
Ensembles and Locality: Insight on Improving Software Effort Estimation

Leandro L. Minkua, Xin Yaoa

aCERCIA, School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Emails:

{l.l.minku, x.yao}@cs.bham.ac.uk

Abstract

Context: Ensembles of learning machines and locality are considered two important topics for the next
research frontier on Software Effort Estimation (SEE).
Objectives: We aim at (1) evaluating whether existing automated ensembles of learning machines generally
improve SEEs given by single learning machines and which of them would be more useful; (2) analysing the
adequacy of different locality approaches; and getting insight on (3) how to improve SEE and (4) how to
evaluate/choose machine learning (ML) models for SEE.
Method: A principled experimental framework is used for the analysis and to provide insights that are
not based simply on intuition or speculation. A comprehensive experimental study of several automated
ensembles, single learning machines and locality approaches, which present features potentially beneficial
for SEE, is performed. Additionally, an analysis of feature selection and regression trees (RTs), and an
investigation of two tailored forms of combining ensembles and locality are performed to provide further
insight on improving SEE.
Results: Bagging ensembles of RTs show to perform well, being highly ranked in terms of performance
across different data sets, being frequently among the best approaches for each data set and rarely performing
considerably worse than the best approach for any data set. They are recommended over other learning
machines should an organisation have no resources to perform experiments to chose a model. Even though
RTs have been shown to be more reliable locality approaches, other approaches such as k-Means and k-
Nearest Neighbours can also perform well, in particular for more heterogeneous data sets.
Conclusion: Combining the power of automated ensembles and locality can lead to competitive results in
SEE. By analysing such approaches, we provide several insights that can be used by future research in the
area.
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1. Introduction

Estimating the cost of a software project is a task of strategic importance in project management. Both
over and underestimations of cost can cause serious problems to a company. For instance, overestimations
may result in a company loosing contracts or wasting resources, whereas underestimations may result in
poor quality, delayed or unfinished software systems. The major contributing factor for software cost is
effort [1]. So, models for estimating software cost/effort can be used as decision support tools, allowing
investigation of the impact of certain requirements and development team features on the cost/effort of a
project to be developed.

Several different software cost or software effort estimation (SEE) approaches have been proposed [2].
Among them, effort estimators based on machine learning (ML) approaches such as multilayer perceptrons
(MLPs), radial basis function (RBF) networks and regression trees (RTs) [3, 4, 5, 6, 7, 8, 9] have been
receiving increased attention [2]. The motivation behind the use of such approaches is that they make no or
minimal assumptions about the function being modelled and the data used for training. For instance, Tronto
et al. [7] showed that MLPs improve SEE over conventional linear models because they are not restricted
to linear functions, being able to model observations that lie far from the best straight line.
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More recently, ensembles of learning machines have attracted attention of the SEE community for build-
ing SEE models [9, 8, 10, 11]. However, existing work on automated1 ensembles of learning machines for
SEE presents contradictory conclusions regarding whether ensembles improve or not performance for SEE.
Section 2.1 presents more details on these works. In the current work, we perform a principled and extensive
analysis of existing automated ensembles of learning machines to determine whether they generally improve
effort estimations given by single learning machines. We build upon previous work and improve on their
weaknesses by following a principled framework and doing an extensive analysis.

The methodology used in our work has the following advantages in comparison to previous work using
existing automated ensembles:

• Use of principled experimentation, considering both parameter choice, statistical tests and magnitude
of improvements.

• Use of a more reliable non-asymmetric performance measure (Mean Absolute Error – MAE) and a
measure that facilitates investigation of the magnitude of the differences in performance (Standardized
Accuracy – SA), rather than using only measures based on the Magnitude of the Relative Error
(MRE) such as Mean MRE (MMRE) and the Percentage of Estimates within N% of the actual values
(PRED(N)).

• Comparison using three different ensembles of learning machines (Bagging [12], Random [13] and
Negative Correlation Learning [14]) which present features potentially beneficial to SEE.

