

costmin% 27% 37% 48% 51%

to obtain the resulting SA from the initial SA by ap-
plying the predefined rules. As shown in Table 20,
through the 12 steps, the resulting SA of BRS can be
obtained, explained and even replayed. Each step gives
the cause for objective improvement, defined by the
condition part of rule, and the modified architectural
elements and their values denoted by the action part of
rule. From Table 20, we observe the predefined rules
of Rule 1, Rule 3, Rule 5, Rule 11, Rule 18, and Rule 19
are all applied and the number of applications of each
rule is 4, 3, 1, 2, 1 and 1, respectively. Rule1 (increas-
ing processing rate) is applied more times because it
has relatively larger search space than other rules.

Table 18
The mean values of AvgNumMdf by PCM and
MORE in the four problem instances of STE, MS,
BRS and PCS. MORE is significantly better than
PCM at the level of significance of 0.05 in all prob-
lem instances, according to the Wilcoxon Rank−Sum
tests shown in Table 19.

STE MS BRS PCS
PCM 5.82 10.58 12.36 14.44
MORE 4.33 5.02 10.20 10.64
Decreasing the ratio
of MORE to PCM

25.6% 52.6% 17.5% 26.3%

Youcong Ni et al.: Page 29 of 40

Short Title of the Article

(a) (b) (C)

Figure 20: The resulting deployment views of BRS obtained by PCM(b) and MORE(c) against the initial
deployment view (a) with respect to the solutions with the best response time in the set of Pareto optimal
solutions obtained by PCM and MORE, respectively

Table 19
The p-values of the Wilcoxon rank−sum tests to com-
pare MORE against PCM in terms of AvgNumMdf
on the problem instances of STE, MS, BRS and PCS.
All p-values show statistically significant difference at
the level of 0.05.

problem instance p-value

STE 3.0161E-11
MS 3.0199E-11
BRS 3.0123E-11
PCS 3.0029E-11

PCM MORE

5

6

7

8

9

10

11

12

MS

PCM MORE

9.5

10

10.5

11

11.5

12

12.5

BRS

PCM MORE

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

PCS

PCM MORE

A
v
g

N
u

m
M

d
f

4

4.5

5

5.5

6

STE

Figure 19: Boxplots of the average number of ele-
ments modified by PCM (left) and MORE (right) for
the four problem instances STE, MS, BRS and PCS,
respectively.

5.4. Results for RQ4 (Comparison between PB
and MORE on the explanations for results)
The mean avgNumRul+ and avgNumMdf+

across 30 runs for MORE, PBcost and PBtime are
shown in Tables 21 and 22, respectively. Table 23
presents the results of Wilcoxon rank-sum tests to com-
pare MORE against PBcost and PBtime. They show
that MORE is significantly better than PBcost and
PBtime with respect to themetrics of avgNumRul+ and
avgNumMdf+.

From Table 21, we can see that avgNumRul+
and avgNumMdf+ are improved by at least 33%
and 53% by MORE with respect to PBcost, respec-
tively. From Table 22, we observe that MORE re-
duces avgNumRul+ and avgNumMdf+ by at least
33% and 35% against PBtime. Figures 21 and 22
further illustrate the significantly better avgNumRul+
and avgNumMdf+ obtained byMORE in comparison
with PBcost’s and PBtime’s.

Youcong Ni et al.: Page 30 of 40

Short Title of the Article

Table 20
An example for BRS on how to obtain the resulting
SA from the initial SA by applying the predefined
rules, based on the solution with the best response
time obtained by MORE

Step Rule Explanation

1 Rule 1 Component UserManagement is redeployed
on server1 from server2 because of the high-
est utilisation of server2

2 Rule 11 Component WebServer is replaced by its al-
ternative component WebServer3 because of
the high utilisation of WebServer

3 Rule 18 Component DB is redeployed on server1 from
server3 because only one component DB was
deployed on server3

4 Rule 5 Component CacheInfo is redeployed on
server1 from server4 because component
CacheInfo has the highest utilisation rate and
interacts with component DB.

5 Rule 11 Component WebServer3 is replaced by its al-
ternative component WebServer2 because of
the highest utilisation of WebServer3

6 Rule 1 Component Scheduler is redeployed on
server1 from server2 because of the highest
utilisation of server2

7 Rule 1 Component DB is redeployed on server4 from
server1 because of the highest utilisation of
server1

8 Rule 3 The processing rate of server1 is increased
to 19.9999 GHz from 10GHz because of the
highest utilisation of server1

9 Rule 19 The processing rate of server2 is decreased
to 7.8313 GHz from 10.0 GHz because of
the lowest utilisation of server2

10 Rule 1 Component coreOnlineEngine is redeployed
on server2 from server4 because of the high-
est utilisation of server4

11 Rule 3 The processing rate of server2 is increased
to 14.7206 GHz from 7.8313 GHz because
of the highest utilisation of server2

12 Rule 3 The processing rate of server4 is increased
to 19.9940 GHz from 10GHz because of the
highest utilisation of server4

Table 21
Mean values of metrics avgNumRul+ and
avgNumMdf+ for PBcost and MORE meth-
ods on the two problem instances of WebAPP and
IES

avgNumRul+ avgNumMdf+
WebApp IES WebApp IES

PBcost 9 8 34 79
MORE 6 5 16 35
the percentage of
improvement of
MORE relative to PBcost 33% 38% 53% 56%

Table 22
Mean values of metrics avgNumRul+ and
avgNumMdf+ for PBtime and MORE meth-
ods on the two problem instances of WebApp and
IES

avgNumRul+ avgNumMdf+
WebApp IES WebApp IES

PBtime 9 8 26 79
MORE 6 5 17 35
the percentage of
improvement of
MORE relative to PBtime 33% 38% 35% 56%

The answer to RQ 4 shows that MORE can obtain
better explanations for results by using fewer rules and
modifying fewer architectural elements relatively. To
further illustrate this point, we give the LQNmodels of
the initial SA and the resulting SA obtained by PBcost
and PBtime for WebApp in Figures 23(a), (b), (c), re-
spectively.

