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ABSTRACT

Background: Previous work showed that Multi-objective
Evolutionary Algorithms (MOEAs) can be used for training
ensembles of learning machines for Software Effort Estima-
tion (SEE) by optimising different performance measures
concurrently. Optimisation based on three measures (LSD,
MMRE and PRED(25)) was analysed and led to promising
results in terms of performance on these and other measures.
Aims: (a) It is not known how well ensembles trained on
other measures would behave for SEE, and whether train-
ing on certain measures would improve performance partic-
ularly on these measures. (b) It is also not known whether
it is best to include all SEE models created by the MOEA
into the ensemble, or solely the models with the best train-
ing performance in terms of each measure being optimised.
Investigating (a) and (b) is the aim of this work.
Method: MOEAs were used to train ensembles by optimis-
ing four different sets of performance measures, involving
a total of nine different measures. The performance of all
ensembles was then compared based on all these nine per-
formance measures. Ensembles composed of different sets of
models generated by the MOEAs were also compared.
Results: (a) Ensembles trained on LSD, MMRE and PRED
(25) obtained the best results in terms of most performance
measures, being considered more successful than the others.
Optimising certain performance measures did not necessar-
ily lead to the best test performance on these particular mea-
sures probably due to overfitting. (b) There was no inherent
advantage in using ensembles composed of all the SEE mod-
els generated by the MOEA in comparison to using solely
the best SEE model according to each measure separately.
Conclusions: Care must be taken to prevent overfitting on
the performance measures being optimised. Our results sug-
gest that concurrently optimising LSD, MMRE and PRED
(25) promoted more ensemble diversity than other combina-
tions of measures, and hence performed best. Low diversity
is more likely to lead to overfitting.
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1. INTRODUCTION
Software Effort Estimation (SEE) is the process of esti-

mating the effort required to develop a software project. It
is a task of strategic importance in project management,
as software effort is the major contributing factor for soft-
ware cost. Both over and underestimations of effort can
cause serious problems to a company. For instance, overes-
timations may result in a company losing contracts or wast-
ing resources, whereas underestimations may result in poor
quality, delayed or unfinished softwares. Due to the impor-
tance of this task, many automated methods for software
cost or effort estimation have been proposed, including sev-
eral machine learning approaches [32].
Recently, ensembles of learning machines started to at-

tract the attention of the software prediction community.
Ensembles are sets of prediction models trained to perform
the same task and combined with the aim of improving pre-
dictive performance [6]. One of the keys for an ensemble
to perform well is for its base models1 to be diverse [4, 18],
i.e., to make different errors on the same data points. This
behaviour matches intuition: if models that make the same
mistakes are combined into an ensemble, the ensemble will
make the same mistakes as the individual models and its per-
formance will be no better than the individual performances.
On the contrary, ensembles composed of diverse models can
compensate the mistakes of certain models through the cor-
rect predictions performed by the others.
Ensembles have been shown to present competitive per-

formance for SEE in comparison to several other existing
approaches [17, 16, 20, 22]. In particular, a fully automated
ensemble approach has been proposed by viewing SEE as
a multi-objective learning problem where the performance
measures that we are interested in can be seen as objec-
tives to be optimised [22]. A Multi-objective Evolutionary
Algorithm (MOEA) is used to create SEE models trained
explicitly on these measures, referred to as objective perfor-
mance measures in this paper. The best models according
to each objective performance measure are then combined
into an ensemble referred to as Pareto ensemble.
Three objective performance measures were used in that

work [22] because they behave very differently from each
other, allowing the MOEA to produce diverse Pareto ensem-
bles. These measures were: Logarithmic Standard Deviation
(LSD), Mean Magnitude of the Relative Error (MMRE) and
percentage of predictions within 25% of the actual values
(PRED (25)). The Pareto ensembles were able to outper-
form several other learning machines, including state-of-the-
art approaches [22], in terms of several performance mea-
sures (e.g., Mean Absolute Error (MAE)), and not only mea-
sures used as objectives.
The multi-objective ensemble approach proposed in that

work [22] could be used with any objective performance mea-
sure. Using other objective performance measures would
cause the MOEA to look for SEE models that specifically
optimise these measures. However, it is not known how
successful ensembles trained on other objective performance
measures would be for SEE in comparison to LSD, MMRE
and PRED(25), and whether training on these other mea-
sures would improve test performance on these measures
themselves. The first aim of this work is to investigate these

1The prediction models that compose an ensemble are called
base models.

two points. This analysis will reveal important points to
be considered when deciding which objective performance
measures to use with the MOEA.

The MOEA used in [22] produces several SEE models
which represent several different trade-offs among the ob-
jective performance measures, whereas only the best model
according to each objective performance measure was used
to compose the ensemble. As the models produced by the
MOEA represent several different trade-offs among mea-
sures, an ensemble composed of all of them may achieve
good performance. It is not known whether it is best to
use all SEE models created by the MOEA to compose the
ensemble, or solely the models with the best training per-
formance in terms of each measure separately. Investigating
this point is the second aim of this work.

This paper is organised as follows. Section 2 presents
background work on machine learning for SEE. Section 3
presents the MOEA approach to create SEE ensembles. Sec-
tion 4 presents the data sets used in this study. Section 5
presents the empirical study to deal with the first aim of this
work. Section 6 presents the empirical study to deal with
the second aim. Section 7 presents the threats to validity.
Section 8 presents the conclusions and future work.

2. MACHINE LEARNING FOR SEE
Several different methods for automating software cost/

effort estimation have been proposed [14]. For example,
Shepperd and Schofield (1997) present a landmark study us-
ing Estimation by Analogy (EBA), a type of case-based rea-
soning based on the k-Nearest Neighbour [1] algorithm. It
presents competitive performance in terms of MAE against
approaches that have been more recently used for SEE, such
as Regression Trees (RTs). Nevertheless, when it is not
among the best approaches for a certain data set it can per-
form considerably worse than the best in terms of MAE [20].