• Use of a larger number of data sets (thirteen against five, the highest number of data sets previously
used in studies involving automated ensembles), including both PROMISE [15] and ISBSG [16] data
sets, rather than just PROMISE data sets.

• Experimental analysis of the behaviour of promising approaches, gaining insight on how to improve
SEE.

Another area of research considered as promising in software project estimation is locality [17]. Ap-
proaches that perform estimations considering mainly training examples that are similar to the project
being estimated can be referred to as based on locality. As SEE data sets tend to be relatively small and
very heterogeneous, such approaches are likely to be more adequate. Examples of works considering locality
are Cuadrado Gallego et al. [18] and Kocaguneli et al. [19]. Section 2.2 explains locality further. Even
though locality is a promising area, it is not yet clear what locality approach would be more adequate for
SEE. For instance, RTs are promising due to the hierarchy of features that they create, but it is not known
whether this simply provides the same benefit as other locality approaches or a feature selector. Our work
investigates different locality approaches for SEE, providing insight for future approaches on improving SEE.

As an additional contribution, our paper builds upon previous work and proposes an experimental frame-
work for evaluation of SEE approaches. The framework joins (1) the power of statistical tests for comparison
of multiple learning machines over multiple data sets as recommended in the general ML literature [20], to
(2) an analysis of the approaches among the best, and to (3) the use of a standardized measure proposed
by Shepperd and Mc Donell [21] for evaluating prediction systems in software project estimation.

In short, our paper addresses the following research questions:

• RQ1: Do existing automated ensembles of learning machines generally improve effort estimations given
by single learning machines, including potentially adequate locality learning machines such as RTs?
Which of them would be more useful?

• RQ2: What locality approach is more adequate for SEE tasks? In particular, how well does RT locality
do in comparison to other locality approaches? On what type of data sets?

1We refer to an approach as automated when, given the project data, it does not require human intervention and decision-
making in order to be used. More details can be found in section 2.1.
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• RQ3: What insight on how to further improve SEE can we gain by analysing competitive ensemble
and locality approaches?

• RQ4: How to evaluate/choose ML models for SEE?

Our key contribution is not in a new algorithm, but a better understanding/insight. Furthermore, such
better understanding/insight is based on experimental studies, not just an intuition or speculation. We show
that combining the power of automated ensembles and locality can lead to competitive results in SEE. For
instance, when considering the symmetric performance measure MAE, bagging ensembles of RTs perform
well. They are highly ranked in terms of performance across different data sets, are frequently among the
best approaches for each data set and rarely perform considerably worse than the best approach for any data
set. So, they are recommended over other learning machines should an organisation have no resources to
perform experiments to chose a model. Moreover, tailored approaches using ensembles at a higher level and
locality at a lower level may be particular useful for improving performance on smaller data sets, whereas
approaches using locality at a higher level may be particularly useful for improving on larger data sets.
Future work on SEE may benefit from exploiting that further. In terms of locality approach, RTs have
been shown to be more reliable than other approaches due to their ability to create hierarchies of features.
Nevertheless, k-means and k-nearest neighbours can also perform well, in particular for more heterogeneous
data sets.

The rest of this paper is organised as follows: Section 2 presents related work on ensembles, locality
and evaluation of models. Section 3 describes the data sets used in our study. Section 4 explains the
experimental framework, which represents part of the answer to RQ4. Section 5 presents the evaluation
of existing automated ensembles against single learning machines. It mainly aims at answering RQ1, but
also partly addresses RQ2 by considering a promising locality approach namely RTs. This section also gives
some insights on how to improve SEE (RQ3) by revealing the success of an approach joining the power of
locality and ensembles and by showing that bagging ensembles still have room for improvement. As the
analysis singles out a comparatively well performing approach, section 5 also complements the answer to
RQ4. Section 6 performs an analysis of locality approaches, answering RQ2 and part of RQ3. Section 7
presents an analysis of RTs and tailored approaches joining the power of ensembles and locality, mainly
addressing RQ3. Section 8 explains threats to validity. Section 9 presents conclusions and future work.

