
1

DDD: A New Ensemble Approach For Dealing
With Concept Drift

Leandro L. Minku, Student Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract —Online learning algorithms often have to operate in the presence of concept drifts. A recent study revealed that different
diversity levels in an ensemble of learning machines are required in order to maintain high generalisation on both old and new concepts.
Inspired by this study and based on a further study of diversity with different strategies to deal with drifts, we propose a new online
ensemble learning approach called Diversity for Dealing with Drifts (DDD). DDD maintains ensembles with different diversity levels and
is able to attain better accuracy than other approaches. Furthermore, it is very robust, outperforming other drift handling approaches in
terms of accuracy when there are false positive drift detections. In all the experimental comparisons we have carried out, DDD always
performed at least as well as other drift handling approaches under various conditions, with very few exceptions.

Index Terms —Concept drift, online learning, ensembles of learning machines, diversity.

✦

1 INTRODUCTION

ONLINE learning has been showing to be very useful
for a growing number of applications in which

training data are available continuously in time (streams
of data) and/or there are time and space constraints.
Examples of such applications are industrial process
control, computer security, intelligent user interfaces,
market-basket analysis, information filtering and predic-
tion of conditional branch outcomes in microprocessors.

Several definitions of online learning can be found
in the literature. In this work, we adopt the definition
that online learning algorithms process each training
example once “on arrival”, without the need for storage
or reprocessing [1]. In this way, they take as input a
single training example as well as a hypothesis and
output an updated hypothesis [2]. We consider online
learning as a particular case of incremental learning. The
latter term refers to learning machines that are also used
to model continuous processes, but process incoming
data in chunks, instead of having to process each training
example separately [3].

Ensembles of classifiers have been successfully used
to improve the accuracy of single classifiers in online
and incremental learning [1]–[5]. However, online en-
vironments are often non-stationary and the variables
to be predicted by the learning machine may change
with time (concept drift). For example, in an information
filtering system, the users may change their subjects of
interest with time. So, learning machines used to model
these environments should be able to adapt quickly and
accurately to possible changes.

We consider that the term concept refers to the whole
distribution of the problem in a certain point in time
[6], being characterized by the joint distribution p(x, w),

L. Minku and X. Yao are with the Centre of Excellence for Research in
Computational Intelligence and Applications (CERCIA), School of Computer
Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT,
UK, e-mail: {L.L.Minku,X.Yao}@cs.bham.ac.uk.

where x represents the input attributes and w represents
the classes. So, a concept drift represents a change in the
distribution of the problem [7], [8].

Even though there are some ensemble approaches
designed to handle concept drift, only very recently a
deeper study of why, when and how ensembles can be
helpful for dealing with drifts has been done [9]. The
study reveals that different levels of ensemble diversity
are required before and after a drift in order to obtain
better generalisation on the new concept. However, even
though diversity by itself can help to improve general-
isation right after the beginning of a drift, it does not
provide a faster recovery from drift in long term. So,
additional strategies with different levels of diversity are
necessary to better handle drifts.

This paper provides an analysis of different strategies
to be used with diversity, which are then combined into
a new approach to deal with drifts. In all the experi-
mental comparisons we have carried out, the proposed
approach always performed at least as well as other drift
handling approaches under various conditions, with
very few exceptions. Section 2 explains the research
questions answered by this paper in more detail.

2 RESEARCH QUESTIONS AND PAPER ORGA-
NIZATION

This paper aims at answering the following research
questions, which are not answered by previous works:

1) Online learning often operates in the scenario
explained by [10] and further adopted in many
works, such as [2], [7], [11] and [12]:

Learning proceeds in a sequence of trials. In
each trial the algorithm receives an instance
from some fixed domain and is to produce a
binary prediction. At the end of the trial the
algorithm receives a binary label, which can



2

be viewed as the correct prediction for the
instance.

Several real world applications operate in this sort
of scenario, such as spam detection, prediction of
conditional branches in microprocessors, informa-
tion filtering, face recognition, etc. Besides, during
drifts which take some time to be completed (grad-
ual drifts), the system might be required to make
predictions on instances belonging to both the old
and new concepts. So, it is important to analyse
the prequential accuracy [34], which uses the pre-
diction done at each trial and considers examples
of both concepts at the same time when the drift
is gradual. The work presented in [9] considers
only the generalisation calculated using a test set
representing either the old or the new concept. So,
how would a low and a high diversity ensemble
behave considering the prequential accuracy in the
presence of different types of drift?

2) Even though high diversity ensembles may obtain
better generalisation than low diversity ensembles
after the beginning of a drift, the study presented
in [9] also reveals that high diversity ensembles
present almost no convergence to the new concept,
having slow recovery from drifts. So, is it possible
to make a high diversity ensemble trained on the
old concept converge to the new concept? How?
A more general research question would be: is it
possible to use information from the old concept
to aid the learning of the new concept? How?

3) If it is possible, would that ensemble outperform a
new ensemble created from scratch when the drift
begins? For which types of drift?

4) How can we use diversity to improve the prequen-
tial accuracy in the presence of drifts, at the same
time as we maintain good accuracy in the absence
of drifts?

In order to answer the first 3 questions, we perform
a study of different strategies with low/high diversity
ensembles and analyse their effect on the prequential
accuracy in the presence of drifts. The study analyses the
ensembles/strategies presented in table 1 using artificial
data sets in which we know when a drift begins and
what type of drift is present.

Before the drift, a new low diversity and a new high
diversity ensemble are created from scratch. After the
drift begins, the ensembles created before the drift are
kept and referred to as old ensembles. The old high
diversity ensemble starts learning with low diversity, in
order to check if it is possible to converge to the new
concept. In addition, a new low and a new high diversity
ensemble are created from scratch.

The analysis identifies what ensembles are the most
accurate for each type of drift and reveals that high
diversity ensembles trained on the old concept are able
to converge to the new concept if they start learning the
new concept with low diversity. In fact, these ensembles

TABLE 1
Ensembles Analized To Address Research Questions

Before the drift After the beginning Questions
of the drift addressed

New low diversity → Old low diversity 1
New high diversity → Old high diversity now 1, 2 and 3

learning with low diversity
New low diversity 1 and 3
New high diversity 1

are usually the most accurate for most types of drift. The
study uses a technique presented in [9] (and explained
here in section 3.2) to explicitly encourage more or less
diversity in an ensemble.

In order to answer the last question, we propose a new
online ensemble learning approach to handle concept
drifts called Diversity for Dealing with Drifts (DDD). The
approach aims at better exploiting diversity to handle
drifts, being more robust to false alarms (false positive
drift detections) and having faster recovery from drifts.
In this way, it manages to achieve improved accuracy in
the presence of drifts at the same time as good accuracy
in the absence of drifts is maintained. Experiments with
artificial and real world data show that DDD usually
obtains similar or better accuracy than EDDM and better
accuracy than DWM.

This paper is further organized as follows. Section
3 explains related work. Section 4 explains the data
sets used in the study. Section 5 presents the study
of the effect of low/high diversity ensembles on the
prequential accuracy in the presence of drifts using the
strategies presented in table 1. Section 6 introduces and
analyses DDD. Section 7 concludes the paper and gives
directions for further research.

3 RELATED WORK

Several approaches proposed to handle concept drift can
be found in the literature. Most of them are incremental
learning approaches [8], [13]–[20]. However, most of
the incremental learning approaches tend to give little
attention to the stability of the classifiers, giving more
emphasis to the plasticity when they allow only a new
classifier to learn a new chunk of data. While this could
be desirable when drifts are very frequent, it is not a
good strategy when drifts are not so frequent. Besides,
determining the chunk size in the presence of concept
drifts is not a straightforward task. A too small chunk
size will not provide enough data for a new classifier
to be accurate, whereas a too large chunk size may
contain data belonging to different concepts, making the
adaptation to new concepts slow.

The online learning algorithms which handle concept
drift can be divided into two groups: approaches which
use a mechanism to detect drifts [7], [12], [21]–[23]
and approaches which do not explicitly detect drifts
[24]–[26]. Both of them handle drifts based directly or
indirectly on the accuracy of the current classifiers. The



3

former approaches use some measure related to the ac-
curacy to detect drifts. They usually discard the current
system and create a new one after a drift is detected
and/or confirmed. In this way, they can have quick
response to drifts, as long as the drifts are detected
early. However, these approaches can suffer from non
accurate drift detections. The latter approaches usually
associate weights to each ensemble’s classifier based on
its accuracy, possibly allowing pruning and addition of
new classifiers. These approaches need some time for the
weights to start reflecting the new concept.

Section 3.1 presents an example of drift detection
method and two approaches to handle drifts: an ap-
proach based on a drift detection method and an ap-
proach which does not detect drifts explicitly. Section
3.2 briefly explains ensemble diversity in the context of
online learning in the presence of concept drift.

3.1 Approaches to Detect and/or Handle Drifts

An example of drift detection method is the one used
by the approach presented in [12]. It is based on the
idea that the distance between two consecutive errors
increases when a stable concept is being learnt. So, the
distance is monitored and, if it reduces considerably
according to a pre-defined constant which we call γ in
this paper, it is considered that there is a concept drift.

The approach presented to handle concept drift in [12]
is called Early Drift Detection Method (EDDM). It uses
the drift detection method explained above with two
values for γ: α and β, α > β. When a concept drift is
alarmed by the drift detection method using α, but not
β, a warning level is triggered, indicating that a concept
drift might have happened. From this moment, all the
training examples presented to the system are used for
learning and then stored. If a concept drift is alarmed
using β, the concept drift is confirmed and the system is
reset. If we consider that a new online classifier system
is created when the warning level is triggered, instead of
storing the training instances for posterior use, EDDM is
considered a true online learning system.