Several other learning machines have been used for SEE.
Examples are linear regression based on log transformed
data, MultiLayer Perceptrons (MLPs), Radial Basis Func-
tion networks (RBFs) and Regression Trees (RTs) [14, 7,
20]. In particular, ensemble learning approaches have been
shown to frequently outperform other approaches [17, 16,
22, 20]. An example are bagging ensembles using RTs as
the base models (Bagging+RTs). A study [20] using a total
of thirteen data sets and eight approaches including MLPs,
RBFs, RTs and EBA showed that Bagging+RTs were fre-
quently the best ranked approaches in terms of MAE and,
when they were not ranked best, they rarely performed con-
siderably worse than the best approach for a given data set.

Another example of ensemble approach was proposed by
Kocaguneli et al. (2012) [16]. Their method combines sev-
eral types of so called solo-methods (combinations of sin-
gle learners and preprocessing techniques) to perform SEE.
They reported that the ensemble presents less instability
than solo-methods when ranked in terms of the total num-
ber of wins, losses and wins − losses considering several
different performance measures and twenty data sets. They
also reported that the ensembles obtained less losses than
other methods. As an additional contribution, their exten-
sive study showed that the non-linear approaches CART (a
type of RT) and EBA based on log transformed data can
outperform other methods such as linear regression based
on log transformed data. However, their approach has high
implementation complexity and is not fully automated. It



requires an extensive experimentation procedure using sev-
eral types of single learners and preprocessing techniques
for creating the ensemble. It consists of selecting the “best”
solo-methods in terms of losses and stability to compose
the ensemble, by manually/visually checking and compar-
ing their stability. The manual/visual checking process is
needed because it is necessary not only to determine what
solo-methods have the lowest number of losses (that by itself
could be automated), but also to check whether these are the
same as the ones comparatively more stable and what level
of stability should be considered as comparatively superior.
Search based software engineering is very related to the

construction of prediction models [13]. For instance, single-
objective genetic programming has been applied for SEE [9,
10, 27]. SEE was then innovatively proposed to be viewed
as a multi-objective learning problem where the performance
measures that we are interested in can be seen as separate
objectives to be optimised by a MOEA in [21, 22], and soon
after in [24, 11, 25]. Search based software engineering has
been used to create SEE ensemble models only very recently
[22]. In this work, a MOEA is used to create SEE models
trained explicitly on different objective performance mea-
sures. The best models according to each objective perfor-
mance measure are then combined into an ensemble, called
the Pareto ensemble. The following objective performance
measures were used: LSD, MMRE and PRED(25). These
measures were shown to behave very differently from each
other, being able to create diverse ensembles. A study using
a total of thirteen data sets and ten approaches (includ-
ing approaches that have shown to perform well in previous
studies such as Bagging+RTs, RTs and EBA based on log
transformed data) showed that very good results can be ob-
tained by using this fully automated approach. The Pareto
ensemble was more frequently ranked first in terms of several
performance measures, and, when it was not ranked first, its
performance was usually not considerably worse than the
best ranked approach’s. This approach is explained in more
detail in section 3.

3. USING MOEAS FOR CREATING SEE

ENSEMBLES
This section presents in more detail the approach upon

which this work is mainly based [22]. As briefly explained
in section 2, this approach uses a MOEA to create SEE
models by optimising on different performance measures.
MOEAs are population-based optimisation algorithms that
evolve sets of candidate solutions by optimising two or more
possibly conflicting objectives. Even when we are interested
in only one objective, adding more objectives instead of us-
ing a single-objective EA can help the optimisation not to
get trapped in local optima [33].
In the case of SEE, the candidate solutions are SEE mod-

els. Candidate solutions are generated/evolved through evo-
lutionary operators such as crossover and mutation in rounds
called generations, where the total number of generations g
and the population size ps are pre-defined. The evolutionary
process is frequently guided by the concept of dominance,
which is defined as follows. Consider a multi-objective op-
timisation problem consisting of N objectives fi(x) to be
minimized, where x is a p dimensional vector containing p
design or decision variables [29]. A solution x(1) dominates

a solution x(2) iff:

fi(x
(1)) ≤ fi(x

(2)) ∀i ∧ ∃i | fi(x(1)) < fi(x
(2))

This concept can easily be generalized to problems involving
maximization. The set of optimal solutions (non-dominated
by any other solution) is called Pareto front. Even though
the true Pareto front is very difficult to be found, a MOEA
can find a set of acceptable solutions non-dominated by any
other solution in the last generation.

Conventional MOEAs such as Non-dominated Sorting Ge-
netic Algorithm II tend not to perform well as the number
of objectives increases [15]. A couple of works in the do-
mains of software product lines [26] and resources allocation
in modular software systems [31] observed that such algo-
rithms can perform bad even for three objectives. In [22], a
MOEA called Harmonic Distance MOEA (HaD-MOEA) has
been used to create SEE models. HaD-MOEA has shown to
be able to cope with three objectives [31, 22]. We refer the
reader to [31] should they wish to obtain more details on
HaD-MOEA.

In order to use a MOEA to solve a certain problem, the
objective functions, the representation and the evolution-
ary operators need to be defined. The objectives used in
[22] were LSD, MMRE and PRED(25). These objectives
are calculated based on how well a candidate solution (SEE
model) performs on the training set. As explained in sec-
tion 5.1, the present work will experiment on different sets
of objective performance measures, as it is not known how
successful different sets would be for SEE and whether using
these other objective performance measures would improve
test performance on these measures themselves.