2. Related Work

2.1. Ensembles of Learning Machines for SEE

Ensembles of learning machines are sets of learning machines2 trained to perform the same task and
combined with the aim of improving predictive performance [22]. It is commonly agreed that the base
learning machines should behave differently from each other. Otherwise, the overall prediction will not be
better than the individual predictions [23, 24, 25]. So, different ensemble learning approaches can be seen
as different ways to generate diversity among the base learning machines.

Ensembles of learning machines have recently attracted the attention of the SEE community, as they
can frequently improve performance over single learning machines. For example, Bootstrap Aggregating
(bagging) [12], a well known ensemble approach with solid theoretical background, is able to turn weak
learning machines into stronger ones. This can be particularly useful for SEE, as the data sets are usually
small, leading to typically less accurate learning machines than in other applications of ML.

In this section, we briefly describe previous work on ensembles for SEE. The works presented by Braga et
al. [9], Kultur et al. [8] and Kocaguneli et al. [10] represent the starting points of the research on ensembles for
SEE. However, besides using only asymmetric performance measures based on MRE, they provide somewhat
contradictory results as outlined below.

Braga et al. [9] claims that bagging improves the SEEs produced by several single learning machines,
such as RTs and MLPs. However, the study uses only two versions of a single data set and neither tests

2The learning machines used to compose an ensemble are frequently called base learning machines.
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the statistical significance of the results nor presents the standard deviations of the performance. As the
average performances reported for the ensembles are very close to the performances obtained by the single
learning machines, it is not possible to conclude that there was an improvement in the estimations [26].

Kultur et al. [8] uses five data sets and shows that an adapted version of bagging provides very large
improvements in comparison to single learning machines. However, there is no information about how the
parameters of the approaches were chosen. When performing ML experiments, the parameters choice can
highly influence the results. Depending on the choice, a certain approach can become better or worse. So,
even though Kultur et al.’s work is a significant contribution, the literature still lacks more evidence in
support of ensembles.

Kocaguneli et al. [10] uses three data sets to compare the effect of combining different types of learning
machines to the use of these learning machines separately. Even though this is not exactly a comparison
between single learning machines and ensembles, their results suggest that ensembles do not improve the
performance of single learning machines. This is somewhat contradictory in relation to Kultur et al. [8]’s
work, which achieved very large improvements when using an adapted version of bagging. Kocaguneli et
al. do not present information about the parameters choice either.

In addition to the problems explained above, none of these papers compare the results obtained by
different existing automated ensemble learning approaches from the ML literature. Kocaguneli et al. [10]
present results obtained by some ensembles of learning machines, but the analysis does not perform a
statistical comparison among ensembles and single learning machines. Different ensemble approaches can be
more or less adequate for SEE and should also be included in the comparisons. The papers do not provide
analyses of the reasons for the results obtained either.

It is worth noting that even though some work in the SEE literature suggests that the performance of
different models depends significantly on the characteristics of the data set [27], existing work on ensembles
of learning machines suggests that they may provide generally better results than single learning machines
in terms of MMRE and PRED(N) even when considering different data sets [8].

As mentioned in section 1, we overcome the problems of existing works on ensembles by using principled
experimentation; by using a more reliable symmetric performance measure; by considering the magnitude of
the differences in performance; by comparing three different ensembles of learning machines which present
different features potentially beneficial to SEE; by using a larger number of data sets (including both
PROMISE and ISBSG data sets); and by performing an experimental analysis of the behaviour of promising
approaches to gain more insight on how to improve SEE.

We refer to an approach as automated when, given the project data, it does not require human interven-
tion and decision-making in order to be used. This is an algorithmic feature which reduces the complexity
and cost of using the SEE tool, as a person operating it would just need to provide the project data and
push a button to obtain a SEE. It is worth noting that parameter choice can usually be automated as well.
The ensemble approaches discussed in the previous paragraphs [9, 8, 10] can be fully automated.

