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ABSTRACT

Background: There has been a long debate in the software
engineering literature concerning how useful cross-company
(CC) data are for software effort estimation (SEE) in com-
parison to within-company (WC) data. Studies indicate that
models trained on CC data obtain either similar or worse
performance than models trained solely on WC data.
Aims: We aim at investigating if CC data could help to
increase performance and under what conditions.
Method: The work concentrates on the fact that SEE is a
class of online learning tasks which operate in changing envi-
ronments, even though most work so far has neglected that.
We conduct an analysis based on the performance of differ-
ent approaches considering CC and WC data. These are:
(1) an approach not designed for changing environments,
(2) approaches designed for changing environments and (3)
a new online learning approach able to identify when CC
data are helpful or detrimental.
Results: Interesting features of data sets commonly used
in the SEE literature are revealed, showing that different
subsets of CC data can be beneficial or detrimental depend-
ing on the moment in time. The newly proposed approach
is able to benefit from that, successfully using CC data to
improve performance over WC models.
Conclusions: This work not only shows that CC data can
help to increase performance for SEE tasks, but also demon-
strates that the online nature of software prediction tasks
should be exploited, being an important issue to be consid-
ered in the future.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Cost esti-
mation; I.2.6 [Artificial Intelligence]: Learning—Concept
learning

General Terms

Experimentation
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1. INTRODUCTION
There has been a long debate in the software engineer-

ing literature concerning how useful cross-company (CC)
data are for software effort estimation (SEE) in compari-
son to within-company (WC) data. One of the reasons for
that is that the number of projects available from a single-
company is typically small, causing WC SEE models to per-
form poorly. If possible, it would be desirable to use CC
data to improve the performance attained by models trained
solely on WC data. Nevertheless, studies so far indicate that
CC models obtain either similar or worse performance than
WC models [7, 11, 13, 15, 14].

Most SEE research, including CC-related work [7], does
not consider the chronology of the projects. Models are
typically trained on a set of projects and evaluated on an-
other set of projects, without considering whether the train-
ing projects were really available before the testing projects.
Even though in reality estimations can only be performed
considering previously existing projects, this type of eval-
uation strategy is still valid when dealing with stationary
environments. However, SEE tasks are online (new com-
pleted projects keep arriving with time) and unlikely to be
stationary, as software development companies and their em-
ployees evolve with time. For example, new employees can
be hired or lost, training can be provided, employees can be-
come more experienced, new types of software projects can
be accepted, the management strategy can change, new pro-
gramming languages can be introduced, etc. So, SEE models
developed at a certain point in time may become obsolete
and the chronology of the projects must be considered when
developing/evaluating models.

Such environment changes affecting the underlying distri-
bution of the problem are referred to as concept drifts [17]
in the Machine Learning (ML) literature. A certain joint
problem distribution can be called a concept. A recent WC
SEE work by Lokan and Mendes [12] further supports the
fact that SEE tasks suffer from concept drift. They reveal
that using a certain WC subset composed of recent projects
may provide better performance than using all previously
existing WC projects. A few previous studies on CC ver-
sus WC models consider the chronology of data [11, 13, 15,
14], but they use all previously existing projects to estimate
future projects, neglecting concept drift.



In this paper, we analyse the benefit of CC data when
considering the online and changing nature of SEE tasks,
as this could reveal previously unnoticed advantages of such
data. The main research question answered by the paper is
“Can Cross-company Data Improve Performance in Software
Effort Estimation?” This question is further separated into:

• RQ1: Are CC data potentially beneficial for improving
SEE? Under what conditions?

• RQ2: Can this potential benefit be used? How?

We answer RQ1 by showing that CC data can be beneficial
or detrimental depending on the moment in time, as SEE
tasks operate under concept drifting conditions (section 5).
Such concept drifts are very particular to SEE environments,
having each concept active for a relatively short number of
projects. We find that CC data are potentially particularly
helpful for this sort of concept drift. Our analysis also re-
veals some interesting features of data sets commonly used
in the SEE literature.
RQ2 is answered by presenting and evaluating a new ap-

proach called Dynamic Cross-company Learning (DCL) to
make use of CC data’s potential for SEE (sections 6 and 7).
The evaluation across multiple data sets shows that DCL
successfully uses CC data to improve performance in com-
parison to the sole use of WC data. We also show that
using an existing general purpose concept drift approach is
not enough to significantly improve performance over multi-
ple data sets in comparison to a WC approach not designed
for dealing with concept drift.
The following contributions to SEE are provided:

• SEE concept drift features are examined and their par-
ticularities in comparison to usual concept drifts tack-
led by the ML literature are identified.

• CC data are revealed to be potentially beneficial for
improving the performance of SEEs over WC models
when considering the online and changing nature of
these tasks. Concept drift can cause CC models to
become more or less beneficial/detrimental.

• Interesting features of SEE data sets commonly used in
the literature are revealed, showing that different par-
titions of CC projects present different usefulness and
are better to be used separately than as a single set.
Separating CC projects according to their productivity
increases their potential benefit for estimating projects
of a single-company.

• A new approach able to successfully use CC to improve
performance over WC models is proposed.

• We show that the online changing nature of software
prediction tasks should be further exploited, being an
important issue to be considered in the next research
frontier on software project estimation.

This paper is further organised as follows. Section 2 presents
related work. Section 3 presents our formulation of SEE
as an online changing environment problem. Section 4 de-
scribes the data sets used in the study. Section 5 presents an
analysis to answer RQ1. Section 6 presents the proposed ap-
proach DCL. Section 7 presents an evaluation of DCL, which
together with section 6 answers RQ2. Section 8 discusses
threats to validity and implications to practice. Section 9
presents the conclusions and future work.