The MOEA was used to generate MultiLayer Perceptrons
(MLPs) [1] as the SEE models. The MLPs were represented
by a real value vector of size ni ·(nh+1)+nh ·(no+1), where
ni, nh and no are the number of inputs, hidden nodes and
output nodes, respectively. The real value vector is manip-
ulated by the HaD-MOEA to generate SEE models. Each
position of the vector represents a weight or the bias of a
node. The value one summed to nh and no in the formula
above represents the bias. The number of input nodes corre-
sponds to the number of project independent variables and
the number of output nodes is always one for the SEE task.
The number of hidden nodes is a parameter of the approach.
The use of one layer of hidden nodes gives MLPs the po-
tential of being universal approximators among continuous
functions. We refer the reader to [1] for more information
on the structure of MLPs.

The crossover operator was defined as follows. Let wp1 ,
wp2 and wp3 be three parents selected based on tournament,
i.e., each of the parents is selected by randomly picking a pre-
defined number of candidate solutions from the population
and then selecting the best of them as a parent. One child
wc is generated with pre-defined probability Pc according to
the following equation:

wc = wp1 +N(0, σ2)(wp2 − wp3),

where w is the real value vector representing the individuals
and N(0, σ2) is a random number drawn from a Gaussian
distribution with mean zero and variance σ2.

An adaptive procedure inspired by simulated annealing
was used to update the variance σ2 of the Gaussian at every
generation. This procedure allows the crossover to be ini-
tially explorative and then become more exploitative. The



Table 1: PROMISE data sets.
Data Set # Projects # Features Min Effort Max Effort Avg Effort Std Dev Effort
Cocomo81 (effort in person-months) 63 17 5.9 11,400 683.53 1,821.51
Nasa93 (effort in person-months) 93 17 8.4 8,211 624.41 1,135.93
Nasa (effort in person-months) 60 16 8.4 3,240 406.41 656.95
Sdr (effort in person-months) 12 23 1 22 5.73 6.84
Desharnais (effort in person-hours) 81 9 546 23,940 5,046.31 4,418.77

variance is updated according to the following equation:

σ2 = 2−
(

1

1 + e(anneal time−generation)

)

,

where anneal time is a parameter meaning the number of
generations for which the search is to be explorative, after
which σ2 decreases exponentially until reaching and keeping
the value of one.
Mutation is performed elementwise with pre-defined prob-

ability Pm according to the following equation:

wi = wi +N(0, 0.1),

where wi represents a position of the vector representing
the MLP and N(0, 0.1) is a random number drawn from a
Gaussian distribution with mean zero and variance 0.1.
The offspring individuals receive further local training us-

ing Backpropagation [1], using learning rate (lr), momentum
(m) and number of epochs (ep) as pre-defined parameters.
After the evolutionary process finishes, the non-dominated

SEE models that obtained the best training performance in
terms of each objective performance measure are selected to
compose the ensemble, which is called Pareto ensemble. As
explained in section 6.1, other methods to select SEE models
to compose the ensemble are investigated in this work.

4. DATA SETS
The analysis presented in this paper is based on five data

sets from the PRedictOr Models In Software Engineering
Software (PROMISE) Repository2 (section 4.1) and eight
data sets based on the International Software Benchmarking
Standards Group (ISBSG) Repository3 Release 10 (section
4.2). The data sets were the same as the ones used in [22]
and were chosen to cover a wide range of problem features,
such as number of projects, types of features, countries and
companies. They were preprocessed in the same way as in
[22] for dealing with missing values and eliminating outliers
which could hinder the training process. Details on prepro-
cessing were not included here due to space restrictions and
can be found in [22].

4.1 PROMISE Data
The PROMISE data sets used in this study are: coc81,

nasa93, nasa, sdr and desharnais. Cocomo81 consists of
the projects analysed by Boehm to introduce COCOMO [2].
Nasa93 and nasa are two data sets containing Nasa projects
from the 1970s to the 1980s and from the 1980s to the 1990s,
respectively. Sdr contains projects implemented in the 2000s
and was collected at Bogazici University Software Engineer-
ing Research Laboratory from software development organ-
isations in Turkey. Desharnais’ projects are dated from late
2Accessed in 2011: http://promisedata.org.
3Accessed in 2011: http://www.isbsg.org.

Table 2: ISBSG data – organisation types used.
Organisation Type Id # Projects
Financial, Property Org1 76
& Business Services
Banking Org2 32
Communications Org3 162
Government Org4 122
Manufacturing; Org5 21
Transport & Storage
Ordering Org6 22
Billing Org7 21

1980s. Table 1 provides additional details and the next sub-
sections explain their features, missing values and outliers.

Cocomo81, nasa93 and nasa are based on the COCOMO
[2] format, containing as input features 15 cost drivers, the
number of lines of code and the development type (except for
nasa, which does not contain the latter feature). The actual
effort in person-months is the dependent variable. Sdr is
based on COCOMO II [3], containing as input features 22
cost drivers and the number of lines of code. The actual
effort in person-months is the dependent variable. The data
sets were processed to use the COCOMO numeric values
for the cost drivers. The development type was transformed
into dummy variables.

Desharnais follows an independent format, containing as
input features the team experience in years, the manager
experience in years, the year the project ended, the number
of basic logical transactions in function points, the number
of entities in the system’s data model in function points, the
total number of non-adjusted function points, the number
of adjusted function points, the adjustment factor and the
programming language. Actual effort in person-hours is the
dependent variable.

4.2 ISBSG Data
The ISBSG repository contains a large body of data about

completed software projects. The release 10 contains 5,052
projects, covering many different companies, several coun-
tries, organisation types, application types, etc. In order to
produce reasonable SEE using ISBSG data, a set of relevant
comparison projects needs to be selected. The data set was
preprocessed to use projects that are compatible and do not
present strong issues affecting their effort or sizes, as these
are the most important variables for SEE. This preprocess-
ing resulted in 621 projects. Details can be found in [22].