An approach that cannot be fully automated has higher tuning complexity and cost, such as man-
ual/visual inspection of experiments to set/reconfigure the tool up. An example of such approach is Koca-
guneli et al. [11]’s. Their ensemble of learning machines has very good performance in comparison to single
learning machines. However, it requires a large amount of manual work, including an extensive experimen-
tation procedure using several different types of “solo-methods” (combinations of single learning machines
and preprocessing techniques) for creating the ensemble. It consists of selecting the “best” solo-methods in
terms of losses and stability to compose the ensemble, by manually/visually checking and comparing their
stability. The manual/visual checking process is needed because it is necessary not only to determine what
solo-methods have the lowest number of losses, but also to check whether these are the same as the ones
comparatively more stable and what level of stability should be considered as comparatively superior or not.

As a fully automated approach would be desirable, the area of ensembles for SEE still has room for
improvement and can be considered as one of the promising topics of research in the area. In our current
work, we investigate fully automated approaches and provide insight for future research on improving SEE
in an automated way.
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2.2. Locality for SEE

Approaches that perform estimations based mainly on training examples that are similar to the project
to be estimated can be referred to as locality approaches. As SEE data sets tend to be relatively small and
very heterogeneous, such approaches are likely to be more adequate and perform better than approaches
which do not use locality.

An example of approach based on locality is presented by Cuadrado Gallego et al. [18]. They use a
clustering approach based on Expectation Maximization (EM) to separate training examples into different
sets and construct a regression equation to model each of them separately. This approach manages to achieve
improvements in terms of MMRE and PRED(30) over regression equations created using the whole training
set together. Another study by Kocaguneli et al. [19] considers locality by using modified RTs. They report
improvements over traditional estimation by analogy based on Euclidean distance nearest neighbours, which
is another form of locality approach.

There exist several types of RTs and they present many features potentially useful for SEE even when
no tailored modification is introduced. RTs can be seen as rules to separate examples based on their feature
values. Each leaf node represents a subset of the training examples used to create the tree. In order to make
an estimation, the leaf node most similar to the test example in terms of input feature values is determined.
So, RTs are based on locality. An example of RT is shown in Figure 1. As we can see, its rules are easily
readable by practitioners.
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< 151 >= 151
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2798.68
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Figure 1: An example of RT for software effort estimation.

RTs are created by considering not only the existing input features of the training examples, but also the
impact of the input feature values on the dependent variable. This is a potential advantage over clustering
approaches, which typically separate data according to their input features only. Moreover, the locality
approach of determining the leaf node most similar to the example being estimated may operate in such a
way to give different importance for different features, based on the levels of the tree in which they are split.
For example, if the most important feature for determining the effort is functional size, this feature would
be used for the highest level split of the tree. Less important features would be used in lower level splits or
even not used at all, as it happened in Figure 1. This hierarchy of features can be particularly useful for
SEE, as data sets frequently have many (more and less relevant) features and few examples.

Nevertheless, it is not clear whether the separation of features provided by the RTs is important only
as a correlation-based feature selector or whether the relative importance of features is essential for SEE.
Analysis on this matter would provide good insight for future approaches on improving SEE. The literature
also lacks comprehensive studies comparing locality approaches such as RTs to clustering methods. So, it
is not known whether RTs would be more adequate locality approaches than cluster-based approaches or
which of them should be further exploited with the aim of improving SEE. As briefly explained in section
1, one of the aims of the current paper is to address such questions.

2.3. Evaluation of Different Approaches for SEE

Current work on frameworks for evaluation of SEE models considers issues such as explicit preprocessing
[28], evaluation measures [29, 21] and the importance of the magnitude of the differences in performance
[21]. There has also been work on statistical approaches for evaluating models across multiple data sets in
the general ML literature [20].