2. RELATED WORK

2.1 SEE Literature
Most work in the SEE literature does not consider the

temporal relationship among projects and conclude that CC
models obtain either similar or worse performance than WC
models [7]. A few studies consider the chronology of the
projects. Lokan and Mendes [11, 13, 15, 14] propose two
types of SEE problem formulation considering chronology:
project-by-project splitting and date-based splitting. The
studies indicate that it is important to consider chronology,
even though the conclusions regarding CC versus WC mod-
els did not differ much from previous work. CC models ob-
tained either similar or worse performance in terms of Mean
Absolute Error (MAE), which is a symmetrical measure not
biased towards over or underestimates [14, 22]. The results
in terms of the biased Z-measure further suggest that the
CC models were more likely to underestimate effort.

Even though these studies consider chronology, they do
not consider the existence of concept drift, which may cause
projects from different periods to become more or less use-
ful throughout time. Their models are also trained on mixed
data from the single-company and other companies, disre-
garding the fact that CC projects may belong to different
concepts from the WC projects. A posterior work [12] shows
that using a window of the most recent projects can pro-
vide better performance than using all the previous projects
available. This is to our knowledge the first work to con-
sider the existence of concept drift in SEE. Nevertheless, it
does not consider the issue of CC versus WC. It does not
consider that older projects may become useful again in the
future either, e.g., an experienced employee could leave the
company, causing its productivity to become similar to the
time before this employee was hired.

2.2 ML Literature
Approaches for dealing with online learning and concept

drift in the ML literature typically assume the availability
of large amounts of data, forming a data stream [21] un-
likely to exist in SEE. Even though SEE concept drifts can
be very particular (section 5.2.1), ML approaches for dealing
with drifts might be helpful, even if not producing very good
results when directly applied for SEE. It it is valid to inves-
tigate how these approaches perform and/or to use them as
inspiration to create new SEE approaches.

An example of approach for concept drifting classification
tasks is Dynamic Weight Majority (DWM) [10]. DWM cre-
ates different base models, each associated to a weight which
is reduced when the base model gives a wrong prediction.
Base models are dynamically added and removed, facilitat-
ing adaptation to drifts. DWM’s predictions are based on
the weighted majority vote among the base models. Addi-
tive Expert Ensemble (AddExp) [9] is an approach similar
to DWM that works for both classification and regression
tasks, even though regression is restricted to predictions in
the interval [0, 1]. However, AddExp is likely to be less ro-
bust to noise. Another approach is Diversity for Dealing
with Drifts (DDD) [19]. Its main idea is that very highly di-
verse ensembles (whose base models produce very different
predictions from each other) are likely to present poor per-
formance under stable conditions, but may become useful
when there are drifts. So, DDD maintains a high diversity
ensemble which is only activated upon drift detection.



3. FORMULATION OF THE PROBLEM
We formulate SEE as an online learning problem in which

a new project implemented by a single-company is received
as a training example at each time step, forming a WC data
stream. Differently from typical online data stream prob-
lems [21], even though new projects arrive with time, the
volume of incoming data is small. So, there are no tight
space or time constraints. For instance, it is acceptable for
a new model to be created from scratch whenever a new
training project becomes available. Considering SEE’s na-
ture, it is likely that concept drifts occur. This assumption
is shown to be correct in section 5.2.1.
We consider that there is a pre-existing set (or sets) of

CC data. So, time steps are only counted for the WC data
stream, not for the CC data. We leave the investigation of
incoming CC data as future work. We assume that com-
panies other than the single-company being estimated may
represent different concepts. This is a reasonable assump-
tion, as it is widely accepted that different companies are
heterogeneous. The experiments shown in section 5.2.2 in-
dicate that they indeed represent different concepts.
At each time step, after the model is updated with the

new training project, the next ten projects of the WC data
stream are estimated. We consider ten as reasonable value
because not so many projects are produced per year by a
company. Investigation of other values is left as future work.

4. DATA SETS
Five different data sets were used: ISBSG2000, ISBSG2001,

ISBSG, CocNasaCoc81 and CocNasaCoc81Nasa93. These
include both data sets derived from the International Soft-
ware Benchmarking Standards Group (ISBSG) Repository1

and the PRedictOr Models In Software Engineering Soft-
ware (PROMISE) Repository2. Each data set uses projects
from a particular company as the WC data stream, and pro-
jects from other companies to compose CC data sets. The
term CC is used from this point onwards to identify only
projects from other companies, excluding projects from the
single-company.

4.1 ISBSG Data Sets
Three SEE data sets were derived from ISBSG Release

10, which contains software project information from several
companies. The data were preprocessed, maintaining only
projects with:

• Data and function points quality A (assessed as being
sound with nothing being identified that might affect
their integrity) or B (appears sound but there are some
factors which could affect their integrity).

• Recorded effort that considers only development team.

• Normalised effort equal to total recorded effort, mean-
ing that the reported effort is the actual effort across
the whole life cycle.

• Functional sizing method IFPUG version 4+ or iden-
tified as with addendum to existing standards.

The preprocessing resulted in 187 projects from a single-
company (WC) and 826 projects from other companies (CC).
Three different data sets were then created:

1http://www.isbsg.org
2http://promise.site.uottawa.ca/SERepository
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Figure 1: Sorted productivity for ISBSG CC pro-
jects. The vertical lines represent the ranges used
to separate the projects into subsets.