Figure 23 (d) presents the resulting LQN model
obtained by MORE through the following three steps.
Firstly, the solution set S is acquired by computing the
intersection of sets �cost and �time (see Eq.(13)). Specif-
ically, any one of S is better than the solutions obtained
by PBcost and PBtime with respect to the response time
and cost. Secondly, the solution X∗ with the shortest
response time is picked out from S. Thirdly, the result-
ing LQN model, which is used to intuitively compare
MOREwith PBcost and PBtime, is obtained through se-
quentially applying the modifications denoted by X∗

into the initial LQN model. In Figure 23 (b), (c) and
(d), the red elements were modified elements with re-
spect to the initial LQN model. By counting these ele-
ments, we can observe that MORE modified fewer el-
ements than PBcost and PBtime. Furthermore, the se-
quences of rules corresponding to the three resulting
LQN models obtained by PBcost, PBtime and MORE
are < r2, r2, r2, r2, r2, r5, r3, r4 >, < r2, r2, r2, r2, r2,
r3, r4, r2, r5 > and < r5, r3, r2, r4, r2 >, respectively.
It is worth noting that, for comparison purposes, the
rule numbers in the last sequence have been replaced
according to mapping relation of rules between MORE
and PB (PBcost and PBtime). By comparing these se-
quences, we observe that MORE applied fewer rules

Youcong Ni et al.: Page 31 of 40

Short Title of the Article

than PBcost and PBtime. Thus, compared to PBcost
and PBtime, MORE can obtain shorter response time
and lower cost, not only applying fewer rules but also
modifying fewer elements.

Table 23
The p-values of metrics avgNumRul+ and
avgNumMdf+ on the problem instances of We-
bApp and IES for comparing MORE against PBcost
and PBtime at the level of significance of 0.05

indicator
WebApp IES

PBcost PBtime PBcost PBtime

avgNumRul+ 1.2108E-12 1.2118E-12 1.2118E-12 1.2118E-12
avgNumMdf+ 1.2098E-12 1.2108E-12 1.2108E-12 1.2108E-12

costPB MORE

a
v
g
N

u
m

M
d
f +

30

35

40

45

50

55

60

65

70

75

80

IES

costPB MORE

a
v
g
N

u
m

R
u
l +

4

5

6

7

8

9

webApp

costPB MORE

a
v
g
N

u
m

M
d
f +

15

20

25

30

35
webApp

costPB MORE

a
v
g
N

u
m

R
u
l +

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

IES

Figure 21: Boxplots using metrics avgNumRul+ and
avgNumMdf+, to evaluate the explanations for the
results obtained by PBcost (left) and MORE (right)
in the problem instances of WebApp (left) and IES
(right)

In this section, MORE is applied to six problem in-
stances with different scale and categories in order to
answer from RQ1 to RQ4. The experimental results
show that MORE is significantly better than PCM and
PB on the quality of solutions and explanations for re-
sults. Therefore, MORE method has good usability.

6. Threats to validity
It is widely recognised that several factors can bias

the validity of experimental studies. In this section, we
discuss the validity of our study based on three types
of threats, namely construct, internal, and external va-
lidity. Construct validity concerns the methodology

employed to construct the experiment. Internal valid-
ity concerns possible bias in the way in which the re-
sults were obtained, while external validity concerns
the possible bias of choice of experimental subjects.

timePB MORE

a
v
g
N

u
m

R
u
l +

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

webApp

time
PB MORE

a
v
g
N

u
m

M
d
f +

12

14

16

18

20

22

24

26

webApp

timePB MORE

a
v
g
N

u
m

R
u
l +

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

IES

timePB MORE

a
v
g
N

u
m

M
d
f +

30

35

40

45

50

55

60

65

70

75

80

IES

Figure 22: Boxplots using metrics avgNumRul+ and
avgNumMdf+, to evaluate the explanations for the
results obtained by PBtime (left) and MORE (right)
in the problem instances of WebApp (left) and IES
(right)

In our study, construct validity threats may arise
from the choice of PB method and PCM method for
the comparison with our method. In architecture-based
performance optimisation, there are many rule-based
methods and metaheuristic-based methods. However,
PB and PCM are representative of these two kinds
of methods, respectively. And they all used indus-
trial problem instances and considered other quality at-
tributes when performance is optimised. Another treat
to construct validity can arise from the fact that our
randomised search rules are not complete. For this
threat, we have collected several architectural tactics
for performance improvement and defined them by ran-
domised search rules. Additional tactics will be col-
lected in future work. Software architects can extend
the randomised search rules in terms of requirements.

Internal validity threats can stem from the stochas-
tic nature of the optimisation algorithms employed in
our study. To mitigate these threats, we adopted the
recommended practice for experimental studies in this
research area (Arcuri and Briand, 2011). In particular,
we reported results over 30 repeated runs of each exper-
iment, and employed statistical tests to check for signif-

Youcong Ni et al.: Page 32 of 40

Short Title of the Article

(a) The initial LQN model (b) The resulting LQN model obtained by PBcost
with 21 modified elements compared to the initial
model

(c) The resulting LQN model obtained by PBtime
with 21 modified elements compared to the initial
model

(d) The resulting LQN model obtained by MORE
with 17 modified elements compared to the initial
model

Figure 23: The resulting LQN models obtained by PBcost, PBtime and MORE methods in comparison to the
initial LQN model based on WebApp. Elements annotated in red are those modified architectural elements
with respect to the initial ones.

icance on the achieved results. We used the Wilcoxon
rank-sum tests to check for the statistical significance
of the results achieved by the optimisation methods. As
it is inadequate to merely show statistical significance
alone, we used the Vargha-Delaney Â12 metric for the
effect size recommended by Arcuri and Briand (2011).