After that, with the objective of creating different subsets,
the projects were grouped according to organisation type.
Only the groups with at least 20 projects were maintained,
following ISBSG’s data set size guidelines. The resulting
organisation types are shown in table 2.

Table 3 contains additional information about the subsets.
As we can see, the productivity rate of different companies



Table 3: ISBSG subsets.
Id Unadjusted Function Points Effort Productivity

Min Max Avg Std Dev Min Max Avg Std Dev Min Max Avg Std Dev
Org1 43 2906 215.32 383.72 91 134211 4081.64 15951.03 1.2 75.2 12.71 12.58
Org2 53 499 225.44 135.12 737 14040 3218.50 3114.34 4.5 55.1 15.05 9.94
Org3 3 893 133.24 154.42 4 20164 2007.10 2665.93 0.3 43.5 17.37 9.98
Org4 32 3088 371.41 394.10 360 60826 5970.32 8141.26 1.4 97.9 18.75 16.69
Org5 17 13580 1112.19 2994.62 762 54620 8842.62 11715.39 2.2 52.5 23.38 14.17
Org6 50 1278 163.41 255.07 361 28441 4855.41 6093.45 5.6 60.4 30.52 17.70
Org7 51 615 160.10 142.88 867 19888 6960.19 5932.72 14.4 203.8 58.10 61.63

varies. A 7-way 1 factor Analysis of Variance was used to
determine whether the mean productivity rate for all dif-
ferent subsets are equal or not. The factor considered was
organisation type, with seven different levels representing
each of the organisation types, and each level containing its
corresponding projects as the observations. The analysis of
variance indicates that there is statistically significant dif-
ference at the 95% confidence interval (p-value < 2.2e−16).
The ISBSG suggests that the most important criteria for

estimation purposes are the functional size; the development
type (new development, enhancement or re-development);
the primary programming language or the language type
(e.g., 3GL, 4GL); and the development platform (mainframe,
midrange or PC). As development platform has more than
40% missing feature values for two organisation types, we
used only functional size, development type and language
type as input features. The normalised work effort in hours
is the dependent variable. Due to the preprocessing, this is
the actual development effort across the whole life cycle.

5. ENSEMBLES BASED ON DIFFERENT

PERFORMANCE MEASURES
As explained in section 1, it is not known how success-

ful Pareto ensembles trained on other sets of performance
measures than LSD, MMRE and PRED(25) are for SEE,
and whether training on other measures would improve per-
formance on these other measures themselves. This section
presents the experiments done to investigate that, and re-
veals important points to be considered when choosing ob-
jective performance measures for the MOEA.

5.1 Experimental Setup
Experiments were performed with Minku and Yao’s MOEA

[22] (section 3) by using the following sets of objective per-
formance measures:

• {LSD, MMRE, PRED(25)}: these are the performance
measures used in [22]. Logarithmic Standard Devia-
tion (LSD) has been recommended by Foss et al (2003)
[12] for identifying the true best model with reason-
ably high probability. Mean Magnitude of the Rela-
tive Error (MMRE) and the percentage of predictions
within 25% of the true value (PRED(25)) are two per-
formance measures that used to be popular for eval-
uation of software prediction systems, despite being
based on the MRE, which is biased towards underes-
timations. These three measures were able to create
diverse and competitive Pareto ensembles for SEE in
terms of several performance measures [22].

• {MAE, RMSE, Correlation}: Mean Absolute Error
(MAE) is a measure recommended by Shepperd and
McDonnel (2012) [28] for being unbiased towards un-
der and overestimations. Root Mean Square Error
(RMSE) is a popular measure in the machine learn-
ing community which emphasizes large errors more.
Measures of correlation have also been used to evalu-
ate SEE approaches [7]. We use Pearson Correlation
(Corr), which is widely used in sciences as a measure
of the strength of linear dependence between two vari-
ables. In the case of SEE, the two variables are the
estimated and the actual effort.

• {MAE, RMSE, Standard Deviation of AE}: besides
using MAE and RMSE, this set also uses the stan-
dard deviation of the absolute errors (StdDev). It is
desirable that SEE models are not only accurate, but
also that their errors do not vary much for different
projects. A more stable SEE model is more reliable,
because it gives a better idea of the error that is likely
to happen when estimating a project. For that reason,
StdDev is included in this set of measures.

• {MdAE, MdMRE, RMSE}: measures based on the
average are affected by outliers, i.e., a few projects
with extreme error values. Besides RMSE, this set of
measures includes two measures based on the median,
which is less affected by outliers: Median Absolute Er-
ror (MdAE) and Median Magnitude of the Relative
Error (MdMRE).

These four sets consider several different performance mea-
sures (a total of nine measures are used). They are also
varied in the sense that two of the sets contain only er-
ror/accuracy measures ({LSD, MMRE, PRED(25)}, and
{MdAE, MdMRE, RMSE}), other two of the sets contain
non-error/accuracy measures ({MAE, RMSE, Corr}, and
{MAE, RMSE, StdDev}), and one of the sets is known
to be composed of measures that behave diversely ({LSD,
MMRE, PRED(25)} [22]). We have considered sets com-
posed of three performance measures because HaD-MOEA
has shown to cope well with three objectives [31, 22].

Considering a set of T projects, the formulae to calculate
these performance measures are:

• MMRE = 1
T

∑T

i=1 MREi, whereMREi = |ŷi−yi|/yi;
ŷi is the predicted effort; and yi is the actual effort;

• PRED(25) = 1
T

∑T

i=1

{

1, if MREi ≤ 25
100

0, otherwise
;



• LSD =

√

∑

T

i=1

(

ei+
s2

2

)

2

T−1
, where s2 is an estimator of

the variance of the residual ei and ei = ln yi − ln ŷi;

• MAE = 1
T

∑T

i=1 |ŷi − yi|;

• RMSE =

√

∑

T

i=1
(ŷi−yi)2

T
;

• Corr =
∑

T

i=1
(ŷi− ¯̂y)(yi−ȳ)√

∑

T

i=1
(ŷi− ¯̂y)2

√
∑

T

i=1
(yi−ȳ)2

,

where ¯̂y and ȳ are the average predicted and average
actual efforts, respectively;

• MdAE = Median {|ŷi − yi| /1 ≤ i ≤ T};

• MdMRE = Median {MREi /1 ≤ i ≤ T}.