An example of a well cited approach which does not
use a drift detection method is Dynamic Weighted Ma-
jority (DWM) [25]. It maintains an ensemble of classifiers
whose weights are reduced by a multiplier constant ρ,1

ρ < 1, when the classifier gives a wrong prediction, if the
current time step is a multiple of p. The approach also
allows the addition and removal of classifiers at every
p time steps. The removal is controlled by a pre-defined
weight threshold θ. In this way, new classifiers can be
created to learn new concepts and poorly performing
classifiers, which possibly learnt old concepts, can be
removed.

A summary of the parameters used by the drift detec-
tion method, EDDM and DWM is given in table 2.

1. The original greek letter to refer to this parameter was β. We
changed it to ρ to avoid confusion with EDDM’s parameter β.

3.2 Ensemble Diversity in the Presence of Drifts

Even though several studies of ensemble diversity can
be found in the literature, e.g., [27]–[29], the study
presented in [9] is the first diversity analysis regarding
online learning in the presence of concept drift.

The study shows that different diversity levels are
required before and after a drift in order to improve
generalisation on the old or new concepts and concludes
that diversity by itself can help to reduce the initial
increase in error caused by a drift, but does not provide a
faster recovery from drifts in long term. So, the potential
of ensembles for dealing with concept drift may have not
been fully exploited by the existing ensemble approaches
yet, as they do not encourage different levels of diversity
in different situations.

Intuitively speaking, the key to the success of an
ensemble of classifiers is that the base classifiers perform
diversely. Despite the popularity of the term diversity,
there is no single definition or measure of it [29]. A
popular measure is Yule’s Q statistic [30]. Based on an
analysis of ten measures, Q statistic is recommended by
Kuncheva and Whitaker [28] to be used for the purpose
of minimizing the error of ensembles. This measure is
recommended especially due to its simplicity and ease
of interpretation. Considering two classifiers Di and Dk,
the Q statistic can be calculated as:

Qi,k =
N11N00 −N01N10

N11N00 +N01N10

where Na,b is the number of training examples for which
the classification given by Di is a and the classification
given by Dk is b, 1 represents a correct classification and
0 represents a misclassification.

Classifiers which tend to classify the same examples
correctly will have positive values of Q, whereas classi-
fiers which tend to classify different examples incorrectly
will have negative values of Q. For an ensemble of clas-
sifiers, the averaged Q statistic over all pairs of classifiers
can be used as a measure of diversity. Higher/lower
average indicates less/more diversity. In this paper, we
will consider that low/high diversity refers to high/low
average Q statistic.

In online learning, an example of how to explicitly
encourage more or less diversity in an ensemble is by
using a modified version [9] of online bagging [1]. The
original online bagging (algorithm 1) is based on the fact
that, when the number of training examples tends to
infinite in offline bagging, each base learner hm contains
K copies of each original training example d, where
the distribution of K tends to a Poisson(1) distribution.
So, in online bagging, whenever a training example is
available, it is presented K times for each base learner
hm, where K is drawn from a Poisson(1) distribution.
The classification is done by unweighted majority vote,
as in offline bagging.

In order to encourage different levels of diversity,
algorithm 1 can be modified to include a parameter
λ for the Poisson(λ) distribution, instead of enforcing



4

TABLE 2
Parameters Description.

Approach Parameter Description
Drift detection method γ Used to check whether the distance between two consecutive errors increased sufficiently.
EDDM α Value for γ which determines whether the warning level is triggered.

β, α > β Value for γ which determines whether a drift is considered to be detected.
DWM ρ, ρ < 1 Multiplier constant for base learner’s weight decrease.

p Interval of time steps in which the system can decrease weights, add or remove learners.
θ Threshold for removing base learners based on their weights.

Modified Online Bagging λ Parameter used by Poisson to encourage more or less diversity.
DDD pl, e.g., pl = λl Parameter for encouraging low diversity in the underlying ensemble learning algorithm.

ph, e.g., ph = λh Parameter for encouraging high diversity in the underlying ensemble learning algorithm.
W (default 1) Multiplier constant for the weight of the old low diversity ensemble.
pd, e.g., pd = γ Parameter for the drift detection method to be used with the approach.

Algorithm 1 Online Bagging

Inputs: ensemble h; ensemble size M ; training example
d; and online learning algorithm for the ensemble
members OnlineBaseLearningAlg;

1: for m← 1 to M do
2: K ← Poisson(1)
3: while K > 0 do
4: hm ← OnlineBaseLearningAlg(hm, d)
5: K ← K − 1
6: end while
7: end for

Output: updated ensemble h

λ = 1. In this way, higher/lower λ values are associated
to higher/lower average Q statistic (lower/higher diver-
sity), as shown in section 5.4.1 of [9]. This parameter is
listed in table 2.

4 DATA SETS

When working with real world data sets, it is not possi-
ble to know exactly when a drift starts to occur, which
type of drift is present or even if there really is a drift.
So, it is not possible to perform a detailed analysis of
the behaviour of algorithms in the presence of concept
drift using only pure real world data sets. In order to
analyse the effect of low/high diversity ensembles in
the presence of concept drift and to assist the analysis of
DDD, we first used the artificial data sets described in
[9]. Then, in order to reaffirm the analysis of DDD, we
performed experiments using three real world problems.
Section 4.1 describes the artificial data sets and section
4.2 describes the real world data sets.

4.1 Artificial Data Sets

The artificial data sets used in the experiments (table 3)
comprise the following problems [9]: circle, sine mov-
ing vertically, sine moving horizontally, line, plane and
Boolean. In the equations presented in the table, a, b,
c, d, r, ai, eq and op can assume different values to
define different concepts. The examples of all problems
but Boolean contain x/xi and y as the input attributes

TABLE 3
Artificial Data Sets

Probl. Equation Fixed Before→After Sev.
Values Drift

Circle (x− a)2+ a= .5 r= .2 → .3 16%
(y − b)2 ≤ b= .5 r= .2 → .4 38%

r2 r= .2 → .5 66%
SineV y ≤ a=1 d=−2 → 1 15%

a sin(bx+ c)+ b=1 d=−5 → 4 45%
d c = 0 d=−8 → 7 75%

SineH y ≤ a=5 c=0 → −π/4 36%
a sin(bx+ c)+ d=5 c=0 → −π/2 57%

d b = 1 c=0 → −π 80%
Line y ≤ −a0+ a1= .1 a0=−.4 → −.55 15%

a1x1 a0=−.25 → −.7 45%
a0=−.1 → −.8 70%

Plane y ≤ −a0+ a1= .1 a0=−2 → −2.7 14%
a1x1+ a2= .1 a0=−1 → −3.2 44%
a2x2 a0=−.7 → −4.4 74%

c= a= R, op1 ∧ 11%
(color eq1a S∨M∨L b= R → R ∨T

op1 a= R, b= R, 44%
Bool shape eq2 b) op2 ∧ op1 ∧ → ∨

op2 a= R → R ∨G, 67%
size eq3 c eq1,2,3 = b= R → R ∨ T,

op1∧ → ∨

and the concept (which can assume value 0 or 1) as the
output attribute.

The Boolean problem is inspired by the STAGGER
problem [31], but it allows the generation of different
drifts, with different levels of severity and speed. In
this problem, each training example has three input at-
tributes: color (red R, green G or blue B), shape (triangle
T , rectangle R or circle C) and size (small S, medium
M or large L). The concept is then represented by the
Boolean equation given in table 3, which indicates the
color, shape and size of the objects which belong to class
1 (true). In that expression, a represents a conjunction
or disjunction of different possible colors, b represents
shapes, c represents sizes, eq represents = or 6= and op
represents the logical connective ∧ or ∨. For example,
the first concept of the Boolean data set which presents
a drift with 11% of severity in table 3 is represented by:

(color = R ∧ shape = R) ∧ size =S∨M∨L .

Each data set contains one drift and different drifts
were simulated by varying among three amounts of



5

severity (as shown in table 3) and three speeds, thus
generating nine different drifts for each problem. Sever-
ity represents the amount of changes caused by a new
concept. Here, the measure of severity is the percentage
of the input space which has its target class changed
after the drift is complete. Speed is the inverse of the
time taken for a new concept to completely replace the
old one. The speed was measured by the inverse of
the number of time steps taken for a new concept to
completely replace the old one and was modelled by
the following linear degree of dominance functions:

vn(t) =
t−N

drifting time
, N < t ≤ N + drifting time

and

vo(t) = 1− vn(t), N < t ≤ N + drifting time ,

where vn(t) and vo(t) are the degrees of dominance of
the new and old concepts, respectively; t is the current
time step; N is the number of time steps before the
drift started to occur; and drifting time varied among
1, 0.25N and 0.50N time steps. During the drifting
time, the degrees of dominance represent the probability
that an example of the old or the new concept will be
presented to the system. For a detailed explanation of
different types of drift, we recommend [9].

The data sets are composed of 2N examples and each
example corresponds to 1 time step of the learning. The
first N examples of the training sets were generated
according to the old concept (vo(t) = 1, 1 ≤ t ≤ N ),
where N = 1000 for circle, sineV, sineH and line and
N = 500 for plane and Boolean. The next drifting time
training examples (N < t ≤ N + drifting time) were
generated according to the degree of dominance func-
tions, vn(t) and vo(t). The remaining examples were
generated according to the new concept (vn(t) = 1,
N + drifting time < t ≤ 2N ).

