
A Principled Evaluation of Ensembles of Learning
Machines for Software Effort Estimation

Leandro L. Minku, Xin Yao
School of Computer Science
The University of Birmingham

Edgbaston, Birmingham B15 2TT, UK

{l.l.minku, x.yao}@cs.bham.ac.uk

ABSTRACT

Background: Software effort estimation (SEE) is a task
of strategic importance in software management. Recently,
some studies have attempted to use ensembles of learning
machines for this task.
Aims: We aim at (1) evaluating whether readily available
ensemble methods generally improve SEE given by single
learning machines and which of them would be more useful;
getting insight on (2) how to improve SEE; and (3) how to
choose machine learning (ML) models for SEE.
Method: A principled and comprehensive statistical com-
parison of three ensemble methods and three single learn-
ers was carried out using thirteen data sets. Feature selec-
tion and ensemble diversity analyses were performed to gain
insight on how to improve SEE based on the approaches
singled out. In addition, a risk analysis was performed to
investigate the robustness to outliers. Therefore, the bet-
ter understanding/insight provided by the paper is based on
principled experiments, not just an intuition or speculation.
Results: None of the compared methods is consistently the
best, even though regression trees and bagging using mul-
tilayer perceptrons (MLPs) are more frequently among the
best. These two approaches usually perform similarly. Re-
gression trees place more important features in higher levels
of the trees, suggesting that feature weights are important
when using ML models for SEE. The analysis of bagging
with MLPs suggests that a self-tuning ensemble diversity
method may help improving SEE.
Conclusions: Ideally, principled experiments should be done
in an individual basis to choose a model. If an organisa-
tion has no resources for that, regression trees seem to be
a good choice for its simplicity. The analysis also suggests
approaches to improve SEE.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Cost esti-

mation; I.2.6 [Artificial Intelligence]: Learning—Concept

learning, Connectionism and neural nets
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1. INTRODUCTION
Estimating the cost of a software project is a task of strate-

gic importance in project management. Both over and un-
derestimations of cost can cause serious problems to a com-
pany. For instance, overestimations may result in a company
loosing contracts or wasting resources, whereas underesti-
mations may result in poor quality, delayed or unfinished
software systems. The major contributing factor for soft-
ware cost is effort [1]. So, models for estimating software
cost/effort can be used as decision support tools, allowing
investigation of the impact of certain requirements and de-
velopment team features on the cost/effort of a project to
be developed.

Several different software cost or software effort estima-
tion (SEE) methods have been proposed. We recommend
Jorgensen and Shepperd’s work [17] for a systematic review.
Among the proposed methods, effort estimators based on
machine learning (ML) approaches such as multilayer per-
ceptrons (MLPs), radial basis function (RBF) networks and
regression trees (RTs) [29, 33, 15, 2, 30, 21, 6] have been
receiving increased attention [17]. The motivation behind
the use of such approaches is that they make no or min-
imal assumptions about the function being modelled and
the data used for training. For instance, Tronto et al. [30]
showed that MLPs improve SEE over conventional linear
models because they are not restricted to linear functions,
being able to model observations that lie far from the best
straight line.

More recently, Braga et al. [6], Kultur et al. [21] and Koca-
guneli et al. [19] investigated the use ensembles of learning
machines for SEE. Ensembles of learning machines are sets
of learners1 trained to perform the same task and combined
with the aim of improving predictive performance [9]. When
combining learners in an attempt to get more accurate pre-
dictions, it is commonly agreed that the learners should be-
have differently from each other. Otherwise, the overall pre-
diction will not be better than the individual predictions.

1The learners used to compose an ensemble are frequently
called base learners.



So, different ensemble learning approaches can be seen as
different ways to generate diversity among the base learn-
ers.
The study presented by Braga et al. [6] claims that Boot-

strap Aggregating (Bagging) [7], a well known ensemble
learning approach, improves the SEEs produced by several
single learner methods, such as RTs and MLPs. However,
the study uses only two versions of a single data set and
neither tests the statistical significance of the results nor
presents the standard deviations of the performance. As the
average performances reported for the ensembles are very
close to the performances obtained by the single learners, it
is not possible to conclude that there was an improvement
in the estimations [18].
The study presented by Kultur et al. [21] uses five data

sets and shows that an adapted version of bagging provides
very large improvements in comparison to single learners.
However, there is no information about how the parameters
of the approaches were chosen. When performing ML ex-
periments, the parameters choice can highly influence the
results. Depending on the choice, a certain approach can
become better or worse. So, even though Kultur et al.’s
work is a significant contribution, the literature still lacks
more evidence in support of ensembles.
The study presented by Kocaguneli et al. [19] uses three

data sets to compare the effect of combining different types

of learners to the use of these learners separately. Even
though it is not exactly a comparison between single learn-
ers and ensembles, their results can suggest that ensembles
do not improve the performance of single learners. This is
somewhat contradictory in relation to Kultur et al. [21]’s
work, which achieved very large improvements when using
an adapted version of bagging. Kocaguneli et al. do not
present information about the parameters choice either.
In addition to the problems explained above, none of the

papers compare the results obtained by different readily
available ensemble learning approaches from the ML liter-
ature. Kocaguneli et al. [19] present results obtained by
some ensemble methods, but the analysis does not perform
a statistical comparison among these methods and single
learners. Different ensemble approaches can be more or less
adequate for SEE and should also be included in the com-
parisons. The papers do not provide analyses of the reasons
for the results obtained either.
With that in mind, this paper addresses the following re-

search questions, still left unanswered by previous work:

• RQ1: Do readily available ensemble methods gener-
ally improve effort estimations given by single learn-
ers? Which of them would be more useful?