PRED(25) and Corr are measures to be maximised, whereas
the others are to be minimised.
Thirty runs were performed for each set of objectives on

each data set described in section 4. Similarly to [22], in each
run, for each data set, ten projects were randomly picked for
testing and the remaining were used for the MOEA optimi-
sation process/training of SEE models. Holdout of size ten
was suggested by Menzies et al. (2006) [19] and allows the
largest possible number of projects to be used for training
without hindering testing. For the data set sdr, half of the
projects were used for testing and half for training, due to
the small size of the data set. The Pareto ensembles were
evaluated based on LSD, MMRE, PRED(25), MAE, RMSE,
Corr, StdDev, MdAE and MdMRE calculated on the test
sets and then the median over the thirty runs was taken.
The parameters used by the MOEA (table 4) were the

same as the ones used in Minku and Yao (2012) [22], as
they were shown to obtain good results in comparison to
several other approaches for SEE. Minku and Yao (2012)
[22] chose these parameters in the following way. The pop-
ulation size and number of Backpropagation epochs were
arbitrarily chosen to be 100 and 5 for the larger data sets
(≥ 60 projects), and arbitrarily reduced to 30 and 0 for the
smaller data sets (≤ 35 projects). These values were smaller
for the smaller data sets in order to reduce overfitting. The
remaining Backpropagation parameters were the ones more
likely to obtain good results based on five preliminary exe-
cutions of Backpropagation MLPs [20]. The probability of
crossover and mutation were chosen among two possible val-
ues based on five preliminary executions for Cocomo81. The
annealing time was the same as the one used in [5].
The comparison among the Pareto ensembles trained on

different sets of objectives was aided by Friedman tests across
multiple data sets [8]. Friedman test can also be used to
provide rankings of the ensembles across data sets. We can
choose whether small values are to represent better or worse
ranks before running the test. In this work, we considered
smaller values (e.g., ranking of 1st) as better rankings.

5.2 Analysis
Table 5 shows the average ranking and p-values of the

Friedman tests comparing the Pareto ensembles over each
performance measure. As we can see, there was statistically
significant difference at the level of significance of 0.05 in
terms of six performance measures: LSD, MMRE, MAE,
Corr, MdAE and MdMRE. {LSD, MMRE, PRED(25)} was
ranked first in terms of all performance measures where there
was statistically significantly difference. {MAE, RMSE, Corr}

Table 4: Parameter values used by the HaD-MOEA.
Pc was 0.8, Pm was 0.05, anneal time was g/4, and
tournament size was 2.

Data Set lr m nh ep g ps
Cocomo81 0.3 0.5 9 5 200 100
Sdr – – 9 0 20 30
Nasa 0.1 0.1 9 5 100 100
Desharnais 0.1 0.1 9 5 100 100
Nasa93 0.4 0.5 5 5 20 100
Org1 0.1 0.2 9 5 200 100
Org2 0.1 0.1 5 5 100 100
Org3 – – 5 0 100 30
Org4 0.2 0.3 9 5 200 100
Org5 – – 9 0 200 30
Org6 – – 3 0 20 30
Org7 – – 5 0 20 30
OrgAll 0.1 0.5 9 5 20 100

was ranked last when evaluated in terms of all performance
measures but MdMRE. In terms of MdMRE, even though
its ranking was not the last, it was very similar to the last.

{MdAE,MdMRE, RMSE}’s ranking was frequently sim-
ilar to {LSD, MMRE, PRED(25)}’s, but we can see that
{LSD, MMRE, PRED(25)}’s ranking was still considerably
better in terms of Corr and MdMRE. Wilcoxon statistical
tests at the level of significance of 0.05 were performed to
compare these Pareto ensembles on these two performance
measures and confirm that there was statistically significant
difference (p-values of 0.0398 and 0.0024, respectively).

From the analysis above, we can conclude that {LSD,
MMRE, PRED(25)} obtained generally better results than
the other Pareto ensembles when considering all performance
measures at the same time. So, this type of Pareto ensemble
can be considered as more successful than the others.

We can also observe that using a certain performance
measure as an objective does not necessarily lead to better
test performance in terms of this measure. {LSD, MMRE,
PRED(25)} was ranked first in terms of several performance
measures, even the ones not used as its objectives. {MAE,
RMSE, Corr} was ranked last in terms of several perfor-
mance measures, including performance measures used as
its objectives. Using sets of objective performance measures
different from {LSD, MMRE, PRED(25)} did not lead to
better test performance on the measures being optimised.
A probable reason for that is the fact that overfitting can
happen on the measures being used as objective.

In order to provide evidence of that reason, we investi-
gated the Friedman ranking of all Pareto ensembles based
on the training performances (table 6). We can see that the
approaches that optimised a certain set of performance mea-
sures became more competitive in terms of these measures
on the training set. Their training ranking was either the
first or very close to the first in terms of any of the perfor-
mance measures that they optimised. This indicates that
indeed the fact that they do not perform best in terms of
test performance is probably linked to overfitting. An excep-
tion to that is {MdAE, MdMRE, RMSE}, whose ranking in
terms of RMSE was considerably worse than {MAE, RMSE,
Corr}’s, which also optimises RMSE. This is confirmed by
a Wilcoxon test, which finds statistically significant differ-
ence in terms of RMSE between these two Pareto ensembles



Table 5: Friedman ranking of Pareto ensembles
across data sets based on test performance. Smaller
ranks are better ranks. The smallest and biggest val-
ues are shown in yellow (light grey) and red (dark
grey), respectively. The p-values of the Friedman
tests are shown beside the measures’ names and are
marked with * when they represent statistically sig-
nificant difference at the level of significance of 0.05.
PRED(25) is written as PRED.