Our approach to external threats is also relatively
standard in the empirical software engineering litera-
ture. Our experimental subjects are the applications
which appear in the compared methods or are classical
in the field of architecture-based performance optimi-
sation. These applications range over the diverse do-
mains and their scalability varies from small to larger
industrial size. Despite all this, we cannot claim that

our results generalise beyond these subjects studied.

7. Related work
Diagnosis and rule-based methods utilize practi-

cal knowledge of performance improvement when opti-
mising SA. They can help architectural stakeholders to
understand optimization results. While metaheuristic-
basedmethods can find SAswith better performance by
exploring larger optimisation space. The central con-
tribution of this paper is to find good and explicable
performance improvement solutions at the SA level by
combining relatedmethods, such as diagnosis methods,
rule-based and metaheuristic-based optimisation meth-
ods. Here, we further discuss the state-of-the-art and

Youcong Ni et al.: Page 33 of 40

Short Title of the Article

pinpoint some of their shortcomings.
7.1. Diagnosis methods

After many years of research and practice, a signif-
icant amount of performance improvement knowledge
has been obtained from the activities of optimising per-
formance. Smith and Williams (2003) systematically
summarised the common performance problems in SA
design as well as solutions to these problems. The 14
kinds of performance antipatterns are described in nat-
ural language by them. In order to automatically diag-
nose and improve performance flaws, many approaches
for performance antipattern modelling, detection and
solving have emerged in recent years.

When performance antipatterns are automatically
detected and solved, the numerical parameters included
in the precondition of performance antipatterns are rep-
resented as thresholds referring to either performance
indices (e.g., a resource utilization) or design features
(e.g., message traffic). However, Arcelli et al. (2013)
has validated that these thresholds heavily affected de-
tection and refactoring activities, and need to be set
by heuristics. The thresholds in performance antipat-
terns were defined by the average number of perfor-
mance indices or design features (Cortellessa et al.,
2014; Sanctis, M. D. et al., 2017). Based on the spec-
ified thresholds, when multiple antipatterns are trig-
gered, it will be left the architect to choose which an-
tipattern to solve and then refactor SA. To mitigate the
problems of threshold setting and antipattern selection,
the detected performance antipatterns along with their
occurrence probabilities (Trubiani et al., 2014) were
proposed and applied in a fuzzy context where thresh-
old values cannot be determined, but only their lower
and upper bounds were known.

Although the tool provided by the diagnosis meth-
ods can obtain a list of the detected performance an-
tipatterns that may cause performance problems, archi-
tects often need to manually do three tasks: choose an
antipattern from the list, choose an action supposed to
be the best one from refactoring actions given by the
selected antipattern, and apply this action into SA to
improve performance. The diagnosis process does not

stop until the software architects remove all the found
antipatterns or until performance requirements are met.
7.2. Rule-based methods

Rule-based methods provided the ability to auto-
matically apply performance improvement knowledge
from antipatterns or design tactics into SA in the form
of rules. These methods used optimisation algorithms
to obtain good SAs by combining the predefined rules.

The ArchE framework (Mcgregor et al., 2007) was
proposed to support the software designers in creating
architectures that meet quality requirements. It embod-
ies knowledge of quality attributes and the relation be-
tween the achievement of quality requirements and ar-
chitectural design. However, the suggestions (or tac-
tics) are not well explained, and it is not clear to which
extent the approach can be applied. An approach to op-
timise deployment and configuration decisions in the
context of distributed, real-time, and embedded
component-based systems (Kavimandan and Gokhale,
2009)was presented. Enhanced bin packing algorithms
and schedulability analysis have been used to make
fine-grained assignments of components to different
middleware containers, since they are known to impact
the system’s performance and resource consumption.
However, the scope of this approach is limited to de-
ployment and configuration features.

PB method (Xu, 2012) adopted tree-based search
algorithm to optimise performance and cost. During
optimisation, each rule is used in a fixed order deter-
mined by the predefined search strategies. PB can ex-
plain how to obtain the resulting SA from the initial
SA by the best search path of rule applications. How-
ever, due to the predefined search strategies, the search
space is limited and suboptimal solutions may be ob-
tained. Our previous works (Du et al., 2015b,a) in-
troduced metaheuristic algorithms into PB method to
search larger performance improvement space. In one
paper (Du et al., 2015b), GA was proposed to optimise
performance and the adaptive mutation operator was
designed by considering history information of rule ap-
plications to speed up the algorithm run. Except for
performance, the number of rules with improvement

Youcong Ni et al.: Page 34 of 40

Short Title of the Article

effect was also considered as a goal and optimised by
NSGA-II in another paper (Du et al., 2015a).

Based on performance antipatterns expressed as
first-order logics , Arcelli et al. (2018b) implemented a
set of antipattern rules on UML. And these rules were
used in tree-based search algorithm to explore SA opti-
misation space for finding the solutions with better per-
formance. Furthermore, in EASIER approach (Arcelli
et al., 2018a), antipattern rules were also implemented
on Æmilia ADL and applied by custom NSGA-II algo-
rithm to optimise SA with respect to performance, the
intensity of changes, and the number of performance
antipatterns occurring in the SA. However, there are
no industrial problem instances investigated in the both
papers (Arcelli et al., 2018b,a).

In rule-based methods, threshold in the precondi-
tion and improvement amplitude in the action of each
used rule need to be set before optimisation by soft-
ware architects. Setting an appropriate threshold is
rather hard because it needs a deep understanding of
performance improvement knowledge and SA to be op-
timized in hand. At the same time, the explanation with
threshold is not particularly convincing and reliable for
architectural stakeholders. What’s more, in each used
rule, the predefined threshold and the amplitude can po-
tentially prevent optimisation algorithms from search-
ing larger space. Among existing rule-based methods,
some methods (Arcelli et al., 2018b,a) have not been
validated by industrial problem instances, other meth-
ods (Arcelli et al., 2018b,a; Du et al., 2015a,b) have
not considered cost when optimisating performance.
Therefore, PB method is regarded as a suitable com-
pared method in this paper.
7.3. Metaheuristic-based methods

Based on the different ADLs, such as PCM, UML
and East-AADL, several metaheuristic approaches for
performance optimisation have been proposed in terms
of LQN or queueing network, which are popular per-
formance models. To automatically find the SAs with
better performance, these approaches use metaheuris-
tic algorithms to search the design space, which is de-
termined by a few DoFs, such as component selec-

tion, component allocation and resource configuration.
Some methods take the performance as a single quality
attribute to be optimised. Others are used to optimise
performance and other quality attributes such as relia-
bility and safety.
7.3.1. Performance as a single quality attribute to be

optimised
Response time, utilisation, throughput are consid-

ered as the performance indices to be optimised in-
dependently or balanced against design constraint (i.e.
cost) (Li et al., 2010; Amoozegar, 2015; Li et al., 2011)
during optimisation.