Table 1: Ranges of productivity for CC subsets.
Data Set Productivity Band Number of Examples

[0,5] 56
ISBSG2000 (5,13] 57

(13,155.7] 55
[0,6] 72

ISBSG2001 (6,14] 79
(14,155.7] 73
[0,10] 291

ISBSG (10,20] 250
(20,424.9] 285
[0,0.15] 24

Cocomo 81 (0.15,0.35] 20
(0.35,1.30] 19

• ISBSG2000 – 119 WC projects implemented after the
year 2000 and 168 CC projects implemented up to the
end of year 2000.

• ISBSG2001 – 69 WC projects implemented after the
year 2001 and 224 CC projects implemented up to the
end of year 2001.

• ISBSG – no date restriction to the 187 WC and 826 CC
projects, meaning that CC projects with implementa-
tion date more recent than WC projects are allowed.
This data set can be used to simulate the case in which
it is known that other companies can be more evolved
than the single-company analysed.

Four input attributes (development type, language type,
development platform and functional size) and one output
attribute (software effort in person-hours) were used. K-
Nearest Neighbours [3] imputation was used for dealing with
missing attributes for each data set separately.

The approach DCL proposed in this paper further uses
a separation of CC projects into subsets. This was done
according to their normalised level 1 productivity rate pro-
vided by the repository. The separation was based on the
distribution of productivity. A representative example of
productivity and its skewness is shown in figure 1. The
ranges used for creating the subsets are shown in table 1
and were chosen to provide similar size partitions. This pro-
cess could be easily automated in practice.

4.2 CocNasaCoc81
Cocomo Nasa and Cocomo 81 are two software effort es-

timation data sets available from the PROMISE Reposi-
tory. Cocomo Nasa contains 60 Nasa projects from 1980s-
1990s and Cocomo 81 consists of the 63 projects analysed by



Boehm to develop the software cost estimation model CO-
COMO [2] first published in 1981. Both data sets contain
16 input attributes (15 cost drivers [2] and number of lines
of code) and one output attribute (software effort in person-
months). Cocomo 81 contains an additional input attribute
(development type) not present in Cocomo Nasa, which was
thus removed.
Cocomo Nasa’s projects were considered as the WC data

and Cocomo 81’s projects were considered as the CC data.
The data sets provide no information on whether the pro-
jects are sorted in chronological order. The original order of
the Cocomo Nasa projects was preserved in order to simu-
late the WC data stream. Even though this may not be the
true chronological order, it is still useful to evaluate whether
approaches are able to make use of CC data when/if they
are beneficial. In order to create different CC data sets for
DCL, the number of lines of code divided by the software
effort in person-months (“productivity”) was calculated for
Cocomo 81. The productivity values are skewed, similarly
to ISBSG’s shown in figure 1. Projects were then separated
according the ranges shown in table 1.

4.3 CocNasaCoc81Nasa93
This data set is also composed of Cocomo Nasa and Co-

como 81, but it uses an additional data set called Nasa 93,
which contains 93 Nasa projects from 1970s-1980s and has
the same input and output attributes as Cocomo Nasa and
Cocomo 81. Even though both Cocomo Nasa and Nasa 93
are composed of Nasa’s projects, they are used separately in
the literature. For that reason, it is not known how useful
Nasa 93 is for predicting Cocomo Nasa’s projects and Nasa
93 was used here to compose a CC data set. Cocomo 81
was used as a single CC data set for DCL, instead of being
divided into three. Similarly to CocNasaCoc81, the original
order of the Cocomo Nasa projects was preserved in order
to simulate the WC data stream.

5. POTENTIAL BENEFIT OF CC DATA
This section presents a novel analysis that reveals the po-

tential benefit of CC data and answers RQ1. Sections 5.1
and 5.2 explain the experimental setup and analysis.

5.1 Experimental Setup
Regression trees (RTs) were used as the data models in

the experiments, as they achieve good performance for SEE
in comparison to several other approaches [18]. We used the
REPTree implementation from Weka [6] in two ways:

• A CC-RT was trained offline on each CC data set.
After that, at each time step, each RT was used to
predict the next ten projects of the WC data stream.

• WC-RTs were created to reflect online learning. At
each time step, the current RT was discarded and a
new RT was trained on all projects so far (including
the one received at the current time step). This RT
was then used to predict the next ten projects of the
WC data stream.

The CC-RTs were not used for learning projects of the
single-company because, as explained in section 3, they may
represent different concepts. Moreover, this allows us to use
the performance obtained by each CC-RT for determining
its potential benefit over the current WC-RT. If a certain

CC-RT obtains better performance in a certain time step, it
is potentially beneficial at this time step. If its performance
is worse, it is detrimental.

The performance was calculated at each time step using
the Mean Absolute Error (MAE) over the predictions on the
next ten projects of the WC data stream. MAE is defined

as
∑n

1
|yi−ŷi|

n
, where n is the number of cases considered, yi

is the actual value of the variable being predicted and ŷi is
its estimation. MAE was chosen for being a symmetric mea-
sure not biased towards under or overestimates, differently
from other measures such as the Magnitude of the Relative
Error (MRE) and the Z-measure [13]. Lower MAE indicates
higher/better performance.

The parameters for the RTs were minimum total weight
of 1 for the instances in a leaf, and minimum proportion of
the variance on all the data that need to be present at a
node in order for splitting to be performed 0.0001. These
parameters were the most likely to produce good results in
[18]. A single execution was performed for each data set, as
we used deterministic RTs. The data sets used in the study
were the ones presented in section 4.