The range of x or xi was [0, 1] for circle, line and plane;
[0, 10] for sineV; and [0, 4π] for sineH. The range of y
was [0, 1] for circle and line, [−10, 10] for sineV, [0, 10]
for sineH and [0, 5] for plane. For plane and Boolean,
the input attributes are normally distributed through the
whole input space. For the other problems, the number
of instances belonging to class 1 and 0 is always the
same, having the effect of changing the unconditional
probability distribution function when the drift occurs.
Eight irrelevant attributes and 10% class noise were
introduced in the plane data sets.

4.2 Real World Data Sets

The real world data sets used in the experiments with
DDD are: electricity market [7], KDD Cup 1999 network
intrusion detection data [32] and PAKDD 2009 credit
card data.

The electricity data set is a real world data set from
the Australian New South Wales Electricity Market. This
data set was first described in [33]. In this electricity

market, the prices are not fixed and may be affected
by demand and supply. Besides, during the time pe-
riod described in the data, the electricity market was
expanded with the inclusion of adjacent areas, causing a
dampening of the extreme prices. This data set contains
45,312 examples, dated from May 1996 to December
1998. Each example contains 4 input attributes (time
stamp, day of the week and 2 electricity demand values)
and the target class, which identifies the change of the
price related to a moving average of the last 24 hours.

The KDD Cup 1999 data set is a network intrusion
detection data set. The task of an intrusion detection
system is to distinguish between intrusions/attacks and
normal connections. The data set contains a wide variety
of intrusions simulated in a military network environ-
ment. During the simulation, the local-area network was
operated as if it were a true Air Force environment, but
peppered with multiple attacks, so that attack is not a
minority class. The data set contains 494,020 examples.
Each example corresponds to a connection and contains
41 input attributes, such as the length of the connec-
tion, the type of protocol, the network service on the
destination, etc. The target class identifies whether the
connection is an attack or a normal connection.

The PAKDD 2009 data set comprises data collected
from the private label credit card operation of a major
Brazilian retail chain, along stable inflation condition. We
used the modelling data, which contains 50,000 examples
and corresponds to a 1 year period. Each example corre-
sponds to a client and contains 27 input attributes, such
as sex, age, marital status, profession, income, etc. The
target class identifies if the client is a “good” or “bad”
client. The class “bad” is a minority class and composes
around 19.5% of the data.

5 THE EFFECT OF LOW/HIGH DIVERSITY EN-
SEMBLES ON THE PREQUENTIAL ACCURACY

This section presents an analysis of the prequential ac-
curacy of the ensembles/strategies presented in table 1,
aiming at answering the first three research questions
explained in section 2. The prequential [34] accuracy is
the average accuracy obtained by the prediction of each
example to be learnt, before its learning, calculated in
an online way. The rule used to obtain the prequential
accuracy on time step t is presented in equation 1 [12]:

acc(t) =

{

accex(t) , if t = f

acc(t− 1) + accex(t)−acc(t−1)
t−f+1 , otherwise

(1)
where accex is 0 if the prediction of the current training
example ex before its learning is wrong and 1 if it is
correct; and f is the first time step used in the calculation.

In order to analyse the behaviour of the ensembles
before and after the beginning of a drift, the prequential
accuracy shown in the graphs is reset whenever a drift
starts (f ∈ {1, N + 1}). The learning of each ensemble is
repeated 30 times for each data set.



6

The online ensemble learning algorithm used in the
experiments is the modified version of online bagging
proposed in [9] and explained in section 3.2. As com-
mented in that section, [9] shows that higher/lower
λs produce ensembles with higher/lower average Q
statistic (lower/higher diversity).

Section 5.1 presents the analysis itself.

5.1 Experimental Results and Analysis

The experiments used 25 lossless ITI online decision
trees [35] as the base learners for each ensemble. The
parameter λl for the Poisson(λ) distribution of the low
diversity ensembles is 1, which is the value used for the
original online bagging [1]. The λh values for the high
diversity ensembles were chosen in the following way:

1) Perform 5 preliminary executions using λh =
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, giving a total
of 35 executions for each data set.

2) Determine the prequential accuracy obtained by
each execution at the time step 1.1N . This time
step represents the moment in which high diver-
sity ensembles are more likely to outperform low
diversity ensembles, according to [9].

3) Calculate the main effect of λh on the average
prequential accuracy, considering all the data sets
for each particular problem at the same time. For
example, the main effect for the circle problem is
the average among the online accuracies obtained
by the 5 executions using all the 9 circle data sets.

4) For each problem, choose the λh which obtained
the best main effect. These values are 0.05 for circle,
sineH and plane, and 0.005 for line and sineV. For
Boolean, both λh = 0.1 and λh = 0.5 obtained
the same main effect. So, we chose λh = 0.1, as
it obtained the best main effect at 1.5N and 2N .

Figure 1 shows the prequential accuracy obtained
for the circle problem for low and high severities and
speeds. The figures for the other data sets were omitted
due to space limitations. In order to answer the first
research question, we analyse the prequential accuracy
after the beginning of the drift, for each data set. We
can observe that different ensembles obtain the best
prequential accuracy depending on the type of drift.

For drifts with low severity and high speed (e.g.,
figure 1(a)), the best accuracy after the beginning of
the drift is usually obtained by the old high diversity
ensemble. For the Boolean problem, the old low diversity
gets similar accuracy to the old high diversity ensemble.
So, in general, it is a good strategy to use the old high
diversity ensemble for this type of drift.

An intuitive explanation for the reason why old high
diversity ensembles are helpful for low severity drifts is
that, even though the new concept is not the same as the
old concept, it is similar to the old concept. When a high
level of diversity is enforced, the base learners are forced
to classify the training examples very differently from
each other. So, the ensemble learns a certain concept

only partly, being able to converge to the new concept
by learning it with low diversity. At the same time, as
the old concept was partly learnt, the old high diversity
ensemble can use information learnt from the old con-
cept to aid the learning of the new concept. An old low
diversity ensemble would provide information from the
old concept, but would have problems to converge to
the new concept [9].

For drifts with high severity and high speed (e.g.,
figure 1(b)), the new low diversity ensemble usually
obtains the best accuracy, even though that accuracy is
similar to the old high diversity ensemble’s in half of the
cases (Boolean, sineV and line). For the Boolean problem,
the old high diversity, old low diversity and new low
diversity obtain similar accuracy. So, in general, it is a
good strategy to use the new low diversity ensemble
for this type of drift.

The reason for that is that, when a drift has high
severity and high speed, it causes big changes very
suddenly. In this case, the new concept has almost no
similarities to the old concept. So, an ensemble which
learnt the old concept either partly or fully will not be so
helpful (and could be even harmful) for the accuracy on
the new concept. A new ensemble learning from scratch
is thus the best option.

For drifts with medium severity and high speed,
the behaviour of the ensembles is similar to when the
severity is high for sineH, circle, plane and line, although
the difference between the old high diversity and the
new low diversity ensemble tends to be smaller for
sineH, circle and plane. The behaviour for Boolean and
sineV tends to be more similar to when severity is
low. So, drifts with medium severity sometimes have
similar behaviour to low severity and sometimes to high
severity drifts when the speed is high.

For drifts with low speed (e.g., figures 1(c) and 1(d)),
either the old low or both the old ensembles present the
best accuracy in the beginning of the drift, independent
of the severity. So, considering only shortly after the
beginning of a drift, the best strategy is to use the old low
diversity ensemble for slow speed drifts. Longer after
the drift, either the old high or both the old high and
the new low diversity ensembles usually obtain the best
accuracies. So, considering only longer after the drift, the
best strategy is to use the old high diversity ensemble. If
we consider both shortly and longer after the drift, it is
a good strategy to use the old high diversity ensemble,
as it is the most likely to have good accuracy during the
whole period after the beginning of the drift.

For drifts with medium speed, the behaviour is similar
to low speed, although the period of time in which
the old ensembles have the best accuracies is reduced
and the old low diversity ensemble rarely has the best
accuracy by itself shortly after the beginning of the
drift (it usually obtains similar accuracy to the old high
diversity ensemble). When the severity is high, there are
two cases (sineH and plane) in which the best accuracy is
obtained by the new low diversity ensemble longer after



7

500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

Old low div
Old high div
New high div
New low div

(a) Low Sev, High Sp

500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(b) High Sev, High Sp

500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(c) Low Sev, Low Sp

500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(d) High Sev, Low Sp

Fig. 1. Average prequential accuracy (equation 1) of the four ensembles analysed for the circle problem considering
30 runs using “perfect” drift detections. The accuracy is reset when the drift starts (f ∈ {1, 1001}). The new ensembles
are created from scratch at the time steps 1 and 1001. The old ensembles correspond to the new ensembles before
the beginning of the drift.

the drift. This behaviour approximates the behaviour
obtained when the severity is high and the speed is high.

This analysis is a straight answer to the first research
question and also allows us to answer the second and
third questions: (2) Ensembles which learnt an old con-
cept using high diversity can converge to a new concept
if they start learning the new concept with low diversity.
(3) When the drift has low severity and high speed or
longer after the drift when the speed is low or medium,
the high diversity ensembles learning with low diversity
are the most accurate in most of the cases. Besides,
when the speed is low or medium, shortly after the
beginning of the drift, they are more accurate than the
new ensembles and frequently have similar accuracy to
the old low diversity ensembles. Even when the drift has
medium or high severity and high speed, the old high
diversity ensembles sometimes obtain similar accuracy
to the new low diversity ensembles. So, in fact, it is a
good strategy to use the old high diversity ensembles
for most types of drift.