LSD – p-value = 0.0157*
Avg. Rank Std. Dev. Rank Objectives

1.85 0.90 {LSD, MMRE, PRED}
3.31 0.95 {MAE, RMSE, Corr}
2.69 1.18 {MAE, RMSE, StdDev}
2.15 0.99 {MdAE,MdMRE, RMSE}

MMRE – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

1.38 0.65 {LSD, MMRE, PRED}
3.46 0.52 {MAE, RMSE, Corr}
3.23 1.01 {MAE, RMSE, StdDev}
1.92 0.64 {MdAE,MdMRE, RMSE}

PRED(25) – p-value = 0.1157
Avg. Rank Std. Dev. Rank Objectives

1.88 0.58 {LSD, MMRE, PRED}
2.96 0.85 {MAE, RMSE, Corr}
2.85 0.97 {MAE, RMSE, StdDev}
2.31 0.75 {MdAE,MdMRE, RMSE}

MAE – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

1.62 0.87 {LSD, MMRE, PRED}
3.46 0.78 {MAE, RMSE, Corr}
3.00 1.08 {MAE, RMSE, StdDev}
1.92 0.64 {MdAE,MdMRE, RMSE}

RMSE – p-value = 0.1047
Avg. Rank Std. Dev. Rank Objectives

2.15 0.90 {LSD, MMRE, PRED}
3.23 1.09 {MAE, RMSE, Corr}
2.46 1.33 {MAE, RMSE, StdDev}
2.15 0.90 {MdAE,MdMRE, RMSE}

Corr – p-value = 0.0157*
Avg. Rank Std. Dev. Rank Objectives

1.62 0.96 {LSD, MMRE, PRED}
3.15 1.07 {MAE, RMSE, Corr}
2.62 1.04 {MAE, RMSE, StdDev}
2.62 0.96 {MdAE,MdMRE, RMSE}

StdDev – p-value = 0.1997
Avg. Rank Std. Dev. Rank Objectives

2.62 0.87 {LSD, MMRE, PRED}
3.08 1.19 {MAE, RMSE, Corr}
2.08 1.26 {MAE, RMSE, StdDev}
2.23 1.01 {MdAE,MdMRE, RMSE}

MdAE – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

1.54 0.78 {LSD, MMRE, PRED}
3.38 0.65 {MAE, RMSE, Corr}
3.31 0.95 {MAE, RMSE, StdDev}
1.77 0.60 {MdAE,MdMRE, RMSE}

MdMRE – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

1.23 0.44 {LSD, MMRE, PRED}
3.15 0.90 {MAE, RMSE, Corr}
3.23 0.93 {MAE, RMSE, StdDev}
2.38 0.87 {MdAE,MdMRE, RMSE}

Table 6: Friedman ranking of Pareto ensembles
across data sets based on training performance.
Smaller ranks are better ranks. The smallest and
biggest values are shown in yellow (light grey)
and red (dark grey), respectively. The p-values of
the Friedman tests are shown beside the measures’
names and are marked with * when they represent
statistically significant difference at the level of sig-
nificance of 0.05. PRED(25) is written as PRED.

LSD – p-value = 0.1047
Avg. Rank Std. Dev. Rank Objectives

2.15 1.07 {LSD, MMRE, PRED}
2.77 1.24 {MAE, RMSE, Corr}
2.00 1.00 {MAE, RMSE, StdDev}
3.08 0.95 {MdAE, MdMRE, RMSE}

MMRE – p-value = 0.3481
Avg. Rank Std. Dev. Rank Objectives

2.00 1.22 {LSD, MMRE, PRED}
2.54 1.05 {MAE, RMSE, Corr}
2.92 1.12 {MAE, RMSE, StdDev}
2.54 1.05 {MdAE, MdMRE, RMSE}

PRED(25) – p-value = 0.0745
Avg. Rank Std. Dev. Rank Objectives

3.27 1.11 {LSD, MMRE, PRED}
2.42 1.02 {MAE, RMSE, Corr}
2.04 0.83 {MAE, RMSE, StdDev}
2.27 0.78 {MdAE, MdMRE, RMSE}

MAE – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

3.62 0.96 {LSD, MMRE, PRED}
1.92 1.19 {MAE, RMSE, Corr}
1.69 0.63 {MAE, RMSE, StdDev}
2.77 0.44 {MdAE, MdMRE, RMSE}

RMSE – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

3.92 0.28 {LSD, MMRE, PRED}
1.38 0.65 {MAE, RMSE, Corr}
1.77 0.60 {MAE, RMSE, StdDev}
2.92 0.49 {MdAE, MdMRE, RMSE}

Corr – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

3.77 0.83 {LSD, MMRE, PRED}
1.31 0.63 {MAE, RMSE, Corr}
2.08 0.49 {MAE, RMSE, StdDev}
2.85 0.69 {MdAE, MdMRE, RMSE}

StdDev – p-value < 0.0001*
Avg. Rank Std. Dev. Rank Objectives

4.00 0.00 {LSD, MMRE, PRED}
1.46 0.66 {MAE, RMSE, Corr}
1.62 0.51 {MAE, RMSE, StdDev}
2.92 0.28 {MdAE, MdMRE, RMSE}

MdAE – p-value = 0.2871
Avg. Rank Std. Dev. Rank Objectives

2.69 1.11 {LSD, MMRE, PRED}
2.54 1.27 {MAE, RMSE, Corr}
2.85 1.14 {MAE, RMSE, StdDev}
1.92 0.86 {MdAE, MdMRE, RMSE}

MdMRE – p-value = 0.1095
Avg. Rank Std. Dev. Rank Objectives

2.92 1.26 {LSD, MMRE, PRED}
2.62 1.26 {MAE, RMSE, Corr}
2.69 1.03 {MAE, RMSE, StdDev}
1.77 0.60 {MdAE, MdMRE, RMSE}



at the level of significance of 0.05 (p-value = 0.0024). This
exception demonstrates that the optimisation process of a
certain performance measure is affected by the other perfor-
mance measures being optimised.
We can also see that {LSD, MMRE, PRED(25)} was al-