Based on PCM, Martens and Koziolek (2009) ap-
plied steepest-ascent hill-climbing algorithm to opti-
mise response time. Li et al. (2010) proposed a kind
of performance model for SAP ERP application based
on PCM and LQN, and then used S-Metric Selection
Evolutionary Multi-objective Optimisation Algorithm
to optimise response time and hardware cost. Tribas-
tone (2014) defined a fluid model of the closed queu-
ing networkwith generalised processor sharing service.
Based on this model, they used a genetic algorithm to
find the best tradeoff between throughput and cost for
a canonical three-layered SA.

Based on UML with MARTE, Amoozegar (2015)
proposed a multi-objective gravitational search algo-
rithm to optimise response time and hardware costs.
Based on East-AADL, Li et al. (2011) applied evolu-
tionary multi-objective optimisation algorithms, such
as NSGA-II and SPEA2, to optimise data flow latency,
processor utilisation and cost. Their experimental re-
sults indicate that the evolutionary multi-objective al-
gorithms are suitable for large problems.
7.3.2. Optimising performance and other quality

attributes
In several studies, based on different ADLs, other

quality attributes or design constraints (i.e. cost) are
also regarded as optimisation objectives alongwith per-
formance in order to find the better tradeoffs between a
set of quality attributes.

Based on PCM, Martens et al. (2009) presented

Youcong Ni et al.: Page 35 of 40

Short Title of the Article

multi-criteria genetic algorithm to optimise perfor-
mance and reliability. Moreover, Martens et al. used
NSGA-II to optimise performance, dependability and
costs (Martens and Koziolek, 2009), to optimise per-
formance, availability, and cost (Martens et al., 2010a;
Koziolek et al., 2013) and to optimise performance,
reliability and cost (Martens et al., 2010b; Reussner,
2010). Furthermore, SMDE4PO (Du et al., 2017) and
PerOpteryx methods (Koziolek et al., 2011a; Koziolek,
2014) were proposed to optimise performance and cost.
SMDE4PO (our previous work) introduced surrogate
model into multi-objective differential evolutionary al-
gorithm to reduce computational cost incurred by per-
formance evaluation. PerOpteryx method used rules
to describe design tactics and integrated these rules
into NSGA-II as heuristic operators to speed up search
for good candidates. However, these rules contain the
thresholds in precondition and the improvement am-
plitudes in action. When rules as heuristic operators
are applied, and the preconditions of multiple rules are
met, PerOpteryx generates multiple candidates. To de-
cide for one candidate, PerOpteryx also requires archi-
tects to set the weight of each rule. Meanwhile, in Per-
Opteryx method, an individual is encoded as DoFI and
not related to rules. Not only rules but also crossover
and mutation operators can be used to generate candi-
dates. As a result, PerOpteryx cannot explain how to
obtain one candidate by only use of rules.

Based on AADL, Meedeniya et al. (2012) pro-
posed a framework tool Archaeopteryx which supports
NSGA-II to optimise performance and reliability of
the embedded system. NSGA-II (Etemaadi and Chau-
dron, 2012), SPEA2 (Etemaadi et al., 2013) and SMS-
EMOA (Ramin, 2014) are used to optimise perfor-
mance, safety and cost. To enlarge the search space,
Etemaadi further proposed architecture topology and
load balancing as two novel DoFs (Etemaadi and Chau-
dron, 2015). Their works are remarkable and can im-
prove system architecture design and find new archi-
tectural solutions. Rahmoun et al. (2015, 2017) used
model transformation rules to implement the modifica-
tions for DoFI in SA, and NSGA-II to search the se-

quences of rule applications while optimising perfor-
mance and reliability. Although Rahmoun’s method
defined themodel transformation rules tomodifyDoFI,
these rules cannot be used to describe performance im-
provement knowledge due to the shortage of perfor-
mance information. Performance information is only
acquired by performance evaluation and not included
in SA. As a result, Rahmoun’s method cannot explain
the cause of transformation.

Based on UML, SQME (Sedaghatbaf and Azgomi,
2019) was proposed to automatically optimise SA with
respect to performance, reliability and cost by using
NSGA-II algorithm. Specially, this method introduced
the belief and plausibility measures to define a new
dominance relation, considering the uncertainty of pa-
rameters (e.g., workload and resource demands). How-
ever, during architecture optimization process in the
SQME, the uncertain parameters need to be estimated
by domain experts. Therefore, the value of the param-
eters are possibly biased so as to do harm to quality of
optimisation results. In addition, the problem instance
that they investigated was rather small.

Most of metaheuristic-based methods ignore the
performance improvement knowledge represented by
performance antipatterns and architectural tactics. To
some extent, the SA is randomly modified based on
DoFIs. And the optimisation results can be only ex-
plained according to the differences between the initial
SA and the resulting SA. We call that metaheuristic-
based methods have the trivial explicability consider-
ing that the causes of modifications are absent. The
disadvantage on trivial explicability is that it is hard
for architectural stakeholders to understand the opti-
misation results and select SAs when trading off other
quality attributes. Among a variety of metaheuristic-
based methods, PCM method is selected as compared
method, two reasons are given below. Firstly, PCM
method is a hybrid multi-objective performance opti-
misation method. The experimental results show that
PCM can obtain better solutions than the pure evolu-
tionary optimization method that only uses an original
multi-objective evolutionary algorithm. Secondly, the

Youcong Ni et al.: Page 36 of 40

Short Title of the Article

cases in PCM have different scale and coverA various
categories so that they are enough to support our com-
parative experiments.