The analysis shows that the strategy of resetting the
learning system as soon as a drift is detected, which is
adopted by many approaches, such as [7], [12], [22], is
not always ideal, as an ensemble which learnt the old
concept can be helpful depending on the drift type.

6 DIVERSITY FOR DEALING WITH DRIFTS

This section proposes Diversity for Dealing with Drifts
(DDD).2 Section 6.1 describes DDD. Section 6.2 and
6.3 explain the experiments done to validate DDD and
provide an answer to the last research question from
section 2.

6.1 DDD’s Description

DDD (algorithm 2) operates in 2 modes: prior to drift
detection and after drift detection. We chose to use a drift
detection method, instead of treating drifts implicitly,
because it allows immediate treatment of drifts once they
are detected. So, if the parameters of the drift detection
method are tuned to detect drifts the earliest possible

2. An initial version of DDD can be found in [36].

and the approach is designed to be robust to false alarms,
we can obtain fast adaptation to new concepts. The
parameters used by DDD are summarized in table 2.

Algorithm 2 DDD

Inputs:

• multiplier constant W for the weight of the old
low diversity ensemble;

• online ensemble learning algorithm
EnsembleLearning;

• parameters for ensemble learning with low di-
versity pl and high diversity ph;

• drift detection method DetectDrift;
• parameters for drift detection method pd;
• data stream D;

1: mode ← before drift
2: hnl ← new ensemble /* new low diversity */
3: hnh ← new ensemble /* new high diversity */
4: hol ← hoh ← null /* old low and high diversity */
5: accol ← accoh ← accnl ← accnh ← 0 /* accuracies */
6: stdol ← stdoh ← stdnl ← stdnh ← 0 /* standard

deviations */
7: while true do
8: d ← next example from D
9: if mode == before drift then

10: prediction ← hnl(d)
11: else
12: sumacc ← accnl + accol ∗W + accoh
13: wnl = accnl/sumacc

14: wol = accol ∗W/sumacc

15: woh = accoh/sumacc

16: prediction ← WeightedMajority(hnl(d), hol(d),
hoh(d), wnl, wol, woh)

17: Update(accnl, stdnl, hnl, d)
18: Update(accol, stdol, hol, d)
19: Update(accoh, stdoh, hoh, d)
20: end if
21: drift ← DetectDrift(hnl, d, pd)
22: if drift == true then
23: if mode == before drift OR

(mode == after drift AND accnl > accoh) then
24: hol ← hnl



8

25: else
26: hol ← hoh

27: end if
28: hoh ← hnh

29: hnl ← new ensemble
30: hnh ← new ensemble
31: accol ← accoh ← accnl ← accnh ← 0
32: stdol ← stdoh ← stdnl ← stdnh ← 0
33: mode ← after drift
34: end if
35: if mode == after drift then
36: if accnl > accoh AND accnl > accol then
37: mode ← before drift
38: else
39: if accoh − stdoh > accnl + stdnl AND accoh −

stdoh > accol + stdol then
40: hnl ← hoh

41: accnl ← accoh
42: mode ← before drift
43: end if
44: end if
45: end if
46: EnsembleLearning(hnl, d, pl)
47: EnsembleLearning(hnh, d, ph)
48: if mode == after drift then
49: EnsembleLearning(hol, d, pl)
50: EnsembleLearning(hoh, d, pl)
51: end if
52: if mode == before drift then
53: Output hnl, prediction
54: else
55: Output hnl, hol, hoh, wnl, wol, woh, prediction
56: end if
57: end while

Before a drift is detected, the learning system is com-
posed of two ensembles: an ensemble with lower diver-
sity (hnl) and an ensemble with higher diversity (hnh).
Both ensembles are trained with incoming examples
(lines 46 and 47), but only the low diversity ensemble
is used for system predictions (line 10). The reason for
not using the high diversity ensemble for predictions is
that it is likely to be less accurate on the new concept
being learnt than the low diversity ensemble [9]. DDD
assumes that, if there is no convergence of the underly-
ing distributions to a stable concept, new drift detections
will occur, triggering the mode after drift detection. DDD
then allows the use of the high diversity ensemble in the
form of an old high diversity ensemble, as explained
later in this section.

A drift detection method based on monitoring the
low diversity ensemble is used (line 21). This method
can be any of the methods existing in the literature,
for instance, the one explained in section 3.1. After a
drift is detected, new low diversity and high diversity
ensembles are created (lines 29 and 30). The ensembles
corresponding to the low and high diversity ensembles

before the drift detection are kept and denominated old
low and old high diversity ensembles (lines 24 and 28).
The old high diversity ensemble starts to learn with low
diversity (line 50) in order to improve its convergence to
the new concept, as explained in section 5. Maintaining
the old ensembles allows not only a better exploitation
of diversity and the use of information learnt from the
old concept to aid the learning of the new concept, but
also helps the approach to be robust to false alarms.

Both the old and the new ensembles perform learning
(lines 46-50) and the system predictions are determined
by the weighted majority vote of the output of (1) the
old high diversity, (2) the new low diversity and (3) the
old low diversity ensemble (lines 12-16). The new high
diversity ensemble is not considered because it is likely
to have low accuracy on the new concept [9].

The weights are proportional to the prequential accu-
racy since the last drift detection until the previous time
step (lines 13-15). The weight of the old low diversity
ensemble is multiplied by a constant W (line 15), which
allows controlling the trade-off between robustness to
false alarms and accuracy in the presence of concept
drifts, and all the weights are normalized. It is important
to note that weighting the ensembles based on the
accuracy after the drift detection is different from the
weighting strategy adopted by the approaches in the lit-
erature which do not use a drift detection method. Those
approaches use weights which are likely to represent
more than one concept at the same time and need some
time to start reflecting only the new concept.

During the mode after drift detection, the new low
diversity ensemble is monitored by the drift detection
method (line 21). If two consecutive drift detections
happen and there is no shift back to the mode prior
to drift detection between them, the old low diversity
ensemble after the second drift detection can be either
the same as the old high diversity learning with low
diversity after the first drift detection or the ensemble
corresponding to the new low diversity after the first
drift detection, depending on which of them is the most
accurate (lines 24 and 26). The reason for that is that,
soon after the first drift detection, the new low diversity
ensemble may be not accurate enough to become the
old low diversity ensemble. This strategy also helps the
approach to be more robust to false alarms.

All the four ensembles are maintained in the system
until either the condition in line 36 or the condition
in line 39 is satisfied. When one of these conditions is
satisfied, the system returns to the mode prior to drift
detection. The accuracies when considering whether the
old high diversity ensemble is better than the others are
reduced/summed to their standard deviations to avoid
premature return to the mode prior to drift, as this
ensemble is more likely to have higher accuracy than
the new low diversity very soon after the drift, when
this ensemble learnt just a few examples.

When returning to the mode prior to drift, either the
old high diversity or the new low diversity ensemble



9

becomes the low diversity ensemble used in the mode
prior to drift detection, depending on which of them is
the most accurate (lines 36-44). An additional parameter
to control the maximum number of time steps in the
mode after drift detection can be used to avoid a too
long time maintaining four ensembles and is proposed
as future work.

As we can see, DDD is designed to better exploit the
advantages of diversity to deal with concept drift than
the other approaches in the literature, by maintaining
ensembles with different diversity levels, according to
the experiments presented in section 5.

Besides, the approaches which use old classifiers as
part of an ensemble in the literature, such as [24]–[26], do
not adopt any strategy to improve their learning on the
new concept. Nevertheless, as it was shown in [9], these
classifiers are likely to have low accuracy on the new
concept if no additional strategy is adopted to improve
their learning. DDD is designed to use information learnt
from the old concept in order to aid the learning of the
new concept, by training an old high diversity ensemble
with low diversity on the new concept. Such a strategy
has shown to be successful in section 5.

Moreover, the approach is designed to be more robust
to false alarms than approaches which reset the system
when a drift is detected [7], [12], [22] and to have faster
recovery from drifts than approaches which do not use
a drift detection method [25], [26], as it maintains old
ensembles after a drift detection, but takes immediate
action to treat the drift when it is detected, instead of
having to wait for the weights to start reflecting the new
concept.

The approach is not yet prepared to take advantage
of recurrent or predictable drifts. We propose the use of
memories for dealing with these types of drift as future
work.

A detailed analysis of time and memory occupied
by DDD is not straightforward, as it depends on the
implementation, base learner and source of diversity.
However, it is easy to see that, if we have a sequential
implementation, the complexity of each ensemble is
O(f(n)) and the source of diversity does not influence
this complexity, DDD would have, in the worst case,
complexity O(4f(n)) = O(f(n)). So, DDD does not
increase the complexity of the system in comparison to
a single ensemble.

6.2 Experimental Objectives, Design and Measures
Analysed

The objective of the experiments with DDD is to assist its
analysis and to validate it, showing that it is an answer
to the last research question presented in section 2, i.e., it
obtains good accuracy both in the presence and absence
of drifts. We also aim at identifying for which types of
drift DDD works better and why it behaves in that way.

In order to do so, we analyse measures such as weights
attributed by DDD to each ensemble, number of drift

detections and prequential accuracy (equation 1, from
section 5). In some cases, the false positive and negative
rate is also analysed. DDD is compared to a low diversity
ensemble with no drift handling abilities, EDDM [12]
and DWM [25]. The diversity study using “perfect” drift
detections presented in section 5.1 and an approach
which would always choose to use the same ensemble
(i.e., always choose the old high diversity ensemble, or
always choose the old low diversity ensemble, etc) are
also used in the analysis.