5.2 Analysis
Figure 2 shows the MAE for each RT at each time step.

Sections 5.2.1, 5.2.2 and 5.2.3 present interesting findings
that reveal the potential benefit of CC data sets in SEE.

5.2.1 Concept Drift in SEE

The first point to be analysed regards the existence of
concept drift in SEE. The data sets ISBSG2000, ISBSG2001
and ISBSG (figures 2(a), 2(b) and 2(c)) use the WC data
stream in true chronological order, being the most relevant
data sets for this part of the analysis. We can see from the
graphs that the WC-RT does not present a general trend of
always reducing its MAE. There are frequently periods in
which the MAE increases before starting to decrease again.
This is a strong indication of concept drift. The data sets
CocNasaCoc81 and CocNasaCoc81Nasa93 use the original
order of the Cocomo Nasa data set to simulate chronolog-
ical order. The sudden changes in MAE (both increasing
and decreasing MAE) suggest that Cocomo Nasa is likely to
contain approximately one drift a every forth of the projects.

We can also observe that concept drifts in SEE have a key
difference in comparison to the concept drifts usually tack-
led by the ML literature. Those approaches are designed
to deal with data streams where input data arrive at very
high rates, enough to cause storage and processing issues [1,
21]. In SEE, the incoming rate is typically very low. For
instance, ISBSG2000 shows that in a period of around two
years and a half, only 119 projects were made available for
the single-company analysed. As a consequence, each differ-
ent concept associated to the single-company is likely to be
active for very few projects. For example, the concept likely
to be active from time steps 1-15 in ISBSG2001 is associated
to only 15 WC projects. Learning a new model using solely
these projects would lead to very poor performance. So, sim-
ply applying existing concept drift approaches to learn the
WC data may be somewhat helpful, but unlikely to provide
very good results.

5.2.2 Different Sets Representing Different Concepts

The second point to be analysed regards the different
concepts represented by the different CC subsets. Figure
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Figure 2: Performance of offline CC and online WC-RTs for each data set in terms of MAE. Some RTs obtain
very high MAE, but the limit of the y-axis was not increased to avoid hindering visualization of the better
performing RTs.

2 shows that the performances of different CC-RTs for a
particular WC data stream are considerably different from
each other, suggesting that their corresponding CC subsets
represent different concepts. Moreover, these concepts can
become more or less beneficial/detrimental for the single-
company whose projects are being estimated, depending on
the moment in time. This is represented by the compara-
tively better/worse performance of the CC-RTs in compari-
son to the WC-RTs. This is a very interesting finding, con-
sidering that the literature so far has failed to use CC data
to improve performance over WC models. It shows that it
may be possible to use CC data to improve performance.
This behaviour is also intuitively reasonable. For exam-

ple, a certain company may start adopting a new design pro-
cess, becoming more similar to other companies that already
used this process. Or the employees of a certain company
may gradually become more experienced, so that this com-
pany would start behaving more similarly to more produc-
tive companies. It is worth noting that even though this be-
haviour matches intuition, capturing it through independent
variables when creating a model can prove to be extremely
difficult. The reason is that the number of independent vari-
ables which could potentially reveal concept drift is too large
in comparison to the number of projects usually available for
constructing a model. So, simply adding more variables to
the model is not a feasible solution for this problem.

5.2.3 PROMISE Data Sets Findings

The last point to be observed in this section’s analysis re-
gards findings about the PROMISE data sets used in the
study. Figure 2(d) suggests that even though part of Co-
como 81’s projects (subsets 1 and 2) is beneficial for esti-
mating Cocomo Nasa’s projects, another part is detrimen-

tal (subset 0). In fact, the set of all Cocomo 81’s projects
together has very low potential for improving estimations of
Cocomo Nasa’s projects (figure 2(e)). This is an interest-
ing finding because rather than using Cocomo 81 as a single
data set, it may be worthier to separate projects according
to their features and use only the most appropriate ones to
estimate a certain project. This finding supports previous
work that filters out projects likely to be detrimental for the
SEE [8] and extends it to show that using the “correct” CC
projects may provide better, rather than just similar perfor-
mance to WC models in SEE.

Figure 2(e) further shows that models created using Nasa
93’s projects provide better performance for estimating Co-
como Nasa’s projects than using Cocomo Nasa’s projects
themselves. This is an intriguing fact that may be related
to the quality of data collection.

6. MAKING BETTER USE OF CC DATA
Considering the analysis presented in section 5.2, an ap-

proach able to detect and successfully use CC data when
they become beneficial is desirable and would provide an
answer to RQ2. This approach should consider the fact that
CC data may belong to different concepts, and that each
concept of the WC data stream may be active for a short
number of projects. In this section, we propose an approach
called Dynamic Cross-company Learning (DCL), which con-
siders these issues. A preliminary version of this approach
called Dynamic Un+Reliable data learners (DUR) was pre-
sented in [16]. The differences between the two versions are
explained, showing how DCL is better tailored to SEE.