8. Conclusions
To address the challenges of limited search space

in rule-based methods and lacking explanations for re-
sults obtained in metaheuristic-based methods, we pre-
sented an approach named MORE to performance op-
timisation at the SA level. First, we defined MORE-R
which do not need preset thresholds and action ampli-
tudes. As a result, MORE-R not only are easily used by
software architects but also provide explanation with-
out parameters. Then, MORE-P was presented by
fully considering the relationship between all possible
composite applications of rules and each optimisation
goals. Furthermore, we designed MORE-EA to solve
the MORE-P by introducing a do-nothing rule and
proposing evolutionary operators with repair mecha-
nism. The experimental results show that MORE can
obtain more explicable and higher quality solutions
than those of PCM and PB methods.

Considering the complexity introduced by comput-
ing objective value in MORE, we will introduce the
predictive models to reduce time consuming of solving
objective value so that MORE will obtain better scala-
bility in the future. Additionally, more DoFs and ran-
domised search rules will be also considered.

Acknowledgments
This work is supported by the Royal Society In-

ternational Exchanges (IE151226), Talent support pro-
gram of High school in the new century of Fujian
Province (Year 2017), the Natural Science Foundation
of Fujian Province (Nos.2020J01165, 2017J01498),
the Natural Science Foundation of Hubei Province (No.
2018CFB689).

References
Aleti, A., Buhnova, B., Grunske, L., Koziolek, A. , Meedeniya, I. , 2013.

Software Architecture Optimization Methods: A Systematic Literature
Review. IEEE Transactions on Software Engineering 39, 658–683.
doi:10.1109/TSE.2012.64.

Amoozegar, M.e.a., 2015. A multi-objective approach to model-driven per-
formance bottlenecks mitigation. Scientia Iranica. Transaction D, Com-
puter Science & Engineering, Electrical 22, 1018–1030.

Arcelli, D., Cortellessa, V., D’Emidio, M., Di Pompeo, D., 2018a. EAS-
IER: An Evolutionary Approach for multi-objective Software archItec-
turE Refactoring, in: 2018 IEEE International Conference on Software
Architecture (ICSA), IEEE, Seattle, USA. pp. 105–10509.

Arcelli, D., Cortellessa, V., Di Pompeo, D., 2018b. Performance-driven
software model refactoring. Information and Software Technology 95,
366–397.

Arcelli, D., Cortellessa, V., Trubiani, C., Wu, W., Margaria, T., Padberg, J.,
Taentzer, G., 2013. Experimenting the influence of numerical thresh-
olds on model-based detection and refactoring of performance antipat-
terns, in: ECEASST.

Arcuri, A., Briand, L., 2011. A practical guide for using statistical tests to
assess randomized algorithms in software engineering, in: Proceedings
of the 33rd International Conference on Software Engineering, ACM,
Waikiki, Honolulu, HI, USA. pp. 1–10.

Becker, S., Koziolek, H., Reussner, R., 2009. The Palladio component
model for model-driven performance prediction. Journal of Systems
and Software 82, 3–22. doi:10.1016/j.jss.2008.03.066.

Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz,
E., Madachy, R., Reifer, D.J., Steece, B., 2009. Cost Estimation with
COCOMO II. 1st ed., Prentice Hall Press, Upper Saddle River, NJ,
USA.

Brosch, F., Buhnova, B., Koziolek, H., Reussner, R., 2011. Reliability pre-
diction for fault-tolerant software architectures, in: Proceedings of the
Joint ACMSIGSOFTConference – QoSA andACMSIGSOFT Sympo-
sium – ISARCS on Quality of Software Architectures – QoSA and Ar-
chitecting Critical Systems – ISARCS, ACM, Boulder, Colorado, USA.
pp. 75–84.

Brosch, F., Koziolek, H., Buhnova, B., Reussner, R., 2012. Architecture-
based reliability prediction with the palladio component model. Soft-
ware Engineering, IEEE Transactions on 38, 1319–1339.

Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., Kounev, S.,
2015. Quantitative Evaluation of Model-Driven Performance Analysis
and Simulation of Component-Based Architectures. IEEE Transactions
on Software Engineering 41, 157–175. doi:10.1109/TSE.2014.2362755.

Chen, Z., Chen, B., Xiao, L., Wang, X., Chen, L., Liu, Y., Xu, B., 2018.
Speedoo: Prioritizing performance optimization opportunities, in: 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), IEEE. pp. 811–821.

Cortellessa, V., Marco, A.D., Trubiani, C., 2014. An approach for model-
ing and detecting software performance antipatterns based on first-order
logics. Software & Systems Modeling 13, 391–432.

Deb, K., 2011. Multi-objective optimisation using evolutionary algorithms:
an introduction, in: Multi-objective evolutionary optimisation for prod-
uct design and manufacturing. Springer, pp. 3–34.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist
multiobjective genetic algorithm: NSGA-II. Evolutionary Computa-
tion, IEEE Transactions on 6, 182–197.

Distefano, S., Scarpa, M., Puliafito, A., 2011. From UML to Petri Nets:
The PCM-Based Methodology. IEEE Transactions on Software Engi-
neering 37, 65–79. doi:10.1109/TSE.2010.10.

Du, X., Ni, Y., Wu, X., Ye, P., Yao, X., 2017. Surrogate Model Assisted
Multi-objective Differential EvolutionAlgorithm for PerformanceOpti-
mization at Software Architecture Level, in: Asia-Pacific Conference on

Youcong Ni et al.: Page 37 of 40

http://dx.doi.org/10.1109/TSE.2012.64
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/TSE.2014.2362755
http://dx.doi.org/10.1109/TSE.2010.10

Short Title of the Article

Simulated Evolution and Learning.(SEAL 2017), Springer, Shenzhen,
China. pp. 334–346.