The prequential accuracy is calculated based on the
predictions given to the current training example before
the example is used for updating any component of the
system. It is important to observe that the term update
here refers not only to the learning of the current training
example by the base learners, but also to the changes in
weights associated to the base learners (in the case of
DWM) and to the ensembles (in the case of DDD). The
prequential accuracy is compared both visually, consid-
ering the graphs of the average prequential accuracy and
standard deviation throughout the learning, and using T
student statistical tests [37] at particular time steps, for
the artificial data sets.

The T tests were performed as follows. For each
artificial problem, T student statistical tests were done
at the time steps 0.99N , 1.1N , 1.5N and 2N . These time
steps were chosen in order to analyse the behaviour soon
after the drift, fairly longer after the drift and long after
the drift, as in [9]. Bonferroni corrections considering all
the combinations of severity, speed and time step were
used. The overall significance level was 0.01, so that the
significance level used for each individual comparison
was α = 0.01/(3 ∗ 3 ∗ 4) = 0.000278.

The drift detection method used by DDD was the same
as the one used by EDDM, in order to provide a fair
comparison. There is the possibility that there are other
drift detection methods more accurate in the literature.
However, the study presented in section 5 shows that
the old ensembles are particularly useful right after the
beginning of the drift. So, a comparison to an approach
using a drift detection method which could detect drifts
earlier would give more advantages to DDD.

Thirty repetitions were done for each data set and
approach. The ensemble learning algorithm used by
DDD and EDDM was the (modified) online bagging, as
in section 5. The drift detection method used by DDD in
the experiments was the one explained in section 3.1.

The analysis of DDD and its conclusions are based on
the following:

1) EDDM always uses new learners created from
scratch. Nevertheless, resetting the system upon
drift detections is not always the best choice. DWM
allows us to use old classifiers, but does not use any
strategy to help the convergence of these classifiers
to the new concept. So, it cannot use information
from the old concept to learn the new concept
faster, as DDD does. At least in the situations in
which new learners created from scratch or old



10

learners which attempted to learn the old concept
well are not the best choice, DDD will perform
better if it manages to identify these situations and
adjust the weights of the ensembles properly. This
is independent of the base learner.

2) The diversity study presented in section 5 shows
that such situations exist and that an old high
diversity ensemble, which is used by DDD, is
benefic for several different types of drift. In section
6.3.1, we show using artificial data and decision
trees that DDD is able to identify such situations
and adjust the ensemble weights properly, being
accurate in the presence and absence of drifts.
We also identify the drifts for which DDD works
better and explain why. Section 6.3.2 analyses the
number of time steps in which DDD maintains
four ensembles. Section 6.3.3 shows that DDD is
robust to false alarms and explains the influence
of the parameter W . Additional experiments using
naive bayes and multi-layer perceptrons on real
world problems (section 6.3.4) further confirm the
analysis done with the artificial data.

6.3 Experimental Results and Analysis

6.3.1 Experiments With Artificial Data

The sets of parameters considered for the experiments
are shown in table 4. The parameters λh were chosen
to be the same as in section 5.1. The parameter γ (β
for EDDM) was chosen so as to provide early drift
detections. This parameter was the same for DDD and
EDDM, providing a fair comparison.

Preliminary experiments with 5 runs for each data set
show that α does not influence much EDDM’s accuracy.
Even though an increase in α is associated to increases
in the total number of time steps in warning level,
the system is usually in warning state for very few
consecutive time steps before the drift level is triggered,
even when very large α is adopted. That number is
not enough to significantly affect the accuracy. So, we
decided to use α = 0.99.

Similarly to λh, the parameter p of DWM was chosen
considering the best average accuracy at the time step
1.1N , using the default values of ρ = 0.5 and θ = 0.01.
The average was calculated using 5 runs for all the data
sets of a particular problem at the same time, as for the
choice of λh. After selecting p, a fine tuning was done for
DWM, again based on 5 preliminary runs, by selecting
the parameter ρ which provides the best main effect on
the prequential accuracy at the time step 1.1N when
using the best p. The execution time using ρ = 0.7 and 0.9
became extremely high, especially for Plane and Circle.
The reason for that is that a combination of a low p
with a high ρ causes DWM to include new base learners
very frequently, whereas the weights associated to each
base learner reduce slowly. So, we did not consider these
values for these problems.

The base learners used in the experiments were loss-
less ITI online decision trees [35] and both DDD and
EDDM used ensemble size of 25 ITIs. DWM automati-
cally selects the ensemble size.

Figure 2 shows the prequential accuracy and figure 3
shows the weights attributed by DDD for some represen-
tative data sets. Graphs for other data sets were omitted
due to space restrictions.

We first compare DDD’s prequential accuracy to
EDDM’s. During the first concept, DDD is equivalent to
EDDM if there are no false alarms. Otherwise, DDD has
better accuracy than EDDM. This behaviour is expected,
as EDDM resets the system when there is a false alarm,
having to re-learn the current concept. DDD, on the other
hand, can make use of the old ensembles by increasing
their weights. Figure 3 shows that indeed DDD increases
the weights of the old ensembles when there are false
alarms (the average number of drift detections is shown
in brackets in figure 2).

We concentrate now on comparing DDD to EDDM in
terms of accuracy after the average time step of the first
drift detection done during the second concept. The ex-
periments show that DDD presents better accuracy than
EDDM mainly for the drifts known from the diversity
study (section 5) to benefit from the old ensembles (drifts
with low severity or low speed). Figures 2(a), 2(b), 2(e),
2(f), 2(g) show examples of this behaviour.

In the case of low severity and high speed drifts,
the best ensemble to be used according to the study
presented in section 5 is the old high diversity, especially
during the very beginning of the learning of the new
concept, when the new low diversity is still inaccurate
to the new concept. DDD gives considerable weight to
the the old high diversity ensemble, as shown in figures
3(a) and 3(b). Even though it is not always the highest
weight, it allows the approach to get better accuracy than
EDDM. When there are false alarms, there are successful
sudden increases on the use of the old low diversity
ensemble, as can be observed in the same figures.

However, the non-perfect (late) drift detections some-
times make the use of the old high diversity ensemble
less beneficial, making DDD get similar accuracy to
EDDM, instead of better accuracy. Let’s observe, for
example, figure 4(a). Even though the study presented
in section 5 shows that when there are perfect drift
detections, the best ensemble for this type of drift would
be the old high diversity, the accuracy of an approach
which always chooses this ensemble becomes similar to
the new low diversity ensemble’s during some moments
when the drift detection method is used. DDD obtains
similar accuracy to EDDM exactly during these moments
(figure 2(b)) and just becomes better again because of the
false alarms.

In the case of low speed drifts, the best ensembles to
be used according to the study presented in section 5
are the old ensembles (especially the old low diversity)
soon after the beginning of the drift. DDD manages to
attain better accuracy than EDDM (e.g., figures 2(e), 2(f)



11

TABLE 4
Parameters Choice for Artificial Data. W = 1, λl = 1 and θ = 0.01 were fixed.

Values For Preliminary Experiments
Data Set λh γ, β α ρ p Chosen Values

(DDD) (DDD, EDDM) (EDDM) (DWM) (DWM)
Circle {0.0005, {0.75, {0.96, {0.001, {1, λh = 0.05, γ = β = 0.95, α = 0.99, ρ = 0.5, p = 1
SineV 0.001, 0.85, 0.97, 0.01, 10, λh = 0.005, γ = β = 0.95, α = 0.99, ρ = 0.5, p = 1
SineH 0.005, 0.95} 0.98, 0.1, 20} λh = 0.05, γ = β = 0.95, α = 0.99, ρ = 0.5, p = 10
Line 0.01, 0.99, 0.3, λh = 0.005, γ = β = 0.95, α = 0.99, ρ = 0.5, p = 1
Plane 0.05, 1.1, 0.5, λh = 0.05, γ = β = 0.95, α = 0.99, ρ = 0.5, p = 5
Bool 0.1, 0.5} 1.2, 1.3} 0.7, 0.9} λh = 0.1, γ = β = 0.95,α = 0.99, ρ = 0.5, p = 10

(a) SineH Low Sev High Sp
(1.13, 2.23) >=>>

200 400 600 800 1000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(b) Plane Low Sev High Sp
(0.17, 1.47) =>=>

500 1000 1500 2000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(c) SineH High Sev High Sp
(1.13, 2.17) >=>>

200 400 600 800 1000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(d) Plane High Sev High Sp
(0.10, 1.03) =<<<

500 1000 1500 2000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(e) SineH Low Sev Low Sp
(1.13, 2.43) >=>>

500 1000 1500 2000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(f) Circle Low Sev Low Sp
(none, 1.26) ==>>

500 1000 1500 2000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(g) Circle High Sev Low Sp
(none, 3.13) =>>>

200 400 600 800 1000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

(h) Plane High Sev Low Sp
(0.10, 2.09) ====

Fig. 2. Average prequential accuracy (equation 1) of DDD, EDDM, DWM and an ensemble without drift handling,
considering 30 runs. The accuracy is reset when the drift begins (f ∈ {1, N + 1}). The vertical black bars represent
the average time step in which a drift is detected at each concept. The numbers in brackets are the average numbers
of drift detections per concept. The results of the comparisons aided by T tests at the time steps 0.99N , 1.1N , 1.5N
and 2N are also shown: “>” means that DDD attained better accuracy than EDDM, “<” means worse and “=” means
similar.