ways ranked worst in terms of training performance on all
measures where there is statistically significant difference
(table 6), whereas it was ranked first in terms of test per-
formance on these measures (table 5). This indicates that
this Pareto ensemble suffered less from overfitting than the
others. As shown by Minku and Yao (2012), LSD, MMRE
and PRED(25) are performance measures that behave very
differently from each other, being able to produce diverse
Pareto ensembles. As diversity is known to help reducing
overfitting [30, 23], even though surprising, it is reasonable
that this Pareto ensemble would manage to obtain better
test performance than other Pareto ensembles if these other
ensembles are less diverse, even considering performance
measures that it did not optimise.
So, we need to check if {LSD, MMRE, PRED(25)} indeed

lead to more diversity than the other sets of objectives. The
set of solutions found by the MOEA can be considered as
diverse if it represents several different trade-offs in terms
of the objectives4. However, different trade-offs would not
really exist in the search space (or would be very scarce)
if the objectives are highly correlated, because a solution
that is good in one of them would also be good in the oth-
ers. In particular, a high correlation for a certain pair of
performance measures means that SEE models chosen to
compose the ensemble based on these measures are likely to
behave similarly to each other, and would thus produce a
less diverse Pareto ensemble. So, we analyse the maximum
correlation between any pair of objective performance mea-
sures for each type of Pareto ensemble to indicate whether
it is more or less diverse. The correlation was computed in
terms of training performance of all the non-dominated so-
lutions of the final generation considering all data sets and
runs of a given type of Pareto ensemble (table 7) . When
the correlation involved a measure to be maximised and a
measure to be minimised, it was multiplied by -1. In this
way, larger values always indicate more similar behaviour,
facilitating the analysis.
As we can see from table 7, the correlation between MAE

and RMSE was very high, meaning that {MAE, RMSE,
Corr} and {MAE, RMSE, StdDev} are less diverse and thus
more likely to overfit. The correlation between MdAE and
RMSE is smaller than the correlation between MAE and
RMSE, but still considerably higher than the correlation be-
tween LSD and PRED(25). So, {LSD, MMRE, PRED(25)}
is still more diverse than {MdAE, MdMRE, RMSE}. This is
in line with the fact that {MdAE, MdMRE, RMSE} achieved
similar or better test performances than {MAE, RMSE,
Corr} and {MAE, RMSE, StdDev}, but still in some cases
performed worse than {LSD, MMRE, PRED(25)}.
Based on the analysis shown in this section, diversity

among the objective performance measures should be a pri-
mary consideration in forming the group of objectives. Di-
versity is even more important than personal preferences
over certain measures, as a diverse set of objective perfor-
mance measures can also improve test performance on mea-
sures that are not used as objectives, whereas using a certain

4In more technical terms, it would be diverse if the non-
dominated solutions form a good spread in the frontier.

Table 7: Correlation between training performance
of all the non-dominated solutions of the final gen-
eration of the MOEA, considering all data sets and
runs. Correlations involving a measure to be max-
imised and a measure to be minimised are multiplied
by -1. The maximum value for each set of objectives
is in red (dark grey).

{LSD, MMRE, PRED(25)}
LSD vs MMRE 0.18
MMRE vs PRED(25) 0.33
LSD vs PRED(25) 0.55

{MAE, RMSE, Corr}
MAE vs RMSE 1.00
RMSE vs Corr 0.07
MAE vs Corr 0.06

{MAE, RMSE, StdDev}
MAE vs RMSE 0.97
RMSE vs StdDev 0.88
MAE vs StdDev 0.74

{MdAE, MdMRE, RMSE}
MdAE vs MdMRE 0.12
MdMRE vs RMSE 0.09
MdAE vs RMSE 0.75

performance measure as an objective does not necessarily
lead to better test performance in terms of this measure.

6. ENSEMBLES BASED ON DIFFERENT

MODEL SELECTION APPROACHES
As explained in section 1, it is not known whether the

strategy of selecting the non-dominated SEE models with
the best training performance in terms of each measure be-
ing optimised to compose the Pareto ensemble is a better
strategy than using all non-dominated SEE models created
by the MOEA. This section presents the experiments done
to investigate that. As the MOEA may cause overfitting, it
might also be desirable to choose the SEE models that are
the second best, instead of the first best in terms of each
performance measure being optimised. Increasing the en-
semble size while maintaining the trade-off in terms of the
number of selected models based on each performance mea-
sure might also be helpful to improve performance. So, this
section also investigates these selection methods.

6.1 Experimental Setup
The following methods were used to select nondominted

SEE models produced in the last generation of the MOEA
to compose the Pareto ensemble:

• EnsBest: Select the best SEE model according to the
training performance on each measure being optimised.
This is the strategy adopted by Minku and Yao (2012)
[22] and in section 5.

• EnsSecBest: Select the second best SEE model accord-
ing to the training performance on each measure being
optimised.

• EnsFirstSecBest: Select the first and second best SEE
models according to the training performance on each
measure being optimised.

• EnsAll: Select all the non-dominated SEE models gen-
erated by the MOEA to composed the ensemble.