• RQ2: If a particular method is singled out, what in-
sight on how to improve software effort estimation can
we gain by analysing its behaviour and the reasons for
its better performance?

• RQ3: How can someone determine what ML model to
be used considering a particular data set?

The study performs a principled and comprehensive sta-
tistical comparison of three different types of ensembles and
three different types of single learners using several data sets
(five data sets from the PRedictOr Models In Software Engi-
neering Software (PROMISE) Repository [26] and eight data
sets derived from the International Software Benchmarking

Standards Group (ISBSG) Repository [16] Release 10). Ex-
periments are also performed to provide insight on how to
use machine learning for SEE and how to improve SEE based
on machine learning. It is worth noting that our key con-
tribution is not in a new algorithm or methodology, but a
better understanding/insight. Furthermore, such a better
understanding/insight is based on experimental studies, not
just an intuition or speculation.

It is worth noting that there are papers in the literature
that investigate issues related to RQ3. An example is Men-
zies et al.’s work [24], which explicitly considers certain pre-
processing as a part of the evaluation framework. However,
little importance is usually given to the parameters choice
of machine learning methods. A wrong parameters choice
can greatly affect model choice, being a serious internal va-
lidity problem. The present paper includes the parameters
choice as an explicit step in the framework for choosing SEE
models, which is part of its contribution to answer RQ3.

The methodology used in our work has the following ad-
vantages in comparison to previous work using ensembles:

• Use of principled experimentation, considering both
parameter choice and statistical tests.

• Comparison using three different ensemble methods.

• Use of a larger number of data sets (thirteen against
five, the highest number of data sets previously used).

• Principled experimental analysis of the behaviour of
the methods that are most frequently among the best,
gaining more insight on how to improve SEE.

• Risk analysis to evaluate the impact of outlier projects.

Some work in the literature suggests that the performance
of different models significantly depend on the characteris-
tics of the data set [28]. However, existing work on ensem-
bles of learning machines suggests that they may provide
better results than single learners even when several differ-
ent data sets are used [21], as mentioned previously. Our
initial analysis based on a comparison algorithm provided
by Menzies et al. [24] shows that none of the compared ap-
proaches is consistently the best over all data sets. It further
confirms the dramatic impact that different data sets have
on the behaviour of SEE models, even when ensembles of
learning machine are used. It shows that it is very unlikely
that there is a universally best method. Ideally, principled
experiments should be carried out in an individual basis to
choose a model.

Nevertheless, two approaches are most frequently ranked
as the first two in terms of performance: RTs and bagging
using MLPs. So, they are recommended over the others if
an organisation has no resources to perform experiments to
choose a model. Besides, these approaches usually perform
similarly to each other, showing us that ensembles are not
generally better than well trained and tuned single learners
for SEE.

Further analysis shows that RTs put more important fea-
tures in higher levels of the trees, which is probably the
reason for their better performance. The analysis suggests
that feature weighting is important when working with ML
for SEE, providing an insight on how to improve SEE.

The analysis done with bagging using MLPs shows that
ensemble diversity might be linked to its better performance



in comparison to other ensemble approaches. However, the
main result from this analysis is that the correlation between
ensemble diversity and test accuracy varies dramatically de-
pending on the data set. An approach that can perform self-
tuning of diversity depending on its correlation with train
accuracy may be able to improve SEE.
The rest of this paper is organised as follows. Section 2

describes the data sets used in the study. Section 3 explains
the experimental framework. Section 4 presents the results
of the comparisons among different learning machines, aim-
ing at answering RQ1. Section 5 presents further analysis
done to understand why certain learning machines were sin-
gled out and what insight that provides us to improve SEE.
It aims at answering RQ2. RQ3 is answered by a combina-
tion of sections 3, 4 and 5. Section 6 provides a risk analysis
to check the impact of outliers on the estimations given by
the learning machines. Section 7 explains the validity of the
work. Section 8 presents conclusions and future work.

2. DATA SETS
The analysis presented in this paper is based on several

different data sets from the PRedictOr Models In Software
Engineering Software (PROMISE) Repository [26] and from
the International Software Benchmarking Standards Group
(ISBSG) Repository [16] Release 10. The data sets were
chosen to cover a wide range of features, such as number of
projects, types of features, countries and companies. Sec-
tions 2.1 and 2.2 provide their description and explanation
of how they were processed.

2.1 PROMISE Data
The PROMISE data sets used in this study are: cocomo81,

nasa93, nasa, sdr and desharnais. Cocomo81 consists of
the projects analysed by Boehm to introduce COCOMO [4].
Nasa93 and nasa are two data sets containing Nasa projects
from 1970’s-1980’s and from 1980’s-1990’s, respectively. Sdr
contains projects implemented in 2000’s and was collected
at Bogazici University Software Engineering Research Lab-
oratory from software development organisations in Turkey.
Desharnais’ projects are dated from late 1980’s. Table 1
provides some details about these data sets. The next sub-
sections explain their features, missing values and outliers.

2.1.1 Features

Cocomo81, nasa93 and nasa are based on the COCOMO
[4] format, containing as input features 15 cost drivers, the
number of lines of code and the development type (except for
nasa, which does not contain the latter feature). The actual
effort in person-months is the dependent variable. Sdr is
based on COCOMO II [5], containing as input features 22
cost drivers and the number of lines of code. The actual
effort in person-months is the dependent variable. The data
sets were processed to use the COCOMO numeric values
for the cost drivers. The development type was transformed
into dummy variables.
Desharnais contains as input features the team experi-

ence in years, the manager experience in years, the year the
project ended, the number of basic logical transactions in
function points, the number of entities in the system’s data
model in function points, the total number of non-adjusted
function points, the number of adjusted function points, the
adjustment factor and the programming language. Actual
effort in person-hours is the dependent variable.