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n New low div

Old low div

Old high div

W
e
ig

h
t

(a) SineH Low Sev High Sp

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig

h
t

(b) Plane Low Sev High Sp

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig
h
t

(c) SineH High Sev High Sp

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig

h
t

(d) Plane High Sev High Sp

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig
h
t

(e) SineH Low Sev Low Sp

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig
h
t

W
e
ig
h
t

(f) Circle Low Sev Low Sp

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig
h
t

(g) Circle High Sev Low Sp

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

W
e
ig

h
t

(h) Plane High Sev Low Sp

Fig. 3. Average weight attributed by DDD to each ensemble, considering 30 runs.



12

200 400 600 800 1000
0.6

0.7

0.8

0.9

1

Time Step

A
c
c
u
ra

c
y
 +

−
 S

td
 D

e
v
ia

ti
o
n

Old low div
Old high div
New high div
New low div

(a) Plane Low Sev High Sp (0.17, 1.47)

200 400 600 800 1000
0.6

0.7

0.8

0.9

1

Time Step

A
cc

ur
ac

y 
+

−
 S

td
 D

ev
ia

tio
n

(b) Plane High Sev Low Sp (0.10, 2.90)

Fig. 4. Average prequential accuracy (equation 1) obtained by an approach which always chooses the same ensemble
for prediction, considering 30 runs. The accuracy is reset when the drift begins (f ∈ {1, 501}). The vertical black bars
represent the average time step in which a drift was detected at each concept. The numbers in brackets are the
average numbers of drift detections per concept.

and 2(g)) because it successfully gives high weight for
these ensembles right after the drift detections and keeps
the weight of the old low diversity ensemble high when
there are false alarms, as shown in figures 3(e), 3(f) and
3(g).

The non-perfect (especially the late) drift detections
also reduce the usefulness of the old ensembles for the
low speed drifts, sometimes making DDD attain similar
accuracy to EDDM. An example of this situation is
shown by figures 2(h), 3(h) and 4(b). As we can see in
figure 4(b), the accuracy of an approach which always
chooses the old high diversity is similar to an approach
which always chooses the new low diversity because of
the non-perfect drift detections. For only one problem,
when the speed was low and severity high, the late
drift detections made DDD attain worse accuracy than
EDDM.

When the drifts present high severity and high speed,
the accuracy of DDD was expected to be similar (not
better) to EDDM, as the new low diversity is usually the
most accurate and EDDM’s strategy is equivalent to al-
ways choosing this ensemble. However, the experiments
show that DDD sometimes presents similar, sometimes
worse (figure 2(d)) and sometimes better (figure 2(c))
accuracy than EDDM.

The reason for the worse accuracy is the inaccuracy of
the initial weights given to the new low diversity soon
after the drift detection, as this ensemble learnt too few
examples. If the initial weights take some time to become
more accurate, as shown in figure 3(d), DDD needs some
time for its prequential accuracy to eventually recover
and become similar to EDDM’s, as shown by the accu-
racy’s increasing tendency in figure 2(d). If the accuracy
of the old ensembles decreases very fast in relation to
the time taken by the new low diversity ensemble to
improve its accuracy, DDD manages to attain similar
accuracy to EDDM since soon after the drift detection.
Besides, DDD can attain better accuracy than EDDM
even for this type of drift due to the false alarms (figure

2(c) and 3(c)).
The accuracy of DDD for medium severity or speed

drifts was never worse than EDDM’s and is explained
similarly to the other drifts.

We shall now analyse the number of win/draw/loss of
DDD in comparison to EDDM at the time steps analysed
through T tests after the average time step of the first
drift detection during the second concept. It is important
to note that, when there are false alarms, DDD can
get better accuracy than EDDM before this time step.
Considering the total number of win/draw/loss inde-
pendent of the drift type, DDD obtains better accuracy
in 45% of the cases, similar in 48% of the cases and worse
in only 7% of the cases. So, it is a good strategy to use
DDD when the drift type is unknown, as it obtains either
better or similar accuracy and only rarely obtains worse
accuracy.

Considering the totals per severity, DDD has more
wins (67%) in comparison to draws (33%) or losses (0%)
when severity is low. When severity is medium, DDD
is similar in most of the cases (68%), being sometimes
better (32%) and never worse (0%). When severity is
high, DDD is usually similar (42%) or better (38%) than
EDDM, but in some cases it is worse (20%). If we con-
sider the totals per speed, the approach has more wins
(61%) in comparison to draws (34%) or losses (5%) when
speed is low. When the speed is medium, the number
of draws is higher (64%, against 36% for wins and 0%
for losses). When speed is high, the number of draws
and wins is more similar (47% and 39%, respectively),
but there are some more losses (14%) than for the other
speeds. This behaviour is understandable, as, according
to section 5, the old ensembles are more helpful when
the severity or the speed is low.

DDD has usually higher accuracy than DWM, both in
the presence and absence of drifts (e.g., figures 2(a) to
2(h)). Before the drift, DDD is almost always better than
DWM. Considering the total number of win/draw/loss
independent of the drift type for the time steps 1.1N ,



13

1.5N and 2N , DDD obtains better accuracy than DWM
in 59% of the cases, similar in 25% of the cases and worse
in 15% of the cases. As we can see in the figures, DDD
usually presents faster recovery from drifts.

A probable reason for the lower accuracy of DWM
during stable concepts is that it adds new classifiers
when it gives misclassifications, independent of how
accurate the ensemble is to the current concept. The new
classifiers are initially inaccurate and, even though the
old classifiers compensate somewhat their misclassifica-
tions, the accuracy of the ensemble as a whole is reduced.
A probable reason for the lower accuracy of DWM in
the presence of drifts is that its weights take some time
steps to start reflecting the new concept, causing slow
recovery from drifts. So, DWM is usually better than an
ensemble without drift handling, but worse than DDD.
In a few cases, when drifts that do not affect much the
accuracy of old ensembles are detected, DWM obtained
better accuracy than DDD. A detailed analysis of DWM
is outside the scope of this paper.

In a very few occasions, not only DDD, but also EDDM
and DWM get worse accuracy than an ensemble without
drift handling during a few moments soon after the
beginning of the drift when the drift is not fast (e.g.,
2(e) and 2(h)). That happens because, in the beginning
of the drift, ensembles which learnt the old concept
are expected to be among the highest accuracies while
the old concept is still dominant over the new concept.
Nevertheless, as the number of time steps increases and
the old concept becomes less dominant, the accuracy of
an ensemble without drift handling is highly affected
and reduced.

In summary, the experiments in this section show
that DDD gets usually similar or better accuracy than
EDDM and usually better accuracy than DWM both in
the presence and absence of drifts. DDD also usually gets
better accuracy than an ensemble without drift handling
in the presence of drifts and similar accuracy in the
absence of drifts.

6.3.2 Time Steps Maintaining Four Ensembles
In this section, we compare the time and memory oc-
cupied by DDD to EDDM and DWM indirectly, by
considering the number of ensembles maintained in a
sequential implementation using λ as the source of di-
versity and decision trees as the base learners. The high
diversity ensembles have faster training and occupy less
memory, as they are trained with much less examples
(on average, λ times the total number of examples). So,
we will compare the number of time steps in which DDD
requires four ensembles to the number of time steps in
which EDDM requires two ensembles to be maintained.

The experiments presented in section 6.3.1 show that
DDD required the maintenance of four ensembles dur-
ing, on average, 4.11 times more time steps than EDDM
required two ensembles. Considering the total number
of time steps of the learning, DDD is likely to use, on
average, 1.22 times more time and memory than EDDM.

DWM always maintains one ensemble with variable size
and this size was, on average, 0.45 times the size of the
ensembles maintained by DDD and EDDM. However,
DWM is likely to create/delete ensembles with a high
rate when the accuracy is not very high, increasing its
execution time.

6.3.3 Robustness to False Alarms and the Impact of W
We performed additional experiments by forcing false
alarms on particular time steps during the first concept
of the artificial data sets corresponding to low severity
drifts, instead of using a drift detection method.

When varying W , the experiments show that this pa-
rameter allows tuning the trade-off between robustness
to false alarms and accuracy in the presence of real drifts.
The graphs are omitted due to space limitations.

Higher W (W = 3) makes DDD more robust to false
alarms, achieving very similar accuracy to an approach
with no drift handling, which is considered the best one
in this case. W = 3 makes DDD less accurate in the
presence of real drifts, but still more accurate than an
ensemble without drift handling in the presence of drifts.

Lower W (W = 1) makes DDD less robust to false
alarms, but still with considerably good robustness and
more robust than EDDM, besides being more accurate in
the presence of real drifts. So, unless we are expecting to
have many false alarms and few real drifts, it is a good
strategy to use W = 1.

6.3.4 Experiments With Real World Data
The experiments using real world data were repeated
using 2 different types of base learners: multi-layer
perceptions (MLPs) and naive bayes (NB). The MLPs
contained 10 hidden nodes each and were trained using
backpropagation with 1 epoch (online backpropagation
[38], [39]), learning rate 0.01 and momentum 0.01. These
base learners were chosen because they are faster than
ITIs when the data set is very large. Both DDD and
EDDM used ensemble size of 100.