The MOEA used in this section uses {LSD, MMRE, PRED
(25)} as objectives to be optimised, as these objectives were
shown to perform better in section 5. The number of runs,
parameters, training and testing sets, and performance mea-
sures used for evaluation were the same as in section 5.1.
Friedman tests [8] were also used to aid the analysis.



Table 8: Friedman ranking of Pareto ensembles across data sets based on test performance. Smaller ranks
are better ranks. The smallest and biggest values are shown in yellow (light grey) and red (dark grey),
respectively. The p-values of the Friedman tests are shown beside the measures’ names and are marked with
* when they represent statistically significant difference at the level of significance of 0.05. PRED(25) is
written as PRED.

LSD – p-value = 0.0835
2.54 0.97 EnsBest
3.23 1.09 EnsSecBest
2.08 0.86 EnsFirstSecBest
2.15 1.28 EnsAll

MMRE – p-value = 0.1424
1.92 1.44 EnsBest
3.08 1.12 EnsSecBest
2.62 0.87 EnsFirstSecBest
2.38 0.77 EnsAll

PRED(25) – p-value = 0.5589
2.50 0.71 EnsBest
2.92 0.76 EnsSecBest
2.23 1.36 EnsFirstSecBest
2.35 0.88 EnsAll

MAE – p-value = 0.1552
2.54 1.20 EnsBest
3.08 1.12 EnsSecBest
1.92 0.76 EnsFirstSecBest
2.46 1.20 EnsAll

RMSE – p-value = 0.3225
2.62 1.26 EnsBest
2.77 1.09 EnsSecBest
2.69 0.95 EnsFirstSecBest
1.92 1.12 EnsAll

Corr – p-value = 0.8423
2.31 1.32 EnsBest
2.77 1.09 EnsSecBest
2.46 0.97 EnsFirstSecBest
2.46 1.20 EnsAll

StdDev – p-value = 0.8210
2.77 1.17 EnsBest
2.38 1.19 EnsSecBest
2.54 0.78 EnsFirstSecBest
2.31 1.38 EnsAll

MdAE – p-value = 0.6930
2.54 0.97 EnsBest
2.85 1.14 EnsSecBest
2.31 1.03 EnsFirstSecBest
2.31 1.38 EnsAll

MdMRE – p-value = 0.0184*
1.92 1.12 EnsBest
3.31 0.75 EnsSecBest
2.08 0.86 EnsFirstSecBest
2.69 1.25 EnsAll

6.2 Analysis
Table 8 shows the Friedman ranking of the four types of

Pareto ensembles compared. As we can see, there was no
statistically significant difference at the level of significance
of 0.05 in terms of all measures but MdMRE, for which
EnsBest was the best ranked. So, there was no inherent ad-
vantage in using EnseSecBest, EnsFirstSecBest or EnsAll in
comparison to EnsBest, unless more information about the
data set is known, i.e., the best choice among these methods
for selecting SEE to compose the Pareto ensemble is highly
dependent on the data set in hands.

7. THREATS TO VALIDITY
Internal validity: we used Friedman and Wilcoxon tests

to evaluate the statistical significance of the results. Four
sets of objective performance measures were used, encom-
passing diverse combinations of nine different performance
measures. Additional objective performance measures and
combinations need to be investigated to extend the conclu-
sions of this work further. Note that using larger sets of
objectives is not necessarily good, because several of these
measures may be highly correlated. The MOEA approach
was run using the same parameters as [22], which were not
fine tuned and are unlikely to be optimal, but have shown
to obtain good results. As this approach contains several
pre-defined parameters, it is natural that a software man-
ager with no specialist knowledge on MOEAs and machine
learning would run it with parameters that have been used
previously in the literature. So, it is reasonable to reflect
that in the present study. Investigation of other parameter
choices is left as future work.
Construct validity: we used nine different performance

measures (LSD, MMRE, PRED(25), MAE, RMSE, Corr,
StdDev, MdAE andMdMRE) in the evaluation of the Pareto
ensembles to ensure construct validity.
External validity: similarly to the number of data sets

used in recent work [22, 20, 7], we used thirteen different
data sets containing a large variety of projects from different
organisations and countries to deal with external validity.

8. CONCLUSIONS

This work performed a comprehensive study of MOEAs
to generate ensembles of SEE models based on four com-
binations of objective performance measures. One of the
main conclusions is that using a certain performance mea-
sure as objective does not necessarily lead to better test
performance on that measure, and that a probable reason
for that is overfitting. So, choosing a diverse set of objective
performance measures to use with the MOEA is even more
important than making choices based on individual prefer-
ences over these measures. Diversity among the objective
performance measures should be a primary consideration in
forming the group of objectives.

An example of diverse set of measures able to produce en-
sembles that perform well in terms of these and several other
measures is {LSD, MMRE, PRED(25)}. It obtained simi-
lar or better performance than using {MAE, RMSE, Corr},
{MAE, RMSE, StdDev} and {MdAE, MdMRE, RMSE} in
terms of LSD, MMRE, PRED(25), MAE, RMSE, Corr, Std-
Dev, MdAE and MdMRE. So, Pareto ensembles based on
{LSD, MMRE, PRED(25)} can be considered as more suc-
cessful than ensembles based on these three other sets of
objective performance measures.

Our study also analysed different methods to select non-
dominated SEE models generated by the MOEA to com-
pose the Pareto ensemble. No inherent advantage in select-
ing models based on these different methods was observed in
comparison to selecting the best model according to each ob-
jective performance measure. The best among these meth-
ods to select SEE models is highly dependent on the data.

As future work, other objective performance measures and
combinations should be investigated, as well as other meth-
ods to select SEE models to compose the Pareto ensemble
and other types of base models. The impact of using other
MOEAs and parameters should also be analysed, and the
relationship between low ensemble diversity and overfitting
should be investigated further.
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