DCL is inspired by the fact that models performing poorly
at a certain moment may become beneficial in the event of



concept drift [17, 19]. So, it uses a fixed size memory of m
models trained on pre-existing available CC data and one
model specific for WC data stream learning. The CC mod-
els are never trained with projects from the single-company.
Each model is associated to a weight representing how use-
ful it currently is, similarly to [10, 9]. These weights are
dynamically updated and allow DCL to emphasize estima-
tions given by CC data models when they are useful.
DCL’s estimations are based on the weighted average of

the base models’ estimations. However, the use of CC mod-
els is restricted/filtered. If the project to be estimated is
“too different” from the projects used to build a CC model,
this model is filtered out, i.e., is not allowed to contribute
with the weighted average for estimating this project. This
restriction was not used in the initial version DUR and was
introduced to make DCL more tailored for SEE. Filtering
out CC data for localization has shown to be useful for SEE
[8].
The method to filter CC models out in DCL is as follows.

The input variable project size is used to define whether a
certain project is “too different” from the projects used to
build a CC model. This variable was chosen for being likely
to have the highest impact on the estimations and can be,
for example, the functional size or the number of lines of
code. In the absence of project size, another variable likely
to be highly influential could be used. A CC model is then
used for estimating a certain project only if the size of this
project is lower than the quantileQ of the size of the training
projects used to build this model, where Q is a pre-defined
parameter. CC models that do not satisfy this requirement
are filtered out of the estimation of this project, but are kept
in the system so that they can possibly contribute to the
estimation of other projects in the future. As the WC model
is likely to be poor and unstable in the beginning of its life
due to the small number of WC training projects, CC models
only start being filtered out after a considerable number of
WC projects have been presented (time step > Tstart).
The separation of pre-existing CC data into m different

sets is based on some a priori knowledge. For example, a
set can be created for each different company, or different
sets can be created based on different ranges of a certain
independent or dependent variable. Separation based on
ranges can be particularly useful and easily automated. An
example of ranges separation is the productivity-based sep-
aration shown in section 5.2. The reason for the usefulness
of productivity-based separation is that different productiv-
ity ranges simulate different possible concepts. When a con-
cept drift happens, an organisation may become more or less
productive, and CC models built using different productiv-
ity ranges could become more or less beneficial. Note that
productivity is based on the effort. So, we cannot use the
productivity of the project being estimated to decide what
CC models are likely to be more beneficial for this project.
Instead, DCL uses weights updated through its learning al-
gorithm whenever a new WC project is completed in order
to determine what base models are likely to be more or less
beneficial at each time step.
Algorithm 1 presents the learning algorithm. Learning

is divided into two stages: offline learning based on pre-
existing CC training data and online learning based on WC
training data stream. In the first stage, one base model is
created to learn each CC data set in an offline way (line 3).
As future work, the case in which CC data are also incoming

Algorithm 1 DCL

Parameters:
Dc, 1 ≤ c ≤ m: CC data sets.
βc, βw: factors for decreasing model weights 0 ≤ βc, βw < 1

1: {CC data learning:}
2: for each CC data set Dc, 1 ≤ c ≤ m do
3: Create CC model Lc using Dc

4: wc = 1/m {Initialise weight.}
5: wm+1 = 0 {WC model weight.}
6: {WC data learning:}
7: for each new WC training project p = (~x, y) do
8: winner = argmini,1≤i≤m+1 |Li(~x)− y|
9: for loser, 1 ≤ loser ≤ m+ 1 ∧ loser 6= winner do
10: wloser = βwloser, where

β = βc if loser <= m and β = βw otherwise.
11: if p is the first WC training project then
12: wm+1 = 1

m+1
13: Divide each weight by the sum of all weights
14: Use WC model Lm+1 to learn p

will be investigated. Weights associated to CC models are
initialized to 1/m (line 4). Weights associated to WCmodels
are initialized to zero (line 5), so that DCL can be used for
predictions before WC training projects become available.

The second stage of the learning is lifelong and one WC
training project from the stream is received at each iteration,
which corresponds to one time step. Each WC project is
used for (1) weight update and (2) training the WC model.
The WC model’s training is done in the end of the iteration
(line 14). It consists of using the incoming training project to
train the WC model using its own learning algorithm, which
may or may not need retraining on the previous projects.

The weight update rule is shown in lines 8–13. Each base
model is used to perform an estimation for the incoming
training project. The model with the lowest absolute error
estimate is considered to be the winner (line 8). This can
be either the WC or a CC model. The weight associated
to all the loser models is multiplied by β, 0 ≤ β < 1, where
β = βc for the CC models and β = βw for the WC model.
Lower/higher β values cause the system to quickly/slowly
reduce its emphasis on models that are providing wrong es-
timations. The ideal values for β depend on the problem,
but the median value of βc = βw = 0.5 can be used as a de-
fault value. The initial weight for the WC model is 1/(m+1)
(line 12). After all weights are updated, they are divided by
the sum of all weights (line 13).

This weight update rule is different from the one used in
the initial version DUR, where a weight was multiplied by
β if it performed an estimation considered as wrong. Wrong
was defined as MRE > Pred, where Pred is a pre-defined
parameter. This rule has mainly two problems. Firstly,
Pred is a critical parameter dependent on the data set.
An incorrect Pred choice can cause all the weights to be
reduced even if a certain model provided a better estima-
tion than the others. The weights thus may not reflect the
relative benefit of the models adequately. Secondly, MRE
is asymmetric and biased towards underestimations, which
are particularly problematic for SEE. Using MRE to update
weights could emphasize models that give underestimations.
Our new weight update rule overcomes these problems.



7. EXPERIMENTAL ANALYSIS
This section completes the answer to RQ2, presenting the

experiments and analysis done to validate DCL. We also
present a novel analysis on whether an existing approach
prepared for dealing with concept drifts is able to improve
performance for SEE in comparison to an approach not pre-
pared for dealing with drifts. Sections 7.1 and 7.2 explain
the experimental setup and analysis, respectively.