Du, X., Ni, Y., Ye, P., 2015a. AMulti-objective Evolutionary Algorithm for
Rule-based Performance Optimization at Software Architecture Level,
in: Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation, ACM, Madrid,
Spain. pp. 1385–1386. doi:10.1145/2739482.2764705.

Du, X., Yao, X., Ni, Y., Minku, L.L., Ye, P., Xiao, R., 2015b. An evolu-
tionary algorithm for performance optimization at software architecture
level, in: 2015 IEEE Congress on Evolutionary Computation (CEC),
IEEE, Sendai, Japan. pp. 2129–2136. doi:10.1109/CEC.2015.7257147.

Durillo, J.J., Nebro, A.J., 2011. jMetal: A Java framework for multi-
objective optimization. Advances in Engineering Software 42, 760–
771.

Eiben, A.E., Smith, J.E., 2003. Introduction to Evolutionary Computing.
Natural Computing Series, Springer Berlin Heidelberg.

Etemaadi, R., Chaudron, M.R., 2012. Varying topology of component-
based system architectures using metaheuristic optimization, in: Soft-
ware Engineering and Advanced Applications (SEAA), 2012 38th EU-
ROMICRO Conference On, IEEE, Cesme, Izmir, Turkey. pp. 63–70.

Etemaadi, R., Chaudron, M.R., 2015. New degrees of freedom in meta-
heuristic optimization of component-based systems architecture: Ar-
chitecture topology and load balancing. Science of Computer Program-
ming 97, 366–380.

Etemaadi, R., Lind, K., Heldal, R., Chaudron, M.R., 2013. Quality-driven
optimization of system architecture: Industrial case study on an auto-
motive sub-system. Journal of Systems and Software 86, 2559–2573.

Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E., 2005. A tutorial on
the performance assessment of stochastic multiobjective optimizers, in:
Third International Conference on Evolutionary Multi-Criterion Opti-
mization, Springer, Guanjuato,Mexico. p. 240.

Gokhale, S.S., 2007. Architecture-Based Software Reliability Analysis:
Overview and Limitations. IEEE Transactions on Dependable and Se-
cure Computing 4, 32. doi:http://dx.doi.org/10.1109/TDSC.2007.4.

Grissom, R.J., Kim, J.J., 2005. Effect Sizes for Research: A Broad Practical
Approach. Lawrence Earlbaum Associates.

Immonen, A., Niemelä, E., 2008. Survey of reliability and availability pre-
diction methods from the viewpoint of software architecture. Software
and Systems Modeling 7, 49–65. doi:10.1007/s10270-006-0040-x.

ISO, 2011. COSMIC International Standard(ISO/IEC 19761:2011).
Jong, K.D., 2016. Evolutionary computation: a unified approach, in: Pro-

ceedings of the 2016 on Genetic and Evolutionary Computation Con-
ference Companion, pp. 185–199.

Kavimandan, A., Gokhale, A., 2009. Applying Model Transformations to
Optimizing Real-TimeQoS Configurations in DRE Systems, in: Miran-
dola, R., Gorton, I., Hofmeister, C. (Eds.), Architectures for Adaptive
Software Systems: 5th International Conference on the Quality of Soft-
ware Architectures, QoSA 2009, East Stroudsburg, PA, USA, June 24-
26, 2009 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 18–35. doi:10.1007/978-3-642-02351-4_2.

Kounev, S., 2006. Performance Modeling and Evaluation of Distributed
Component-Based Systems Using Queueing Petri Nets. IEEE Transac-
tions on Software Engineering 32, 486–502. doi:10.1109/TSE.2006.69.

Koziolek, A., 2014. Automated Improvement of Software Architecture
Models for Performance and Other Quality Attributes. volume 7 of The
Karlsruhe Series on Software Design and Quality. KIT Scientific Pub-
lishing.

Koziolek, A., Ardagna, D., Mirandola, R., 2013. Hybrid multi-attribute
QoS optimization in component based software systems. Journal of
Systems and Software 86, 2542–2558.

Koziolek, A., Koziolek, H., Reussner, R., 2011a. Peropteryx: Automated
application of tactics in multi-objective software architecture optimiza-
tion, in: Proceedings of the Joint ACM SIGSOFT Conference–QoSA
and ACM SIGSOFT Symposium–ISARCS on Quality of Software Ar-
chitectures–QoSA and Architecting Critical Systems–ISARCS, ACM,
Boulder, Colorado, USA. pp. 33–42.

Koziolek, H., Schlich, B., Bilich, C., Weiss, R., Becker, S., Krogmann,
K., Trifu, M., Mirandola, R., Koziolek, A., 2011b. An industrial case
study on quality impact prediction for evolving service-oriented soft-
ware, in: Proceedings of the 33rd International Conference on Software
Engineering, IEEE, Honolulu, HI, USA. pp. 776–785.

Li, H., Casale, G., Ellahi, T., 2010. SLA-driven planning and opti-
mization of enterprise applications, in: Proceedings of the First Joint
WOSP/SIPEW International Conference on Performance Engineering,
ACM, San Jose, California, USA. pp. 117–128.

Li, R., Etemaadi, R., Emmerich, M.T., Chaudron, M.R., 2011. An evolu-
tionary multiobjective optimization approach to component-based soft-
ware architecture design, in: Evolutionary Computation (CEC), 2011
IEEE Congress On, IEEE, New Orleans, LA, USA. pp. 432–439.

Martens, A., Ardagna, D., Koziolek, H., Mirandola, R., Reussner, R.,
2010a. A Hybrid Approach for Multi-attribute QoS Optimisation in
Component Based Software Systems, in: Heineman, G.T., Kofron,
J., Plasil, F. (Eds.), Research into Practice – Reality and Gaps: 6th
International Conference on the Quality of Software Architectures,
QoSA 2010, Prague, Czech Republic, June 23 - 25, 2010. Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 84–101. doi:10.
1007/978-3-642-13821-8_8.