2.1.2 Missing Values

The only data set with missing values is desharnais. In
total, it contains only 4 in 81 projects with missing values.
So, these projects were eliminated.

2.1.3 Outliers

The literature shows that SEE data sets frequently have a
few outliers, which may hinder the SEEs for future projects
[27]. In the current work, outliers were detected using k-
means. This method was chosen because it has shown to
improve performance in the SEE context [27]. K-means
is used to divide the projects into clusters. The silhouette
value for each project represents the similarity of the project
to the other projects of its cluster in comparison to projects
of the other clusters, ranging from -1 (more dissimilar) to 1
(more similar). So, the average silhouette value can be used
to determine the number of clusters k. After applying k-
means to the data, clusters with less than a certain number
n of projects or projects with negative silhouette values are
considered outliers.

We used n = 3, as in [27]. The number of clusters k was
chosen among k = {2, 3, 4, 5}, according to the average sil-
houette values. The highest average silhouette values were
always for k = 2 and were very high for all data sets (be-
tween 0.8367 and 0.9778), indicating that the clusters are
generally homogeneous. The number of outliers was also
small (from none to 3). The projects considered as outliers
were eliminated from the data sets, apart from the outlier
identified for sdr. As this data set is very small (only 11
projects), there is not enough evidence to consider the iden-
tified project as an outlier.

2.2 ISBSG Data
The ISBSG repository contains a large body of data about

completed software projects. The release 10 contains 5,052
projects, covering many different companies, several coun-
tries, organisation types, application types, etc. The data
can be used for several different purposes, such as evaluating
the benefits of changing a software or hardware development
environment; improving practices and performance; and es-
timation. In order to produce reasonable SEE using ISBSG
data, a set of relevant comparison projects needs to be se-
lected. With that in mind, we preprocessed the data set
(resulting in 621 projects) maintaining only projects with:

• Data and function points quality A (assessed as being
sound with nothing being identified that might affect
their integrity) or B (appears sound but there are some
factors which could affect their integrity / integrity
cannot be assured).

• Recorded effort that considers only development team.

• Normalised effort equal to total recorded effort, mean-
ing that the reported effort is the actual effort across
the whole life cycle.

• Functional sizing method IFPUG version 4+ or NESMA.

• No missing organisation type field.

After that, with the objective of creating different subsets,
the projects were grouped according to organisation type.
Only the groups with at least 20 projects were maintained,



Table 1: PROMISE Data Sets. The effort is measured in person-months for all data sets except desharnais,
in which it is measured in person-hours.

Data Set # Projects # Features Min Effort Max Effort Avg Effort Std Dev Effort
Cocomo81 63 17 5.9 11,400 683.53 1,821.51
Nasa93 93 17 8.4 8,211 624.41 1,135.93
Nasa 60 16 8.4 3,240 406.41 656.95
Sdr 12 23 1 22 5.73 6.84
Desharnais 81 9 546 23,940 5,046.31 4,418.77

Table 2: ISBSG Data – Organisation types used.
Organisation Type Id # Projects
Financial, Property 1 76
& Business Services
Banking 2 32
Communications 3 162
Government 4 122
Manufacturing; 5 21
Transport & Storage
Ordering 6 22
Billing 7 21

following ISBSG’s data set size guidelines. The resulting
organisation types are shown in table 2.
Table 3 contains additional information about the subsets.

As we can see, the productivity rate of different companies
varies. A 7-way 1 factor Analysis of Variance (ANOVA) was
used to confirm the difference of productivity rates among
the subsets, indicating statistically significant difference at
the 95% confidence interval (p-value < 2.2e-16).
The next sections explain how the features were selected,

how to deal with the missing values and outliers.

2.2.1 Features

The ISBSG suggests that the most important criteria for
estimation purposes are the functional size; the development
type (new development, enhancement or re-development);
the primary programming language or the language type
(e.g., 3GL, 4GL); and the development platform (mainframe,
midrange or PC). As development platform has more than
40% missing feature values for two organisation types, the
following criteria were used as features: functional size; de-
velopment type; and language type.
The normalised work effort in hours is the dependent vari-
able. Due to the preprocessing, this is the actual develop-
ment effort across the whole life cycle.

2.2.2 Missing Values

The features“functional size”and“development type”have
no missing values. The feature “language type” is missing in
several subsets, but it is never missing in more than 40% of
the projects of any subset.
So, an imputation method based on k-Nearest Neighbours

(k-NN) was used so that this feature can be kept without
having to discard the projects in which it is missing. K-NN
imputation has shown to be able to improve SEEs [8]. It is
particularly beneficial for this area because it is simple and
does not require large data sets. Another method, based on
the sample mean, also presents these features, but k-NN has
shown to outperform it in two SEE case studies [8].

According to Cartwright et al. [8], “k-NN works by find-
ing the k most similar complete cases to the target case to
be imputed where similarity is measured by Euclidean dis-
tance”. When k > 1, several different methods can be used
to determine the value to be imputed, for example, simple
average. For categorical values, vote counting is adopted.
Typically, k = 1 or 2. As language type is a categorical
feature, using k = 2 could cause draws. So, we chose k = 1.
The Euclidean distance considered normalised data sets.

2.2.3 Outliers

Similarly to the PROMISE data sets (section 2.1), out-
liers were detected through k-means [14] and eliminated. K
was chosen among k = {2, 3, 4, 5} based on the average sil-
houette values. The chosen k was 2 for subsets 1 to 5 and 3
for subsets 6 and 7. As with the PROMISE data sets, the
silhouette values were high (between 0.8821 and 0.9961),
showing that the clusters are homogeneous. The number of
outliers varied from none to 5. None of the data sets were
reduced to less than 20 projects after outliers elimination.