7.1 Experimental Setup
DCL and the following approaches were compared:

• RT trained on the WC data stream as in section 5.1.
RT was used as a baseline approach to represent WC
models not prepared for concept drift. As explained in
section 7.1, RTs have shown to produce comparatively
good performance for SEE [18].

• DWM trained on WC data stream (WC-DWM). WC-
DWM was used to represent a concept drift handling
approach from the ML literature [10]. It is included in
the analysis to check whether it would be able to im-
prove SEE performance in comparison to an approach
not prepared for concept drift (RT).

• DWM first trained using the CC data as a stream
and then trained on the WC data stream (CC-DWM).
CC-DWM was used to verify whether using an exist-
ing concept drift approach to learn CC data would be
enough to improve performance over WC models.

The base models used by DCL, WC-DWM and CC-DWM
were RTs using Weka [6]’s REPTree implementation. The
weight update rule used in WC-DWM and CC-DWM was
the same as the one used in DCL, to provide a fair com-
parison and allow for regression tasks. A new base model is
added to the DWM ensemble if its estimation on the current
training project has absolute error higher than τ in a time
step multiple of p. Existing base models with weight < θ
are deleted also in time steps multiple of p.
The performance was measured in terms of MAE over the

predictions on the next ten projects of the WC data stream.
Additionally, the overall MAE across time steps was used to
provide interpretable results in terms of the magnitude of
the performance based on standardized accuracy (SA) and
effect size ∆ [22]. SAL is viewed as the ratio of how much
better L is than random guessing [22] and was based on
1000 runs of random guessing. Random guessing was de-
fined as uniformly randomly sampling the effort over all the
WC projects pi, 1 ≤ i < t, where pt is the project being es-
timated. The effect size ∆ used random guess as the control
approach and was interpreted in terms of the categories [22]:
small (≈ 0.2), medium (≈ 0.5) and large (≈ 0.8).
Seven different combinations of parameters were used for

WC-DWM and CC-DWM: the default values of β = 0.5,
p = 1 and θ = 0.01, and all the combinations obtained by
fixing two parameters to their default values and varying the
remaining parameter using: β ∈ {0.3, 0.7}; p ∈ {10, 50} for
the larger data sets ISBSG2000 and ISBSG, and p ∈ {10, 15}
for the other data sets; and θ ∈ {0.001, 0.1}.
The best performing parameters combination for each data

set was used in the analysis, representing the best possible
behaviour achievable by WC-DWM and CC-DWM consid-
ering these combinations. The parameter τ was set to 0.25y,
where y is the actual effort of the training project. We chose

this value because effort estimations are frequently consid-
ered acceptable when they are within 25% of the actual ef-
fort [4], and choosing a value independent of the magnitude
would be very difficult in practice. The need for setting τ is
a disadvantage of applying this approach for regression.

The parameters used for DCL were the default values of
βr = βu = 0.5, Tstart = 15 and Q = 0.9. The parameters of
the RTs for all approaches were the same as in section 5.

A single execution for each data set from section 4 was
performed for DCL and WC-DWM, as they are determinis-
tic when using the deterministic RTs from this study. The
order of presentation of CC projects does not influence the
results for DCL and WC-DWM. However, CC-DWM needs
to use CC projects as a stream prior to WC learning. As
the real chronological order for CocNasaCoc81 and Coc-
NasaCoc81Nasa93 is unknown, thirty CC-DWM executions
were performed with random CC order for these data sets.

The initial version DUR was preliminarily experimented
using ISBSG, CocNasaCoc81 and CocNasaCoc81Nasa93 in
[16]. That analysis was aimed at the general ML community,
to show the advantages/disadvantages of DUR in compar-
ison to an existing concept drifting approach (DWM) for
learning either CC or WC data. The analysis presented in
the current paper not only uses a new version of the ap-
proach better tailored for SEE, but also concentrates on im-
portant issues to the software engineering community, which
were not investigated in [16]. These are the following. (1)
We include RT as a control approach. As it is not known
how well existing concept drift approaches perform for SEE,
it is important to include an approach such as RT, which
behaves relatively well for this task [16]. Including RT al-
lows both evaluating WC-DWM and CC-DWM in the SEE
context, and validating DCL for SEE tasks. (2) We analyse
how well the models perform in comparison to random guess.
This is important because SEE is typically a very difficult
task and approaches might happen to perform worse than
random guess [22]. (3) We provide interpretable results in
terms of magnitude (SA) and effect size (∆). This is impor-
tant because companies can rely on this type of information
to decide whether to deploy a new SEE model [22]. (4) The
analysis presented here considers two additional data sets
(ISBSG2000 and ISBSG2001). This inspired the use of a
different statistical approach for the analysis, which is more
adequate when comparing approaches using multiple data
sets. The current paper also comments on the improvements
achieved by DCL in comparison to DUR.

7.2 Analysis

7.2.1 Performance in Comparison to Random Guess

As it is irrelevant to compare approaches that perform
worse than random guess against each other, we initially
analyse the approaches against random guess. Table 2 presents
the overall performance across time steps in terms of MAE
and SA, as well as the ∆ effect size against random guess.

We first determine the statistical significance of each ap-
proach’s overall MAE across time steps in comparison to
random guess. Wilcoxon rank sum tests using Holm-Bonferroni
corrections considering all data sets and approaches at the
overall level of significance of 0.05 were used for this pur-
pose. The tests show that the overall MAE of all approaches
is statistically significantly different from random guess.