The parameters used in the experiments are shown in
table 5. All the parameters were chosen so as to generate
the most accurate accuracy curves, based on 5 runs. The
first parameters chosen were γ and p, which usually
have bigger influence in the accuracy. The 5 runs to
choose them used the default values of λh = 0.005 and
ρ = 0.5. After that, a fine tuning was done by selecting
the parameters λh and ρ. For electricity, preliminary
experiments show that the drift detection method does
not provide enough detections. So, instead of using the
drift detection method, we forced drift detections at
every FA = {5, 25, 45} time steps. The only exception
was EDDM using NB. In this case, β = 1.15 provided
better results.

Each real world data set used in the experiments
has different features. So, in this section, we analyse
the behaviour of DDD according to each real world
data set separately, in combination with a more detailed
analysis of the features of the data. For each data set, the



14

TABLE 5
Parameters Choice for Real World Data. W = 1, λl = 1 and θ = 0.01 were fixed.

Data Set Values For Preliminary Experiments Chosen Values
λh γ, β α ρ p

(DDD) (DDD, EDDM) (EDDM) (DWM) (DWM) MLP NB
Electricity λh = 0.005, FA = 5, λh = 0.1, FA = 45, β = 1.15,

{0.0005, {0.75, {0.80, {0.3, {1, ρ = 0.3, p = 1 α = 1.20, ρ = 0.5, p = 1
PAKDD 0.005, 0.95, 0.99, 0.5, 10, λh = 0.005, γ = β = 0.75 λh = 0.005, γ = β = 0.75

0.1} 1.15} 1.20} 0.7} 50} α = 0.80, ρ = 0.5, p = 50 α = 0.80, ρ = 0.5, p = 50
KDD λh = 0.005, γ = β = 0.95 λh = 0.005, γ = 1.15, β = 0.95

α = 0.99, ρ = 0.3, p = 1 α = 0.99, ρ = 0.5, p = 1

1 2 3 4
x 10

4

0.77

0.78

0.79

0.8

0.81

0.82

Time Step

A
cc

ur
ac

y 
+

 −
 S

td
 D

ev
ia

tio
n

(a) Electricity using MLPs

1 2 3 4 5
x 10

4

0.7

0.75

0.8

0.85

Time Step

A
cc

ur
ac

y 
+

 −
 S

td
 D

ev
ia

tio
n

(b) PAKDD using MLPs

1 2 3 4
x 10

5

0.94

0.95

0.96

0.97

0.98

0.99

1

Time Step

A
cc

ur
ac

y 
+

 −
 S

td
 D

ev
ia

tio
n

(c) KDD using MLPs

1 2 3 4
x 10

5

0.96

0.97

0.98

0.99

1

Time Step

A
cc

ur
ac

y 
+

 −
 S

td
 D

ev
ia

tio
n

(d) KDD using NB

Fig. 5. Average prequential accuracy (equation 1) reset at every third of the learning, using MLPs/NB as base learners.

prior probability of class 1 at the time step t estimated
according to the sample, P (1)(t), is given by:

P (1)(t) =

∑t+wsize−1
i=t y(i)

wsize

where y(i) is the target class (1 or 0) of the training
example presented at the time step i, and wsize is the size
of the window of examples considered for calculating the
average.

The first data set analysed is electricity. In this data set,
the prior probability of an increase in price calculated
considering the previous 1440 examples (1 month of
observations) varies smoothly during the whole learning
period. These variations possibly represent several con-
tinuous drifts, to which DDD is expected to have a good
behaviour. Figure 5(a) shows the accuracy obtained for
this data set using MLPs. As we can see, DDD is able to
outperform DWM and EDDM in terms of accuracy. DDD
was able to attain even higher accuracy in comparison
to DWM and EDDM when using NB. The graph was
omitted due to space limitations.

The second data set analysed is PAKDD. In this data
set, the probability of a fraudulent customer considering
the previous 2000 examples has almost no variation
during the whole learning period. So, this data set is
likely to contain no drifts. In this case, DDD is expected
to obtain at least similar accuracy to EDDM and DWM.
If there are false alarms, DDD is expected to outperform
EDDM. The experiments show that all the approaches
manage to attain similar accuracy for this problem when
using MLPs (figure 5(b)). A similar behaviour happens
when using NB. In particular, the drift detection method
performed almost no drift detections – average of 0.37
drift detections during the whole learning when using
MLPs and of 3.60 when using NB. So, EDDM did not

have problems with false alarms. Experiments using a
parameters setup which causes more false alarms show
that DDD is able to maintain the same accuracy as DWM
in that condition, whereas EDDM has reduced accuracy.

Nevertheless, the class representing a fraudulent cus-
tomer (class 1) is a minority class. So, it is important
to observe the rates of false positives fpr and negatives
fnr, which are calculated as follows:
fpr(t) = numfp(t)/numn(t) and
fnr(t) = numfn(t)/nump(t),

where numfp(t) and numfn(t) are the total number of
false positives and negatives until the time step t; and
numn(t) and nump(t) are the total number of examples
with true class zero and one until the time step t.

In PAKDD, it is important to obtain a low false neg-
ative rate, in order to avoid fraud. When attempting to
maximize accuracy, the false positive rate becomes very
low, but the false negative rate becomes very high for
all the approaches analysed. So, the parameters which
obtain the best false negative rate are different from the
parameters which obtain the best accuracy.

Besides, DDD can be easily adapted for dealing with
minority classes by getting inspiration from the skewed
(imbalanced) data sets literature [40]. Increasing and
decreasing diversity based on the parameter λ of the
Poisson distribution is directly related to sampling tech-
niques. A λ < 1 can cause similar effect to under-
sampling, whereas a λ > 1 can cause similar effect to
over-sampling.

So, experiments were done using λl = λh = 2 for the
minority class, λh = 0.005 for the majority class, γ =
β = 1.15, α = 1.20, ρ = 0.3, p = 1 both when using
MLPs and NB; λl = 0.4 for the majority class when using
MLPs; and λl = 0.1 for the majority class when using
NB. As we can see in figure 6, DDD obtains the best



15

Fig. 6. Average false positive and negative error rates for
PAKDD, reset at every third of the learning using MLPs as
base learners and considering 30 runs.

false negative rate when using MLPs. It also obtains the
best rate when using NB. Additional work with minority
classes is proposed as future work.

The last data set analysed is KDD. In this problem, the
probability of an intrusion considering the previous 2000
examples has several jumps from 1 to 0 and vice versa
during the first and last third of the learning. So, there
are probably several severe and fast drifts which reoccur
with a high rate during these periods. Even though DDD
(and EDDM) is prepared for dealing with severe and
fast drifts, it is not prepared for dealing with recurrent
concepts yet. DWM does not have specific features to
deal with recurrent drifts either, but it can obtain good
accuracy if these drifts are close enough to each other
so that the weights of the base learners do not decay
enough for them to be eliminated.

Figures 5(c) and 5(d) show that DDD obtains worse
accuracy than DWM during the first and last thirds of
the learning when using MLPs, but similar (or slightly
better) when using NB. The experiments show that, if
the drifts are very close to each other and there are
no false alarms, DDD can make use of the learning of
the old concept through the old ensembles when the
concept reoccurs. This is what happens when using NB,
as the weight given to the old low diversity ensemble
presents peaks during the learning and the number of
drift detections is consistent with the changes in the
estimated prior probability of attack. However, false
alarms cause DDD to lose the ensembles which learnt
the old concept (the old ensembles are replaced), being
unable to use them when this concept reoccurs. This is
what happens when using MLPs, as the number of drift
detections was more than twice the number of detections
when using NB, probably representing false alarms.

In summary, the experiments in this section reaffirm
the analyses done in the previous sections: for a database
likely to contain several continuous drifts, DDD attained
better accuracy than EDDM and DWM. For a database
likely to contain no drifts, DDD performed similarly to
other approaches. EDDM would perform worse if there
were false alarms. For a database which may contain
very severe and fast drifts which reoccur with a high

rate, DDD performed similarly to DWM when it could
make use of the ensembles which learnt the old concept,
but performed worse when these ensembles were lost.

7 CONCLUSIONS

This paper presents an analysis of low and high diversity
ensembles combined with different strategies to deal
with concept drift and proposes a new approach (DDD)
to handle drifts.

The analysis shows that different diversity levels ob-
tain the best prequential accuracy depending on the type
of drift. It also shows that it is possible to use information
learnt from the old concept in order to aid the learning of
the new concept, by training ensembles which learnt the
old concept with high diversity, using low diversity on
the new concept. Such ensembles are able to outperform
new ensembles created from scratch after the beginning
of the drift, especially when the drift has low severity
and high speed, and soon after the beginning of medium
or low speed drifts.

DDD maintains ensembles with different diversity
levels, exploiting the advantages of diversity to handle
drifts and using information from the old concept to aid
the learning of the new concept. It has better accuracy
than EDDM mainly when the drifts have low severity
or low speed, due to the use of ensembles with different
diversity levels. DDD has also considerably good robust-
ness to false alarms. When they occur, its accuracy is
better than EDDM’s also during stable concepts due to
the use of old ensembles. Besides, DDD’s accuracy is
almost always higher than DWM’s, both during stable
concept and after drifts. So, DDD is accurate both in the
presence and in the absence of drifts.

Future work includes experiments using a parameter
to control the maximum number of time steps maintain-
ing four ensembles, further investigation of the perfor-
mance on skewed data sets and extension of DDD to
better deal with recurrent and predictable drifts.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Nikunj C. Oza for sharing
his implementation of Online Bagging and to Garcia et
al. for making EDDM available as open source. This
work was partially funded by an Overseas Research
Students Award and a School Research Scholarship.