Martens, A., Brosch, F., Reussner, R., 2009. Optimising multiple quality
criteria of service-oriented software architectures, in: Proceedings of
the 1st InternationalWorkshop onQuality of Service-Oriented Software
Systems, ACM, Amsterdam, The Netherlands. pp. 25–32.

Martens, A., Koziolek, H., 2009. Automatic, model-based software perfor-
mance improvement for component-based software designs. Electronic
Notes in Theoretical Computer Science 253, 77–93.

Martens, A., Koziolek, H., Becker, S., Reussner, R., 2010b. Automatically
improve software architecture models for performance, reliability, and
cost using evolutionary algorithms, in: Proceedings of the First Joint
WOSP/SIPEW International Conference on Performance Engineering,
ACM, California, USA. pp. 105–116.

Mcgregor, J.D., Bachmann, F., Bianco, P., Klein, M., 2007. Using ArchE
in the Classroom: One Experience. TECHNICAL NOTE CMU/SEI-
2007-TN-001. Carnegie Mellon University.

Meedeniya, I., Aleti, A., Avazpour, I., Amin, A., 2012. Robust
archeopterix: Architecture optimization of embedded systems under un-
certainty, in: Software Engineering for Embedded Systems, 2012 2nd
International Workshop On, IEEE, Zurich, Switzerland. pp. 23–29.

Meier, J.D., Vasireddy, S., Babbar, A., Mackman, A., 2004. Improving.
NET Application Performance and Scalability. Microsoft Corporation.

Meunier, H., Talbi, E.G., Reininger, P., 2000. A multiobjective genetic al-
gorithm for radio network optimization, in: Proceedings of the 2000
Congress on Evolutionary Computation. CEC, IEEE, La Jolla, CA,
USA. pp. 317–324.

Minku, L.L., Yao, X., 2014. How to Make Best Use of Cross-company
Data in Software Effort Estimation?, in: Proceedings of the 36th Inter-

Youcong Ni et al.: Page 38 of 40

http://dx.doi.org/10.1145/2739482.2764705
http://dx.doi.org/10.1109/CEC.2015.7257147
http://dx.doi.org/http://dx.doi.org/10.1109/TDSC.2007.4
http://dx.doi.org/10.1007/s10270-006-0040-x
http://dx.doi.org/10.1007/978-3-642-02351-4_2
http://dx.doi.org/10.1109/TSE.2006.69
http://dx.doi.org/10.1007/978-3-642-13821-8_8
http://dx.doi.org/10.1007/978-3-642-13821-8_8

Short Title of the Article

national Conference on Software Engineering, ACM, Hyderabad, India.
pp. 446–456. doi:10.1145/2568225.2568228.

Navarro, E., Cuesta, C.E., Perry, D.E., González, P., 2013. Antipatterns for
architectural knowledge management. International Journal of Informa-
tion Technology & Decision Making 12, 547–589.

OMG, 2017. UML Superstructure Specification, v2.1.1.
Poort, E., Vliet, E.V.D., 2015. Architecting in a Solution Costing Context:

Early Experiences with Solution-Based Estimating, in: Software Archi-
tecture (WICSA), 2015 12thWorking IEEE/IFIP Conference On, IEEE,
Montreal, QC, Canada. pp. 127–130.

Rahmoun, S., Borde, E., Pautet, L., 2015. Automatic selection and com-
position of model transformations alternatives using evolutionary algo-
rithms, in: Proceedings of the 2015 European Conference on Software
Architecture Workshops, ACM, Dubrovnik, Cavtat, Croatia. p. Article
No. 25.

Rahmoun, S., Mehiaoui-Hamitou, A., Borde, E., Pautet, L., Soubiran, E.,
2017. Multi-objective exploration of architectural designs by composi-
tion of model transformations. Software & Systems Modeling , 1–21.

Ramin, E.I., 2014. Quality-Driven Multi-Objective Optimization of Soft-
ware Architecture Design: Method, Tool, and Application. Ph.D. the-
sis. Leiden Institute of Advanced Computer Science (LIACS), Faculty
of Science, Leiden University.

Reussner, R., 2010. Domain-Specific Heuristics for Automated Improve-
ment of PCM-Based Architectures. Ph.d. dissertation. University of
Karlsruhe. Karlsruhe, Germany.

Salcedo-Sanz, S., 2009. A survey of repair methods used as constraint han-
dling techniques in evolutionary algorithms. Computer science review
3, 175–192.

Sanctis, M. D., Trubiani, C. , Cortellessa, V. , Marco, A. D., Flamminj,
M., 2017. A model-driven approach to catch performance antipatterns
in adl specifications. Inf. Softw. Technol. 83, 35–54.

Sarro, F., Petrozziello, A., Harman, M., 2016. Multi-objective Software
Effort Estimation, in: Proceedings of the 38th International Confer-
ence on Software Engineering, ACM,Austin, Texas, USA. pp. 619–630.
doi:10.1145/2884781.2884830.

Sedaghatbaf, A., Azgomi, M.A., 2019. SQME: A framework for modeling
and evaluation of software architecture quality attributes. Software &
Systems Modeling 18, 2609–2632.

Shepperd, M., Schofield, C., 1997. Estimating Software Project Effort Us-
ing Analogies. IEEE Trans. Softw. Eng. 23, 736–743. doi:10.1109/32.
637387.

Slot, R., 2010. A Method for Valuing Architecture-Based Business Trans-
formation and Measuring the Value of Solutions Architecture. Ph.d.
dissertation. University of Amsterdam. Amsterdam, The Netherlands.

Smith, C.U., Williams, L.G., 2003. More new software performance an-
tipatterns: Even more ways to shoot yourself in the foot, in: Computer
Measurement Group Conference, pp. 717–725.