3. EXPERIMENTAL FRAMEWORK
ML experiments involve three important points besides

the choice of data sets to be used: (1) choice of learning
machines, (2) choice of evaluation method and (3) choice of
parameters. All these points should be considered carefully
based on the aims of the experiments, which in this case are
the research questions explained in section 1. The frame-
work presented in this section concentrates mainly on RQ1
and RQ3, which regard the comparison of several different
methods and how to choose a ML model for SEE. The ex-
perimental procedure for answering RQ2 is further detailed
in section 5.

3.1 Choice of Learning Machines
The following learning machines were used:

• Single learners: MultiLayer Perceptrons (MLPs) [3];
Radial Basis Function networks (RBFs) [3]; and Re-
gression Trees (RTs) [34].

• Ensemble learners: Bagging [7] with MLPs, with RBFs
and with RTs; Random [12] with MLPs; and Negative
Correlation Learning (NCL) [23, 22] with MLPs.

All the learning machines but NCL were based on the
Weka implementation [12]. The regression trees were based
on the REPTree implementation available from Weka. We
recommend the software Weka should the reader wish to
get more details about the implementation and parameters.
The software used for NCL is available upon request.

MLPs were chosen because they are widely used learn-
ing machines that can approximate any continuous function.



Table 3: ISBSG Subsets.
Id Unadjusted Function Points Effort Productivity

Min Max Avg Std Dev Min Max Avg Std Dev Min Max Avg Std Dev
1 43 2906 215.32 383.72 91 134211 4081.64 15951.03 1.2 75.2 12.71 12.58
2 53 499 225.44 135.12 737 14040 3218.50 3114.34 4.5 55.1 15.05 9.94
3 3 893 133.24 154.42 4 20164 2007.10 2665.93 0.3 43.5 17.37 9.98
4 32 3088 371.41 394.10 360 60826 5970.32 8141.26 1.4 97.9 18.75 16.69
5 17 13580 1112.19 2994.62 762 54620 8842.62 11715.39 2.2 52.5 23.38 14.17
6 50 1278 163.41 255.07 361 28441 4855.41 6093.45 5.6 60.4 30.52 17.70
7 51 615 160.10 142.88 867 19888 6960.19 5932.72 14.4 203.8 58.10 61.63

1086.94

>= 253.5

< 151 >= 151

< 253.5

Functional Size

Functional Size Effort =

5376.56

Effort =

2798.68

Effort =

Figure 1: An example of RT for effort estimation.

RBFs perform local learning, which could be particularly
useful for SEE, as each data set can be very heterogeneous.
RTs were chosen for their simplicity – the rules they use to
make estimations can be easily understood by the project
manager. An example of RT is shown in figure 1.
Bagging is one of the most well known ensemble learning

approaches in the literature. It creates diversity by training
each base learner with a different training set generated by
sampling with replacement from the available training data.
By using this scheme, bagging is able to turn weak learners
into strong ones. This can be particularly advantageous for
SEE, as there are usually very few projects to be used for
learning, producing very inaccurate base learners that may
be considered as weak. On the other hand, each base learner
in the ensemble is trained with only about 63.2% of the
unique examples from the available original training set. So,
another approach called random ensemble was also used. It
trains all the base learners using the same training set and
diversity is created by simply using a different random seed
to create each base learner. The problem of this approach is
that there is no guarantee that a good level of diversity will
be achieved. NCL was chosen for having strong theoretical
foundations for regression problems. Its disadvantage is that
it is usually used with strong learners. Besides, NCL can
only be used with neural networks. Other learning machines
such as RTs cannot be currently used.

3.2 Choice of Evaluation Method
The evaluation was based on 30 rounds of executions for

each data set. In each round, for each data set, 10 examples
were randomly picked for testing and the remaining were
used for the training of all the approaches being compared.
Holdout of size 10 was suggested by Menzies et al. [24] and
allows the largest possible number of projects to be used for
training without hindering the testing. For sdr, half of the
examples were used for testing and half for training, due to
the small size of the data set.
The experiments use the PROMISE data sets explained in

Algorithm 1 Worse(x,y)

1: if StatisticallyDifferent(x,y) then
2: // Rule 1 – compares MMREs
3: if MMRE(x) < MMRE(y) Return y
4: if MMRE(y) < MMRE(x) Return x
5: else
6: // Rule 2 – compares correlations
7: if correlation(x) < correlation(y) Return x
8: if correlation(y) < correlation(x) Return y
9: // Rule 3 – compares std deviation of the estimations
10: if stdev(x)/mean(x) < stdev(y)/mean(y) Return y
11: if stdev(y)/mean(y) < stdev(x)/mean(x) Return x
12: // Rule 4 – compares PRED(N)
13: if PRED(N)(x) < PRED(N)(y) Return x
14: if PRED(N)(y) < PRED(N)(x) Return y
15: // Rule 5 – compares the number of features
16: // used by the treatment
17: if #features(x) < #features(y) Return y
18: if #features(y) < #features(x) Return x
19: end if
20: Return 0

section 2.1, the ISBSG subsets explained in section 2.2 and
a data set containing the union of all the ISBSG subsets.
The union was used in order to create a data set likely to be
more heterogeneous than the previous ones.