5



Foss et al. [29] show that measures based on MRE are potentially problematic due to their asymmetry,
biasing towards prediction models that under-estimate. That includes a performance measure very popular
in the SEE literature: MMRE. Another measure, MAE, does not present asymmetry problems and is not
biased. However, it is difficult to interpret, since the residuals are not standardised. So, measures such as
MMRE have kept being widely used by most researchers in the area. However, Shepperd and Mc Donell
[21] very recently proposed a new measure called Standardised Accuracy (SA), defined as follows:

SA = 1−
MAEPi

MAEP0

,

where MAEPi
is the mean absolute error of the prediction model Pi and MAEP0

is the mean value of a
large number, typically 1000, runs of random guessing. This is defined as predicting ŷ for the example t by
randomly sampling over the remaining n− 1 examples and taking ŷt = yr, where r is drawn randomly with
equal probability from 1...n ∧ r 6= t.

Even though this measure is a ratio, such as MMRE, this is not problematic because we are interested
in a single direction – better than random [21]. SA can be interpreted as the ratio of how much better Pi

is than random guessing, giving a very good idea of how well the approach does.
To judge the effect size, the following measure is suggested:

∆ =
MAEPi

−MAEP0

sP0

where sP0
is the sample standard deviation of the random guessing strategy. The values of ∆ can be

interpreted in terms of the categories proposed by Cohen [30] of small (≈ 0.2), medium (≈ 0.5) and large
(≈ 0.8).

Shepperd and Mc Donell also suggested using the 5% quantile of the random guessing to estimate the
likelihood of non-random estimation. However, we have found that comparing Pi’s SA to P0’s 5% quantile
can be a very conservative way to suggest whether a model is or is not better than random. A possible
reason for that is the fact that the number of runs is not taken into account in such a comparison. In our
experiments, while Wilcoxon sign-rank tests [31] detected significantly different models’ MAE in comparison
to random guessing with very low p-values (ranging from 1.6492 · 10−4 to 5.0864 · 10−18) and the effect size
∆ against random guess was very high, these models’ SAs were no better than the 5% quantile of random
guessing.

Nevertheless, the magnitude of the difference in performance among different models is important and SA
gives a very good idea of how much better models are from random guessing. So, in our work, we build upon
previous work and we propose the use of an evaluation framework that joins the power of statistical tests
as suggested by Demšar [20] to the importance of magnitude as suggested by Shepperd and Mc Donell [21].
Our experimental framework also explicitly considers the parameters choice, emphasizing its importance.

3. Data Sets

The analysis presented in this paper is based on several different data sets from the PRedictOr Models
In Software Engineering Software (PROMISE) Repository [15] and from the International Software Bench-
marking Standards Group (ISBSG) Repository [16] Release 10. As explained in section 1, the fact that we
use both PROMISE and ISBSG data sets, as well as the high number of data sets, are advantages of our
work over previous works evaluating ensembles for SEE. The data sets used in our work were chosen to cover
a wide range of features, such as number of projects, type of features, countries and companies. Sections
3.1 and 3.2 provide their description and explanation on how they were processed.

3.1. PROMISE Data

The PROMISE data sets used in this study are: cocomo81, nasa93, nasa, sdr and desharnais. Cocomo81
consists of the projects analysed by Boehm to introduce COCOMO [32]. Nasa93 and nasa are two data
sets containing Nasa projects from 1970’s and 1980’s and from 1980’s and 1990’s, respectively. Sdr contains
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projects implemented in 2000’s and was collected at Bogazici University Software Engineering Research
Laboratory from software development organisations in Turkey. Desharnais’ projects are dated from late
1980’s. Table 1 provides some details about these data sets. The next subsections explain their features,
missing values and preprocessing used.

Table 1: PROMISE data sets. The effort is measured in person-months for all data sets except desharnais, in which it is
measured in person-hours.