Then, we verify the effect size ∆ of this difference in per-



Table 2: Overall performance average across time steps. Cells in yellow (light grey) represent the best values.
All approaches’ MAEs are statistically significantly different from random guess according to Wilcoxon tests
using Holm-Bonferroni corrections at the overall level of significance of 0.05.

MAE +- Std Dev
Data Set RT WC-DWM CC-DWM DCL

ISBSG2000 2753.40 +- 1257.50 2862.50 +- 1256.80 2566.00 +- 1045.20 2352.60 +- 925.84
ISBSG2001 3622.00 +- 1368.00 3279.80 +- 1025.90 2934.10 +- 890.39 2873.10 +- 1235.90

ISBSG 3253.90 +- 2476.10 3160.90 +- 2508.50 3037.10 +- 2105.20 2805.60 +- 1468.20
CocNasaCoc81 319.46 +- 250.23 300.24 +- 278.23 244.94 +- 207.24 205.83 +- 214.70

CocNasaCoc81Nasa93 319.46 +- 250.23 300.24 +- 278.23 168.97 +- 188.14 109.82 +- 154.72

SA
Data Set RT WC-DWM CC-DWM DCL

ISBSG2000 37.05 34.55 41.33 46.21
ISBSG2001 11.93 20.25 28.65 30.14

ISBSG 46.29 47.82 49.87 53.69
CocNasaCoc81 33.14 37.16 48.73 56.92

CocNasaCoc81Nasa93 33.14 37.16 64.63 77.01

∆ using random guess as the control approach
Data Set RT WC-DWM CC-DWM DCL

ISBSG2000 2.57 2.40 2.87 3.21
ISBSG2001 0.96 1.63 2.31 2.43

ISBSG 1.34 1.38 1.44 1.55
CocNasaCoc81 0.57 0.63 0.83 0.97

CocNasaCoc81Nasa93 0.57 0.63 1.10 1.32

formance. RT and WC-DWM have effect size varying from
medium to large, whereas DCL and CC-DWM always have
very high effect size, showing a better behaviour.
Finally, we check the SAs. We can see from table 2 that

the statistical tests and effect sizes are reflected on this per-
formance measure. The SAs show considerably better per-
formance than random guess in most cases, considering the
SEE context and the difficultly of this task. RT and WC-
DWM presented low SA for ISBSG2001, representing a clear
need for improvement in this case.

7.2.2 Overall Performance Across Time Steps

As recommended by Demšar [5], Friedman statistical test
was used for comparison of multiple models over multiple
data sets. The measure compared was the overall MAE
across time steps. The test detected statistically significant
difference among the overall MAE of the approaches at the
level of significance of 0.05 (FF = 58.5 > F (3, 12) = 3.490,
p-value = 0.0001). The ranking of approaches obtained from
the test is shown in table 3. DCL was ranked first (low-
est/best MAE) and CC-DWM was ranked second for all
data sets. WC-DWM was ranked third and RT was ranked
fourth for all data sets but ISBSG2000.
Average ranks by themselves provide a fair comparison of

the approaches [5]. However, it is worth performing post-hoc
tests to compare all approaches against our control approach
RT. The z and p-values of the post-hoc tests [5] are shown in
table 3. The tests over multiple data sets reveal that DCL’s
overall MAE is statistically significantly different from RT’s,
but the other approaches’ are not. These results suggest that
dealing with drifts decreases the overall MAE slightly (WC-
DWM), and using CC decreases it a bit further (CC-DWM).
However, the decrease only becomes statistically significant
over multiple data sets when using DCL.
Table 4 shows the effect size of the difference in perfor-

mance of each approach against RT. WC-DWM’s ∆ in re-

Table 3: Ranking average and standard deviation of
approaches across data sets based on overall MAE;
and z and p-values of the post-hoc tests for com-
parison of each approach against RT. The p-value in
yellow (light grey) represents statistically significant
difference of overall MAE using Holm-Bonferroni
corrections at the overall level of significance of 0.05.

Approach Rank Avg Rank Std z P-value
DCL 1 0 3.4293 0.0006

CC-DWM 2 0 2.2045 0.0275
WC-DWM 3.2 0.45 0.7348 0.4624

RT 3.8 0.45 – –

Table 4: Effect size ∆ of the difference in overall
MAE for each approach, using RT as the control
approach. Effect sizes that could be considered as
medium/high are in yellow/red (light/dark grey).

Data Set WC-DWM CC-DWM DCL
ISBSG2000 0.0868 0.1490 0.3187
ISBSG2001 0.2501 0.5028 0.5474

ISBSG 0.0376 0.0876 0.1811
CocNasaCoc81 0.0768 0.2978 0.4541

CocNasaCoc81Nasa93 0.0768 0.6014 0.8378

lation to RT was always small, CC-DWM’s was medium for
two data sets, and DCL’s was medium for two and high for
one. These ∆s reflect and confirm the results of the post-hoc
tests, showing that it is worth to use DCL.

7.2.3 Performance at Each Time Step

In addition to the overall performance across time steps,
when working with online learning, it is also important to
verify the performance at each time step. This allows check-
ing whether a certain approach is better at some time steps,
but worse at others. It also allows us to verify how much of
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(a) ISBSG 2000 (≈ 2.5 years)
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(b) ISBSG 2001 (≈ 1.5 year)
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(c) ISBSG (≈ 6.5 years)
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(d) CocNasaCoc81 (≈ 17 years)
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(e) CocNasaCoc81Nasa93 (≈ 17 years)

Figure 3: Performance of RT and DCL for each data set in terms of MAE. The number of years represents
the period covered by the time steps considering the implementation date of the single-company projects.