The following measures of performance were used in this
work [24, 21]: Mean Magnitude of the Relative Error (MMRE),
Median of the Magnitude of the Relative Error (MdMRE),
Percentage of Estimates within 25% of the actual values
(PRED(25)) and correlation between estimated and actual
effort (Corr). Unless stated otherwise, the analysis will al-
ways refer to the measures calculated on the test set. Despite
the MRE’s problems identified by Foss et al. [11], Kocaguneli
et al. [20] affirm that in practice the probability of obtaining
an error in the evaluation due to the fact that MRE divides
the error by the actual effort is insignificant and would not
have a major impact in the evaluation.

The comparisons followed two steps. The first step was
based on Menzies et al.’s work [24], which presents an algo-
rithm that applies a set of heuristic rejection rules to com-
paratively assess results from different treatments/models
in SEE (algorithm 1). The rules are applied to each pair of
models x and y and the model considered as “worse” is elim-
inated from the set of models. In the end of the procedure,
the survivor models are printed. The statistical test in the
first line compares x’s and y’s MMREs using a two-tailed
t-test at the 95% confidence interval. This procedure could
be used for choosing a model to be used (RQ3).



Table 4: Parameter Values for Preliminary Execu-
tions.
Approach Parameters
MLP Learning rate = {0.1, 0.2, 0.3, 0.4, 0.5}

Momentum = {0.1, 0.2, 0.3, 0.4, 0.5}
# epochs = {100, 500, 1000}
# hidden nodes = {3, 5, 9}

RBF # clusters = {2, 3, 4, 5, 6}
Minimum std. deviation for the clusters

= {0.01, 0.1, 0.2, 0.3, 0.4}
REPTree Minimum total weight for instances in a leaf

= {1, 2, 3, 4, 5}
Minimum proportion of the data variance at

a node for splitting to be performed
= {0.0001, 0.001, 0.01, 0.1}

Ensembles # base learners = {10, 25, 50}
All the possible parameters of the adopted

base learners, as shown above
NCL Penalty strength = {0.3, 0.4, 0.5}

In the second step, two-tailed paired t-tests [32] at the
95% confidence interval were used for comparing the two
methods that present most often the highest MMRE and
PRED(25). Non-parametric Wilcoxon tests [31] were also
done to confirm the validity of the analysis. In this way, an
assessment of the methods that are not necessarily the best,
but are usually among the best, is done. This step build on
to answer RQ1 and RQ3.

3.3 Choice of Parameters
The choice of parameters is a critical step in ML experi-

ments. A mistaken parameters choice can affect the results
of the experiments in such a way that a learning machine
that would have better performance appears to have worse
performance. So, it is essential that the method used for
choosing the parameters is made clear in papers using ML.
When choosing a model for SEE (RQ3), it is also essential
to perform a principled parameters choice.
In order to choose the parameters, 5 preliminary rounds of

executions were done using all the combinations of param-
eters shown in table 4 for each data set. The parameters
providing the lowest MMRE for each data set were chosen
to perform 30 rounds of final executions, which were used in
the comparison analysis. In this way, each approach enters
the comparison using the parameters that are most likely to
provide the best results for each particular data set. These
parameters were omitted due to space limitations. The per-
formance measure MMRE was chosen for representing the
first rule in Menzies et al.’s work [24].

4. COMPARISON AMONG APPROACHES
The experiments performed according to the framework

presented in section 3 show that different data sets obtained
different performances. The MMRE obtained by the best
performing approach for each particular data set varied from
0.37 to 2.00. The MdMRE varied from 0.21 to 0.78. The
PRED(25) varied from 0.17 to 0.55. The correlations varied
from 0.05 to 0.91. The performance values were omitted due
to space limitations. Section 4.1 and 4.2 present the first and
second steps of the analysis, as explained in section 3.2.

Table 5: Number of Data Sets in which Each
Method Survived According to Algorithm 3.2.
Methods that never survived are omitted.

PROMISE Data ISBSG Data All Data
RT: 2 MLP: 2 RT: 3
Bag + MLP: 1 Bag + RTs: 2 Bag + MLP: 2
NCL + MLP: 1 Bag + MLP: 1 NCL + MLP: 2
Rand + MLP: 1 RT: 1 Bag + RTs: 2

Bag + RBF: 1 MLP: 2
NCL + MLP: 1 Rand + MLP: 1

Bag + RBF: 1

4.1 Step 1: Survivors
Table 5 shows the number of data sets in which each

method survived according to Menzies et al.’s algorithm [24].
There is no indication that ensembles are generally better
than single learners: both of them are among the methods
that survived more times. It is not possible to note gen-
eral trends presented by either PROMISE or ISBSG data
either. The results show that different methods survive de-
pending on the data set. The same situation happens if
the statistical tests used for comparing MMRE are based on
non-parametric Wilcoxon tests [31], instead of t-tests. This
section provides part of the answer to RQ3: ideally, exper-
iments using a principled framework need to be done in an
individual basis using the set of projects to which the man-
ager has access for choosing a model to be used for SEE.

4.2 Step 2: Approaches usually among the best
In this section, we first determine which methods are most

often ranked as the first or second in terms of MMRE and
PRED(25). We focus on finding out the methods that are
usually among the best, instead of the method that is the
best for each data set. In this way, it also helps the identifi-
cation of which ensemble method would be generally prefer-
able, which is part of the RQ1 to be answered by this paper.
As shown in this section, the methods singled out are RTs
and bagging using MLPs. After that, we compare RTs and
bagging using MLPs. As they usually perform similarly, we
can conclude that readily available ensemble methods do not
generally improve the SEEs given by single learners. This
provides the remaining of the answer to RQ1.

In order to check how valid this analysis is, it is important
to note the statistically significance of outlying the first and
second ranked methods. Two-tailed paired t-tests at the
95% confidence interval show that the difference between the
average MMRE of the first ranked method and each other
method is statistically significant in 35.16% of the cases.
The difference between the second ranked method and the
lower ranked methods is statistically significant in 16.67%
of the cases. That means that the first and second ranked
approaches are similar to the other approaches in terms of
MMRE and PRED(25) in most cases, but are sometimes
better. So, in general, it is preferable to use them.