Data Set # Projects # Features Min Effort Max Effort Avg Effort Std Dev Effort
Cocomo81 63 17 5.9 11,400 683.53 1,821.51
Nasa93 93 17 8.4 8,211 624.41 1,135.93
Nasa 60 16 8.4 3,240 406.41 656.95
Sdr 12 23 1 22 5.73 6.84
Desharnais 81 9 546 23,940 5,046.31 4,418.77

3.1.1. Features

Cocomo81, nasa93 and nasa are based on the COCOMO [32] format, containing as input features 15 cost
drivers, the number of lines of code and the development type (except for nasa, which does not contain the
latter feature). The actual effort in person-months is the dependent variable. Sdr is based on COCOMO
II [33], containing as input features 22 cost drivers and the number of lines of code. The actual effort in
person-months is the dependent variable. The data sets were processed to use the COCOMO numeric values
for the cost drivers. The development type was transformed into dummy variables.

Desharnais contains as input features the team experience in years, the manager experience in years, the
year the project ended, the number of basic logical transactions in function points, the number of entities in
the system’s data model in function points, the total number of non-adjusted function points, the number
of adjusted function points, the adjustment factor and the programming language. The actual effort in
person-hours is the dependent variable.

3.1.2. Missing Values

The only data set with missing values is desharnais. In total, it contains only 4, out of 81 projects, with
missing values. As this is a small number of projects (about 5% of the total number of projects) and several
previous papers have removed these projects [8, 27, 34], we decided to remove them from our data set as
well.

3.1.3. Preprocessing

Preprocessing data sets for detecting and removing outliers is frequently necessary when building ML
models. Works in the SEE literature show that SEE data sets frequently contain a few outliers, which
may hinder the SEEs for future projects [35]. Outliers were detected based on k-means. This method was
chosen because it has shown to improve performance in the SEE context [35]. K-means is used to divide
the projects into clusters. After that, clusters with less than a certain number n of projects or projects with
negative silhouette values are considered outliers.

The silhouette [36] value for each project represents the similarity of the project to the other projects in
its cluster in comparison to the projects in the other clusters, ranging from -1 (more dissimilar) to 1 (more
similar). The silhouette values were calculated as follows: Consider that we use a clustering algorithm to
cluster a set of projects into a number of clusters. Repeat the following procedure for each project i. Let
a(i) be the average dissimilarity of i with respect to all other projects within A, where A is the cluster to
which i belongs. Here, we used Euclidean distance as the measure of dissimilarity. Then, let d(i, C) be the
average dissimilarity of i to all projects in C, where C is any of the clusters. After computing d(i, C) for all
clusters C 6= A, let b(i) = minimumC 6=Ad(i, C). The silhouette value is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
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The average s(i) for all projects is a measure of how appropriately the projects have been clustered. So, it
can be used to determine the number of clusters k.

We used n = 3, as in [35]. The number of clusters k was chosen among k = {2, 3, 4, 5}, according to the
average silhouette values. The projects considered as outliers are shown in Table 2. The outlier identified for
sdr was not eliminated because this data set is very small (only 12 projects), providing not enough evidence
to consider the identified project as an outlier. As an additional step of our experiments presented in section
5, we verify and confirm that such preprocessing is in practice recommendable.

Table 2: PROMISE data sets – outliers. The numbers identifying the outlier projects represent the order in which they appear
in the original data set, starting from one.

Data Set K Outliers
Cocomo81 2 None
Nasa93 2 42, 46, 62
Nasa 2 2, 3
Sdr 2 9
Desharnais 2 9, 39, 54

3.2. ISBSG Data

The ISBSG repository contains a large body of data about completed software projects. The release 10
contains 5,052 projects, covering many different companies, several countries, organisation types, application
types, etc. The data can be used for several different purposes, such as evaluating the benefits of changing
a software or hardware development environment; improving practices and performance; and estimation.
In order to produce reasonable SEE using ISBSG data, a set of relevant comparison projects needs to be
selected. With that in mind, we preprocessed the data set (resulting in 621 projects) maintaining only
projects with:

• Data and function points quality A (assessed as being sound with nothing being identified that might
affect their integrity) or B (appears sound but there are some factors which could affect their integrity
/ integrity cannot be assured).