CC data’s potential benefit (section 5) is used by DCL.
Figure 3 shows the MAE at each time step for DCL and

our control approach RT. There are several periods of around
20 time steps in which DCL outperforms RT. This number of
time steps possibly involves several months (or even years)
of worse RT estimations, which could have harmful conse-
quences for a company. So, the improvements provided by
DCL are considerable in terms of number of time steps.
By comparing figure 3 to 2, we can see that DCL man-

aged to use the potential benefit from CC data in several
cases. However, even though DCL rarely obtained worse
performance than RT throughout the time steps, it still has
room for improvement. Its MAE was a bit worse during the
first 15 time steps for ISBSG2001. The reason for that may
be related to the fact that two base models achieved sim-
ilar performance during this period, but only one of them
could be considered as the winner. Allowing more than one
winner might improve the results in this case. The full po-
tential benefit from the CC subsets Coc81 2 and Nasa93
was not used in the last 15 time steps for CocNasaCoc81
and CocNasaCoc81Nasa93, respectively, either. The reason
for that is the filtering of CC models, which prevented using
them in some cases where they were helpful. Even though
DCL’s rules still have room for improvement, they are more
beneficial for SEE than DUR’s, as explained in section 7.2.4.

7.2.4 DCL and DUR

Analyses of performance show that both DCL’s new weight
update rule and restricted use of CC models are key for DCL
to improve on DUR’s performance for ISBSG2000 and IS-
BSG2001. The difference in performance of the two versions
was not considerable for ISBSG. For CocNasaCoc81, the re-
stricted use of CC data prevents DCL of making full use of
the CC models’ potential. This causes DCL to obtain just

slightly higher MAE than DUR, even though the new weight
update rule on its own would have provided lower MAE. The
restricted use of CC only considerably badly affected DCL
in comparison to DUR for CocNasaCoc81Nasa93. However,
it is worth noting that Nasa93 is more useful for predicting
Cocomo Nasa than usual CC data sets are likely to be, as
they both contain Nasa projects. So, we consider it safer to
keep restricting the use of CC models in practice.

8. VALIDITY AND IMPLICATIONS
In order to ensure internal validity [20], we considered sev-

eral parameter values for WC-DWM and CC-DWM, show-
ing that their worse behaviour was not due to a bad parame-
ters choice. RT’s parameters were the most likely to produce
good results in [18]. The construct validity was first dealt
with by using MAE in section 5. This measure is not bi-
ased towards under or overestimations, being adequate for
revealing the potential benefit of CC data. DCL was then
compared against other approaches based on MAE, SA and
∆. So, we considered not only the performance, but also
the magnitude of the differences in performance and their
effect size. Friedman and post-hoc tests [5] were also used
to show the significance of the differences in MAE. Besides
never using a WC project for training before using it for
testing, we considered five data sets to handle external va-
lidity. Three data sets with known WC chronological order
were used both for revealing concept drift features in SEE
and for evaluating approaches. Even though the chronolog-
ical order is not known for the other two, they can still be
used to evaluate whether the approaches are able to make
use of CC data when/if they are beneficial, contributing to
the generalisation of our results.

Our results show that organisations can use CC data to



improve SEEs provided by models that use solely WC data.
They can acquire CC projects from different sources, e.g.,
ISBSG. Organisations willing to use an online learning tool
based on DCL would need to collect a few attributes for
each of their completed projects (e.g., development type,
language type, development platform and functional size).
These must be attributes that are also provided by the CC
data set(s) and that can be used as input for DCL’s CC mod-
els. After the completion of each project, these attributes
together with the effort should be provided as a new train-
ing project to DCL, so that it can provide up-to-date esti-
mations. It is worth emphasizing that DCL’s potential may
go well beyond SEE. Its use to other applications such as
software defect prediction should be investigated.

9. CONCLUSIONS
This paper performs an analysis of the potential of CC

data in comparison to WC data and presents a new approach
to make use of this potential to improve SEE. It provides
answers to the research questions as follows:
RQ1: Are CC data potentially beneficial for im-

proving SEE? Under what conditions? Yes. CC mod-
els based on different subsets of CC data can become more
or less beneficial/detrimental in comparison to WC models
under concept drifting conditions. This paper is the first at-
tempt at revealing the particular features of concept drifts
induced by SEE tasks. They involve concepts being active
for short numbers of projects, which were found to make CC
data potentially helpful. Moreover, separating CC data into
subsets based on productivity has shown to be potentially
more useful than a single set of CC projects.
RQ2: Can this potential benefit be used? How?

Yes. A new approach called DCL is proposed. It success-
fully improves SEE based on CC data by using weights to
automatically determine when CC models are more or less
helpful than a WC model. Each CC model is trained on
a subset of CC data, representing different concepts and
helping to deal with concept drifts in SEE. While DCL was
successful in using CC data to improve SEE performance,
an existing ML approach for handling drifts was not enough
to improve SEE over a WC model not prepared for drifts.
Our results reveal that the online changing nature of soft-

ware prediction tasks should be exploited, being an impor-
tant issue to be considered in the next research frontier on
software project estimation. For instance, DCL should be
extrapolated and investigated in other software engineering
applications, such as software defect prediction. Other fu-
ture work includes testing additional weight update rules
and approaches to filter CC models out; considering streams
of incoming CC data and different numbers of estimation
requests at each time step; and comparing DCL to other
concept drift methods.
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