Table 6(a) shows the two methods most often ranked as
first and second in terms of MMRE. The results show that
both RTs and bagging using MLPs are very often among the
first two ranked methods according to MMRE. The trend
can be observed both in the PROMISE and ISBSG data
sets. For PROMISE, RTs or bagging using MLPs appear
among the first two ranked approaches in 70% of the cases,



Table 6: Number of Data Sets in which Each
Method Was Ranked First or Second According to
MMRE and PRED(25). Methods never among the
first and second are omitted.

(a) Accoding to MMRE

PROMISE Data ISBSG Data All Data
RT: 4 RT: 5 RT: 9
Bag + MLP: 3 Bag + MLP 5 Bag + MLP: 8
Bag + RT: 2 Bag + RBF: 3 Bag + RBF: 3
MLP: 1 MLP: 1 MLP: 2

Rand + MLP: 1 Bag + RT: 2
NCL + MLP: 1 Rand + MLP: 1

NCL + MLP: 1

(b) Acording to PRED(25)

PROMISE Data ISBSG Data All Data
Bag + MLP: 3 RT: 5 RT: 6
Rand + MLP: 3 Rand + MLP: 3 Rand + MLP: 6
Bag + RT: 2 Bag + MLP: 2 Bag + MLP: 5
RT: 1 MLP: 2 Bag + RT: 3
MLP: 1 RBF: 2 MLP: 3

Bag + RBF: 1 RBF: 2
Bag + RT: 1 Bag + RBF: 1

whereas all other methods together sum up to 30%. For
ISBSG, RTs or bagging using MLPs appear among the first
two ranked in 62.5% of the cases, whereas all other methods
together sum up to 37.5%. So, in general, RTs and bagging
using MLPs are preferable over the other methods.
The analysis considering the first two ranked approaches

according to PRED(25) shows that both RTs and bagging
using MLPs are still frequently among the first two ranked
(table 6(b)). If we consider PROMISE data by itself, ensem-
bles such as bagging using MLPs are more frequently ranked
higher than single learners. A comparison between bagging
using MLPs and RTs would also be helpful to check whether
this difference in the ranking is significant.
Two-tailed paired t-tests at the 95% confidence interval

were done to compare both MMRE and PRED(25) for RTs
and bagging using MLPs. Table 7 shows the results of the
comparison. As we can see, the two approaches have statis-
tically equal MMRE in most data sets, with RTs winning
twice and bagging winning once. There are more statis-
tically significant differences considering PRED(25). How-
ever, even so, RTs win three times and bagging wins twice. It
is not possible to identify any tendency for either PROMISE
or ISBSG data sets, suggesting that the difference in the
PRED(25) ranking for RTs in PROMISE and ISBSG data
is not very relevant. A visual comparison of the standard
deviations of the two approaches (omitted due to space lim-
itations) does not favour any of them either.
Summarizing, we can see that (1) RTs and bagging with

MLPs are singled out as most frequently among the best
and (2) these two approaches usually perform similarly. So,
we cannot conclude that RTs generally provide benefits in
terms of MMRE or PRED(25) in comparison to bagging us-
ing MLPs or vice-versa. Besides, ensembles are not generally
better than well tuned single learners (RQ1).
Nevertheless, RTs have faster training time and are more

transparent in terms of allowing engineers to understand the

Table 7: P-values of the two-tailed paired t-tests
comparing MMRE and PRED(25) for RTs and bag-
ging using MLPs. P-values less than 0.05 indicate
statistically significant difference at the 95% con-
fidence interval and are marked with “t” or “b” if
RT or bagging using MLPs has the lower/higher
MMRE/PRED(25).

Data Set P-value
MMRE PRED(25)

Cocomo81 0.8723 0.0003 b
Nasa93 0.0001 t 0.0000 t
Nasa 0.0073 t 0.0001 b
Sdr 0.3256 0.2339
Desharnais 0.1014 0.5829
Org1 0.7634 0.7170
Org2 0.3820 0.3449
Org3 0.8400 0.6004
Org4 0.3552 0.0325 t
Org5 0.9604 0.1423
Org6 0.0059 b 0.2807
Org7 0.9040 0.3331
OrgAll 0.6522 0.0031 t

rules learnt than bagging with MLPs. An example of rule
generated for ISBSG subset 2 is shown in figure 1. RTs are
thus recommended over the other methods here analysed
based on these grounds. Non-parametric Wilcoxon statisti-
cal tests [31] were also done considering the 95% confidence
interval and they do not change these conclusions. This
analysis also complements RQ3: if a company has no re-
sources to perform experiments for choosing a model, RTs
are more likely to perform comparatively well and can be
used for being comprehensive and having faster training.

It is worth to note that, even though this work provides
a different (practically the opposite) conclusion from Braga
et al. [6], it does not necessarily contradict their reported
results. Considering that the best performances obtained
by their ensembles and single learners is very similar in their
experiments, had statistical tests been done, their conclusion
could possibly have been more similar to ours.

Another important point to be mentioned is that the bag-
ging version used here is not the same version used by Kultur
et al. [21]. In Kultur et al.’s work, instead of taking the sim-
ple average of the outputs of the base learners as the output
of the ensemble, the outputs of the base learners are first
clustered using adaptive resonance theory. After that, the
simple average of the estimations in the largest cluster is
considered as the output of the ensemble.