• Recorded effort that considers only development team.

• Normalised effort equal to total recorded effort, meaning that the reported effort is the actual effort
across the whole life cycle.

• Functional sizing method IFPUG version 4+ or NESMA.

• No missing organisation type field.

After that, with the objective of creating different subsets, the projects were grouped according to
organisation type. Only the groups with at least 20 projects were maintained, following ISBSG’s data set
size guidelines. The resulting organisation types are shown in Table 3.

Table 4 contains additional information about the subsets. As we can see, the productivity rate of
different companies varies. A 7-way 1 factor Analysis of Variance (ANOVA) was used to confirm the
difference of productivity rates among the subsets, indicating statistically significant difference at the 95%
confidence interval (p-value < 2.2 · 10−16).

The next sections explain how the features were selected, how to deal with the missing values and the
preprocessing done after dealing with features and missing values.
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Table 3: ISBSG data – organisation types used.

Organisation Type Id # Projects
Financial, Property 1 76
& Business Services
Banking 2 32
Communications 3 162
Government 4 122
Manufacturing; 5 21
Transport & Storage
Ordering 6 22
Billing 7 21

Table 4: ISBSG subsets.
Id Unadjusted Function Points Effort Productivity

Min Max Avg Std Dev Min Max Avg Std Dev Min Max Avg Std Dev
1 43 2906 215.32 383.72 91 134211 4081.64 15951.03 1.2 75.2 12.71 12.58
2 53 499 225.44 135.12 737 14040 3218.50 3114.34 4.5 55.1 15.05 9.94
3 3 893 133.24 154.42 4 20164 2007.10 2665.93 0.3 43.5 17.37 9.98
4 32 3088 371.41 394.10 360 60826 5970.32 8141.26 1.4 97.9 18.75 16.69
5 17 13580 1112.19 2994.62 762 54620 8842.62 11715.39 2.2 52.5 23.38 14.17
6 50 1278 163.41 255.07 361 28441 4855.41 6093.45 5.6 60.4 30.52 17.70
7 51 615 160.10 142.88 867 19888 6960.19 5932.72 14.4 203.8 58.10 61.63

3.2.1. Features

The ISBSG suggests that the most important criteria for estimation purposes are the functional size; the
development type (new development, enhancement or re-development); the primary programming language
or the language type (e.g., 3GL, 4GL); and the development platform (mainframe, midrange or PC). As
development platform is missing in more than 40% of the projects for two organisation types, the following
criteria were used as features: functional size; development type; and language type.
The normalised work effort in hours is the dependent variable. Due to the preprocessing, this is the actual
development effort across the whole life cycle.

3.2.2. Missing Values

The features “functional size” and “development type” have no missing values. The feature “language
type” is missing in several subsets. Even though this feature is never missing in more than 40% of the
projects of any ISBSG subset, it is missing in 25 of the 76 projects (about 33%) of ISBSG subset org1. We
consider this percentage to be too high to eliminate the 25 projects from this subset, as we would loose too
many data that are potentially useful in improving a model’s performance [37, 38]. We decided to adopt an
imputation method so that this feature can be kept without having to discard the projects in which it is
missing.

The imputation method was based on k-Nearest Neighbours (k-NN). K-NN imputation has shown to be
able to improve SEEs [39]. It is particularly beneficial to this area because it is simple and does not require
large data sets. Another method, based on the sample mean, also presents these features, but k-NN has
shown to outperform it in two SEE case studies [39].

According to Cartwright et al. [39], “k-NN works by finding the k most similar complete cases to the
target case to be imputed where similarity is measured by Euclidean distance”. When k > 1, several different
methods can be used to determine the value to be imputed, for example, simple average. For categorical
values, vote counting is adopted. Typically, k = 1 or 2. As language type is a categorical feature, using
k = 2 could cause draws. So, we chose k = 1. The Euclidean distance considered normalised data sets.
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3.2.3. Preprocessing

Similarly to the PROMISE data sets (section 3.1), the ISBSG data sets were preprocessed to detect and
remove outliers through k-means [40]. K was chosen among k = {2, 3, 4, 5} based on the average silhouette
values. The chosen k was 2 for subsets 1 to 5 and 3 for subsets 6 and 7. The number of outliers varied from
none to 5, as shown in Table 5. None of the data sets were reduced to less than 20 projects after outliers
elimination.