Software Design and Quality Group, Karlsruhe Institute of Technol-
ogy, . STE. https://sdqweb.ipd.kit.edu/eclipse/palladio/examples/

releases/4.1.0/SimpleHeuristicsExample_Example.zip. 2017.
Srinivas, N., Deb, K., 1994. Muiltiobjective Optimization Using Nondom-

inated Sorting in Genetic Algorithms. Evolutionary Computation 2,
221–248. doi:10.1162/evco.1994.2.3.221.

Tribastone, M., 2013. A fluid model for layered queueing networks. IEEE
Transactions on Software Engineering 39, 744–756. doi:10.1109/TSE.
2012.66.

Tribastone, M., 2014. Efficient optimization of software performance mod-

els via parameter-space pruning, in: Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering, ACM, Dublin,
Ireland. pp. 63–73.

Tribastone, M., Gilmore, S., Hillston, J., 2012. Scalable Differential Anal-
ysis of Process Algebra Models. IEEE Transactions on Software Engi-
neering 38, 205–219. doi:10.1109/TSE.2010.82.

Trubiani, C., Koziolek, A., Cortellessa, V., Reussner, R., 2014. Guilt-based
handling of software performance antipatterns in palladio architectural
models. Journal of Systems and Software 95, 141–165.

Xu, J., 2012. Rule-based automatic software performance diagnosis and
improvement. Performance Evaluation 69, 525–550. doi:10.1016/j.
peva.2009.11.003.

Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE trans-
actions on Evolutionary Computation 3, 257–271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.,
2003. Performance assessment of multiobjective optimizers: An anal-
ysis and review. Evolutionary Computation, IEEE Transactions on 7,
117–132.

YoucongNi is currently an Associate Professor at the College ofMathemat-
ics and Informatics, Fujian Normal University(CN). He received his PhD in
Software Engineering from State Key Laboratory of Software Engineering,
Wuhan University(CN) in 2010. He was a research visitor in the University
College London for one year. His research interests include Search Based
Software Engineering (SBSE) and evolutionary computation. He has pub-
lished over 30 papers including Swarm and Evolutionary Computation, Soft
Computing, GECCO and CEC.
Xin Du is currently a Professor at the College of Mathematics and Infor-
matics, Fujian Normal University(CN). She received her PhD in Software
Engineering from State Key Laboratory of Software Engineering, Wuhan
University(CN) in 2010. She was a research visitor in the University of
Birmingham for one year. Her research interests include Search Based Soft-
ware Engineering (SBSE) and intelligent computation. Her work has been
published over 30 papers including IEEE Internet of Things Journal, Swarm
and Evolutionary Computation, Soft Computing, GECCO and CEC.
Peng Ye is currently an Associate Professor at College of Mathematics
and Computer, Wuhan Textile University (CN). He received his PhD in
Software Engineering from State Key Laboratory of Software Engineering,
Wuhan University(CN) in 2009. His research interests include search based
software architecture optimisation and evolutionary computation. He has
published over 20 papers including GECCO and CEC international confer-
ence.
Leandro L. Minku is a Lecturer in Intelligent Systems at the School of
Computer Science, University of Birmingham (UK). Prior to that, he was a
Lecturer in Computer Science at the University of Leicester(UK), and a re-
search fellow at the University of Birmingham (UK). He received the PhD
degree in Computer Science from the University of Birmingham (UK) in
2010. Dr. Minku’s main research interests are machine learning for soft-
ware engineering, search-based software engineering, machine learning for
non-stationary environments / data stream mining, and ensembles of learn-
ing machines. His work has been published in internationally renowned
journals such as IEEE Transactions on Software Engineering, ACM Trans-
actions on Software Engineering and Methodology, IEEE Transactions on
Knowledge and Data Engineering, and IEEE Transactions on Neural Net-
works and Learning Systems.

Youcong Ni et al.: Page 39 of 40

http://dx.doi.org/10.1145/2568225.2568228
http://dx.doi.org/10.1145/2884781.2884830
http://dx.doi.org/10.1109/32.637387
http://dx.doi.org/10.1109/32.637387
https://sdqweb.ipd.kit.edu/eclipse/palladio/examples/releases/4.1.0/SimpleHeuristicsExample_Example.zip
https://sdqweb.ipd.kit.edu/eclipse/palladio/examples/releases/4.1.0/SimpleHeuristicsExample_Example.zip
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1109/TSE.2012.66
http://dx.doi.org/10.1109/TSE.2012.66
http://dx.doi.org/10.1109/TSE.2010.82
http://dx.doi.org/10.1016/j.peva.2009.11.003
http://dx.doi.org/10.1016/j.peva.2009.11.003

Short Title of the Article

Xin Yao is a Chair Professor of Computer Science at the Southern Univer-
sity of Science and Technology, Shenzhen, China, and a part-time Professor
of Computer Science at the University of Birmingham, UK. He is an IEEE
Fellow, and a Distinguished Lecturer of IEEE Computational Intelligence
Society (CIS). His major research interests include evolutionary computa-
tion, ensemble learning, and their applications in software engineering.
Mark Harman is currently an engineering manager at Facebook and a part
time professor of Software Engineering in the Department of Computer Sci-
ence at University College London, where he directed the CREST centre
for ten years (2006-2017) and was Head of Software Systems Engineer-
ing (2012-2017). He is widely known for work on source code analysis,
software testing, appstore analysis and Search Based Software Engineering
(SBSE), a field he co-founded and which has grown rapidly to include over
1,600 authors spread over more than 40 countries.
Ruliang Xiao received the Ph.D. degree in computer software and the-
ory from Wuhan University,China,in 2007. He is currently a Professor
with the College of Mathematics and Informatics, Fujian Normal Univer-
sity,China.His research interests include system security engineering and
computing intelligence. He has authored three books,over 20 patents for
invention,and published over 50 papers in international journals and con-
ference proceedings. He was a recipient of the Fujian Provincial Science
and Technology Progress Award in 2016.

Youcong Ni et al.: Page 40 of 40