As Kultur et al.’s approach is not available as open source,
we performed the following test to compare bagging using
MLPs with the best result that the bagging ensemble could
produce should other scheme than the simple average be
used as the output of the ensemble. The best result was
produced by making the output of the ensemble as the best
output produced by any of its base learners. This ideal en-
semble can improve both MMRE and PRED(25) for several
data sets, according to two-tailed paired t-tests considering
the 95% confidence interval. So, bagging still has potential
to be improved for SEE, but it has to be carefully tailored.

Kocaguneli et al.’s work [19] does not actually provide a
comparison between ensembles and single learners. How-



ever, our study can be used to provide further evidence in
support of their work. As we show that it is very unlikely
that there is a single universally good approach, it is proba-
bly also very unlikely that combining several different types
of learners (including combining ensembles) will provide gen-
erally better results than the learners themselves.

5. APPROACHES SINGLED OUT
The previous section shows that, even though no approach

was consistently the best, RTs and bagging with MLPs were
more frequently among the best. More important than check-
ing what approaches are usually among the best is to gain
insight on how to improve SEE further based on an analysis
of these approaches. None of the previous papers involving
ensembles [6, 21, 19] provide an analysis of the reasons for
the obtained results. Differently from the literature, this
section provides insight on how to improve SEE using ML
techniques based on experimental studies, not just an intu-
ition or speculation, being a key contribution of this paper.
Section 5.1 provides an analysis of RTs and section 5.2 pro-
vides an analysis of bagging with MLPs.

5.1 Analysis of RTs
RTs use information gain to determine which feature to

split the tree in a certain level. In this way, this approach
may be giving more importance for more important features.
For example, if the most important feature for determining
the effort is the functional size, it would be used for the high-
est level split of the tree. Less important features would be
used in lower level splits or even not used at all, as it hap-
pened in figure 1. Using the relative importance of features
for the predictions would be particularly beneficial for SEE,
as the training sets are usually very small. In this section,
we analyse whether RTs achieved comparatively good per-
formance for that reason.
Correlation-based feature selection (CFS) method [13] with

greedy stepwise search [12] was used to aid the analysis.
This method was chosen because it uses a similar idea to in-
formation gain in the RTs to check what features are more
significant, probably being helpful for understanding the be-
haviour of RTs. It also checks the correlation among features
themselves. Greedy stepwise search allows ranking features.
This filter method was used instead of a wrapper method
so that the same set of features can be used for different
models, as explained bellow.
As a first step, we ran all the experiments using the frame-

work presented in section 3, but after performing feature se-
lection. This study showed that feature selection by itself did
not change the fact that RTs and bagging with MLPs were
usually among the best in terms of MMRE and PRED(25).
It managed to improve MMRE significantly in 25% of the
cases and it worsened it in 6% of the cases, being helpful
mainly for RBFs and bagging with RBFs. PRED(25) was
less improved/worsened than MMRE. So, feature selection
did not affect PRED(25) much. That is reasonable consid-
ering that more methods were ranked as among the best
considering PRED(25) in section 4.2.
As a second step for this analysis, we compared the rank-

ing of features given by feature selection against the features
appearing in more than 50% of the RTs until their third
level, for each data set. An example is shown in table 8.
The results show that: (1) the RTs do not use all the fea-
tures selected by CFS, even though they usually use at least

Table 8: CFS Ranking and RT Features Relative
Importance for Cocomo81: Features ranking, first
tree level in which the feature appeared in more
than 50% of the trees, and percentage of the trees
in which it appears in that level. Features bellow
the horizontal line are not selected by CFS.

Features ranking Tree level % of trees
LOC Level 0 100.00%
Development mode
Required software reliability Level 1 90.00%
Modern programing practices
Time constraint for cpu Level 2 73.33%
Data base size Level 2 83.34%
Main memory constraint
Turnaround time
Programmers capability
Analysts capability
Language experience
Virtual machine experience
Schedule constraint
Application experience Level 2 66.67%
Use of software tools
Machine volatility
Process complexity

one of these; (2) the RTs use some features not selected by
CFS; and (3) the RTs put higher ranked features according
to CFS in higher levels of the tree, making use of the relative
importance of features.

In summary, feature selection by itself was not able to
change the relative performance of different learning ap-
proaches. However, instead of simply using a subset with
the most important features, RTs gave more importance to
more important features, being able to achieve compara-
tively good performance and suggesting that feature weight-
ing is important when working with ML for SEE. This is an
insight on how to improve SEE (RQ2), specially considering
improvements in other methods than RTs.

5.2 Analysis of Bagging with MLPs
There are several measures of ensemble diversity for re-

gression problems, e.g., correlation, covariance and chisquare
[10]. We performed an initial analysis of ensemble diversity
using correlation, as its values are restricted to the interval
[-1, +1], being comparable across data sets. This analy-
sis has shown that bagging with MLPs usually generates a
more moderate level of diversity when it is ranked first or
second in terms of MMRE in comparison to other ensem-
ble methods and to when it was not ranked first or second.
However, ensemble correlation itself is not highly correlated
with MMRE. So, the analysis is not very conclusive.

Considering the three measures of diversity mentioned
above, covariance is the most highly correlated with MMRE
(the average of absolute values of the correlation is 0.35 con-
sidering all the data sets). So, in order to understand better
the behaviour of bagging with MLPs, we analysed the cor-
relation (table 9) between (1) ensemble covariance and test
MMRE and (2) ensemble covariance and train MMRE. Four
data sets were considered: the two in which bagging with
MLPs achieved the lowest (best) MMRE among the ones in
which it was ranked first or second; and the two in which



Table 9: Correlations between ensemble covariance
(diversity) and train/test MMRE for the data sets
in which bag+MLP obtained the best MMREs and
was ranked 1st or 2nd against the data sets in which
it obtained the worst MMREs.