REFERENCES

[1] N. C. Oza and S. Russell, “Experimental comparisons of online
and batch versions of bagging and boosting,” in Proc. of ACM
SIGKDD, San Francisco, 2001, pp. 359–364.

[2] A. Fern and R. Givan, “Online ensemble learning: An empirical
study,” Machine Learning, vol. 53, pp. 71–109, 2003.

[3] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,”
IEEE Transactions on Systems, Man, and Cybernetics - Part C, vol. 31,
no. 4, pp. 497–508, 2001.

[4] F. L. Minku, H. Inoue, and X. Yao, “Negative correlation in
incremental learning,” Natural Computing Journal - Special Issue
on Nature-inspired Learning and Adaptive Systems, vol. 8, no. 2, pp.
289–320, 2009.



16

[5] H. Abdulsalam, D. B. Skillicorn, and P. Martin, “Streaming ran-
dom forests,” in Proc. of IDEAS, Banff, Canada, 2007, pp. 225–232.

[6] A. Narasimhamurthy and L. I. Kuncheva, “A framework for
generating data to simulate changing environments,” in Proc. of
the 25th IASTED AIA, Innsbruck, Austria, 2007, pp. 384–389.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Proc. of the 7th Brazilian Symposium on Artificial
Intelligence (SBIA’04) - Lecture Notes in Computer Science, vol. 3171.
São Luiz do Maranhão, Brazil: Springer, 2004, pp. 286–295.

[8] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to
mine data streams: Analysis and practice,” in Proc. of IEEE ICDM,
Omaha, NE, 2007, pp. 143–152.

[9] F. L. Minku, A. White, and X. Yao, “The impact of diversity
on on-line ensemble learning in the presence of concept drift,”
IEEE TKDE, vol. 22, pp. 730–742, 2010. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2009.156

[10] N. Littlestone and M. K. Warmuth, “The weighted majority
algorithm,” Information and Computation, vol. 108, pp. 212–261,
1994.

[11] N. Kasabov, Evolving Connectionist Systems. Great Britain:
Springer, 2003.

[12] M. Baena-Garcı́a, J. Del Campo-Ávila, R. Fidalgo, and A. Bifet,
“Early drift detection method,” in Proc. of the 4th ECML PKDD
International Workshop on Knowledge Discovery From Data Streams
(IWKDDS’06), Berlin, Germany, 2006, pp. 77–86.

[13] W. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification,” in Proc. of ACM KDD, 2001, pp. 377–382.

[14] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting
data streams using ensemble classifiers,” in Proc. of ACM KDD.
New York: ACM Press, 2003, pp. 226–235.

[15] F. Chu and C. Zaniolo, “Fast and light boosting for adaptive
mining of data streams,” in Proc. of PAKDD’04, Sydney, 2004, pp.
282–292.

[16] M. Scholz and R. Klinkenberg, “An ensemble classifier for drifting
concepts,” in Proc. of the Second International Workshop on Knowl-
edge Discovery from Data Streams, Porto, 2005, pp. 53–64.

[17] ——, “Boosting classifiers for drifting concepts,” IDA - Special
Issue on Knowledge Discovery From Data Streams, vol. 11, no. 1,
pp. 3–28, 2007.

[18] S. Ramamurthy and R. Bhatnagar, “Tracking recurrent concept
drift in streaming data using ensemble classifiers,” in Proc. of
ICMLA’07, Cincinnati, Ohio, 2007, pp. 404–409.

[19] J. Gao, W. Fan, J. Han, and P. Yu, “A general framework for
mining concept-drifting data streams with skewed distributions,”
in Proc. of SIAM ICDM, Minneapolis, Minnesota, 2007.

[20] H. He and S. Chen, “IMORL: Incremental multiple-object recog-
nition and localization,” IEEE TNN, vol. 19, no. 10, pp. 1727–1738,
2008.

[21] K. Nishida and K. Yamauchi, “Adaptive classifiers-ensemble sys-
tem for tracking concept drift,” in Proceedings of the Sixth Interna-
tional Conference on Machine Learning and Cybernetics (ICMLC’07),
Honk Kong, 2007, pp. 3607–3612.

[22] ——, “Detecting concept drift using statistical testing,” in Pro-
ceedings of the Tenth International Conference on Discovery Science
(DS’07) - Lecture Notes in Artificial Intelligence, vol. 3316, Sendai,
Japan, 2007, pp. 264–269.

[23] K. Nishida, “Learning and detecting concept drift,”
Ph.D. dissertation, Hokkaido University, Japan, 2008.
[Online]. Available: http://lis2.huie.hokudai.ac.jp/∼knishida/
paper/nishida2008-dissertation.pdf

[24] K. O. Stanley, “Learning concept drift with a commitee of decision
trees,” Department of Computer Sciences, University of Texas,
Austin, USA, Tech. Rep. AI-TR-03-302, 2003.

[25] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” Journal of Machine
Learning Research, vol. 8, pp. 2755–2790, 2007.

[26] ——, “Using additive expert ensembles to cope with concept
drift,” in Proc. of ICML’05, Bonn, Germany, 2005, pp. 449–456.

[27] K. Tumer and J. Ghosh, “Error correlation and error reduction in
ensemble classifiers,” Connection Science, vol. 8, no. 3, pp. 385–404,
1996.

[28] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in
classifier ensembles and their relationship with the ensemble
accuracy,” Machine Learning, vol. 51, pp. 181–207, 2003.

[29] E. K. Tang, P. N. Sunganthan, and X. Yao, “An analysis of diversity
measures,” Machine Learning, vol. 65, pp. 247–271, 2006.

[30] G. Yule, “On the association of attributes in statistics,” Phil. Trans.,
vol. A, 194, pp. 257–319, 1900.

[31] J. Schlimmer and R. Granger, “Beyond incremental processing:
Tracking concept drift,” in Proceedings of the 5th AAAI, Philadel-
phia, USA, 1986, pp. 502–507.

[32] “The UCI KDD archive,” 1999. [Online]. Available: http:
//mlr.cs.umass.edu/ml/databases/kddcup99/kddcup99.html

[33] M. Harries, “Splice-2 comparative evaluation: Electricity pricing,”
Artificial Intelligence Group, School of Computer Science and
Engineering, The University of New South Wales, Sidney, Tech.
Rep. UNSW-CSE-TR-9905, 1999.

[34] A. Dawid and V. Vovk, “Prequential probability: Principles and
properties,” Bernoulli, vol. 5, no. 1, pp. 125–162, 1999.

[35] P. Utgoff, N. Berkman, and J. Clouse, “Decision tree induction
based on efficient tree restructuring,” Machine Learning, vol. 29,
no. 1, pp. 5–44, 1997.

[36] F. L. Minku and X. Yao, “Using diversity to handle concept drift in
on-line learning,” in Proceedings of the International Joint Conference
on Neural Networks (IJCNN09), Atlanta, 2009, pp. 2125–2132.

[37] I. H. Witten and E. Frank, Data Mining - Practical Machine Learning
Tools and Techniques with Java Implementations. San Francisco:
Morgan Kaufmann Publishers, 2000.

[38] N. C. Oza and S. Russell, “Online bagging and boosting,” in Proc.
of IEEE International Conference on Systems, Man and Cybernetics,
vol. 3. New Jersey: Institute for Electrical and Electronics
Engineers, 2005, pp. 2340–2345.

[39] F. L. Minku and X. Yao, “On-line bagging negative correlation
learning,” in Proc. of IJCNN08, Hong Kong, 2008, pp. 1375–1382.

[40] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling im-
balanced datasets: A review,” GESTS International Transactions on
Computer Science and Engineering, vol. 30, no. 1, pp. 25–36, 2006.

Leandro L. Minku received the BSc and MSc
degrees in Computer Science from the Federal
University of Paraná, Brazil, in 2003, and from
the Federal University of Pernambuco, Brazil,
in 2006, respectively. He is currently working
towards the Ph.D. degree in Computer Science
at the University of Birmingham, UK. His re-
search interests include online learning, concept
drift, neural network ensembles and evolutionary
computation. Mr. Minku was the recipient of the
Overseas Research Students Award (ORSAS)

from the British Government (2006) for 3 years and of several Brazilian
Council for Scientific and Technological Development (CNPq) scholar-
ships (2006, 2004, 2002 and 2001). (Minku 63341860)

Xin Yao (M91-SM96-F03) received the BSc de-
gree from the University of Science and Tech-
nology of China (USTC), Hefei, Anhui, in 1982,
the MSc degree from the North China Institute
of Computing Technology, Beijing, in 1985, and
the PhD degree from USTC in 1990. He worked
as an associate lecturer, lecturer, senior lecturer
and associate professor in China and later on
in Australia. Currently, he is a professor at the
University of Birmingham (UK), a visiting chair
professor at the USTC and the director of the

Centre of Excellence for Research in Computational Intelligence and
Applications (CERCIA). He was the editor-in-chief of the IEEE Trans-
actions on Evolutionary Computation (2003-2008), an associate editor
or editorial board member of 12 other journals, and the editor of the
World Scientific Book Series on Advances in Natural Computation. His
major research interests include several topics under machine learning
and data mining. Prof. Yao was awarded the President’s Award for
Outstanding Thesis by the Chinese Academy of Sciences for his PhD
work on simulated annealing and evolutionary algorithms in 1989. He
also won the 2001 IEEE Donald G. Fink Prize Paper Award for his work
on evolutionary artificial neural networks. He is a fellow of the IEEE.