Cov. vs Cov. vs
Test MMRE Train MMRE

Best MMRE (desharnais) 0.24 0.14
2nd best MMRE (org2) 0.70 0.38
2nd worst MMRE (org7) -0.42 -0.37
Worst MMRE (cocomo2) -0.99 -0.99

bagging with MLPs obtained the highest (worst) MMRE.
As we can see, the correlation between covariance and

test MMRE is positive for the best cases, but negative for
the worst cases. Higher/lower covariance means that the
diversity is lower/higher. So, a positive correlation between
ensemble covariance and test MMRE means that diversity
is helping to reduce MMRE. On the other hand, a negative
correlation means that diversity is hindering, instead of help-
ing to get a good performance. As the data sets themselves
are also a source of diversity in addition to the ensemble ap-
proach being used, we can see that SEE data sets are very

different from each other. Complementing the results pre-
sented in section 4.1, this shows us that it is indeed very
unlikely that there is a universally best method for SEE.
Table 9 also shows us that the correlation between covari-

ance and train MMRE followed a similar tendency to the
correlation between covariance and test MMRE. So, it may
be worth developing an approach which automatically tunes
the level of diversity depending on the correlation between
covariance and train MMRE. If the correlation is negative,
that means diversity should be reduced. Such an approach
may be able to improve SEEs (RQ2).

6. RISK ANALYSIS
The learning machines singled out in section 4.2 (RTs and

bagging with MLPs) were tested using the outlier projects
identified in section 2, so that we can check how sensi-
tive/robust they are to outliers. The MMREs of these ap-
proaches for the outlier sets were similar or lower (better),
usually better than the ones for the outliers-free test sets
from section 4. The PRED(25) were similar or lower (worse),
usually worse. No statistical tests were done because the
outlier data sets are very small (at most 5 projects).
We can see that, even though the outliers are projects to

which the learning machines have more difficulties in pre-
dicting within 25% of the actual effort, they are not the
projects to which the learning machines give the worst esti-
mates, as the average MMRE was better than the average
MMRE of the outliers-free sets. So, the learning machines
as robust to these outliers. As future work, the impact of
including outliers in the training set should be investigated.

7. THREATS TO VALIDITY
Internal validity regards establishing that a certain ob-

servable event was responsible for a change in behaviour.
It is related to the question “Is there something other than
the treatment that could cause the difference in behaviour?”
[25]. In ML, it is essential to use a principled procedure
for selecting the parameters to be used by the learning ma-

chines. It is also important not to use the test projects to
perform training. In our study, we followed a principled
experimental framework, as described in section 3, which
provided a careful parameters choice and ensured that no
test project was used for training.

Construct validity regards accurately naming our mea-
sures and manipulations [25]. We used several measures of
accuracy (section 3.2) for the analysis of survivors presented
in section 4.1. These measures combined into a set of heuris-
tic rules (algorithm 1) have shown to be able to rank SEE
models by considering both the errors and standard devi-
ations of the models [24]. The other analyses used mainly
MMRE and PRED(25), which are the measures most widely
used in SEE studies. Despite the critics to these measures
[11], their problems can be resolved by using statistical eval-
uation [20]. In the present work, we used both t-tests and
Wilcoxon tests to ensure construct validity.

External validity regards generalizing the study’s results
outside the study to other situations [25]. Typical external
validity issues in ML are related to the use of few samples.
In the present study, we used thirteen different data sets
containing a large variety of projects from different organi-
sations and countries in order to deal with this issue. This
number is more than twice the number of data sets used
in the previous work involving ensembles for SEE. Besides,
we have also performed a risk analysis that showed that the
ML approaches singled out in the experiments are robust to
outliers. No previous work has performed such an analysis.

8. CONCLUSIONS
This paper presents a principled and comprehensive eval-

uation of ensembles of learning machines for SEE, providing
answers to the research questions introduced in section 1.

The answer to RQ1 is no – readily available ensembles do
not provide generally better SEEs. Our study has shown
that different learning machines are the best ones for differ-
ent data sets. Even though bagging with MLPs was singled
out as one of the approaches most frequently among the
best, RTs were also singled out and usually perform sim-
ilarly to bagging with MLPs. In addition, RTs are more
comprehensive and have faster training.

As for RQ2, RTs usually put more important features in
higher levels of the trees, being able to achieve relatively
good accuracy and thus suggesting that attributing weights
to the features may help improving SEE when using ML.
Considering bagging with MLPs, even though a more mod-
erate level of diversity might be helping them to achieve
relatively good accuracy, the correlation between diversity
and performance can vary dramatically depending on the
data set. So, an approach to automatically tune the amount
of diversity based on how correlated it is with the train ac-
curacy may help improving SEE.

For RQ3, our analysis has shown that it is very unlikely
that there is a universally best model, even when considering
ensembles. Ideally, the software manager should run exper-
iments with different models using a principled framework
considering all the 3 points outlined in section 3 and using
the projects to which s/he has access. In this way, the model
likely to provide the best behaviour for the manager’s needs
can be identified. If the organisation has no resources to
perform such experiments, RTs are a good choice for being
fast, comprehensive and more frequently among the best.

Different from other papers involving studies of ensembles



for SEE, our work is able to provide these answers thanks
to (1) handling validity issues not tackled or not made clear
by previous studies, (2) including three different ensemble
methods in the comparison, and (3) providing analyses of
the behaviour of approaches singled out. In this way, this
paper provides not only a comparison of existing machine
learning methods, but also insight on how to choose a ML
model and how to improve SEE. As future work, we mainly
propose the use of feature weights for SEE using ML and
the use of self-tuning diversity.
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