Table 5: ISBSG subsets – outliers. The numbers identifying the outlier projects represent the order in which they appear in
the original data set, starting from one.

Id K Outliers
1 2 38
2 2 None
3 2 80, 91, 103, 160
4 2 4, 10, 75, 89, 104
5 2 20
6 3 4
7 3 None

4. Experimental Framework

ML experiments involve three important points besides the choice of data sets to be used: (1) choice of
learning machines, (2) choice of evaluation methods and (3) choice of parameters. All these points should
be considered carefully based on the aims of the experiments, which in this case are the research questions
explained in section 1. The framework presented in this section concentrates mainly on evaluating and
choosing ML models for SEE. This is used at least partly to answer each of the research questions of this
work, as explained in more detail in the experimental sections 5 to 7. RQ4 (how to evaluate/choose a ML
model for SEE) is itself partly answered by the framework proposed in the current section.

4.1. Choice of Learning Machines

As explained in section 1, RQ1 involves determining whether existing automated ensembles of learning
machines generally improve effort estimations given by single learning machines, including potentially ade-
quate locality approaches such as RTs. With that aim, three ensemble and three single learning machines
were chosen to be used:

• Single learning machines:

– REPTree Regression Trees (RTs) [13, 41];

– Radial Basis Function networks (RBFs) [42]; and

– MultiLayer Perceptrons (MLPs) [42].

• Ensembles of learning machines:

– Bagging [12] with MLPs (Bag+MLPs), with RBFs (Bag+RBFs) and with RTs (Bag+RTs);

– Random [13] with MLPs (Rand+MLPs); and

– Negative Correlation Learning [43, 14] with MLPs (NCL+MLPs).

RTs were chosen because they are single learning machines based on locality and present several potential
advantages for SEE, as outlined in section 2.2. RBFs are based on locality as well, due to the radial basis
functions (typically Gaussians) used in their hidden nodes. When the inputs are fed into the hidden layer,
their distances (e.g., Euclidean distances) to the center of each neuron are calculated. After that, each node
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applies a radial basis function to the distance, which will produce lower/higher values for larger/shorter
distances. Each hidden neuron i is connected to each output neuron j with weight wji and output neurons
usually compute a linear function of their inputs when working with regression problems. Due to the use of
a radial basis function, changes in the weights connecting a given hidden neuron to the output neurons do
not affect input values that are far from the center of this neuron. In short, RBFs use locality.

Even though the choice of RTs and RBFs was based on their relation to locality, MLPs are not local
learning machines and were included as an example of non-local approach. They were chosen for being pop-
ular learning machines that can approximate any continuous function [42]. They have also been investigated
in the SEE context [5, 7, 3, 4, 6, 8, 9]. For instance, Tronto et al. [7] showed that they can outperform linear
regression because they are able to model observations that lie far from the best straight line. MLPs can be
easily combined using several different ensemble approaches, such as bagging, random ensembles and NCL.
Other non-local approaches that are not restricted to certain function shapes were not chosen because they
do not perform well for regression tasks (e.g., naive-Bayes [44]) or have not been so much used for SEE (e.g.,
support vector machines).

Each of the chosen ensembles has a potential advantage and disadvantage for SEE. So, they were selected
in order to verify which of these advantages is in fact more relevant. Bagging is one of the most well known
ensemble learning approaches in the literature. It creates diversity by training each base learning machine
with a different training set generated by sampling with replacement from the available training data. By
using this scheme, bagging is able to turn weak learning machines into stronger ones [12]. This can be
particularly advantageous for SEE, as there are usually very few projects to be used for learning, producing
very inaccurate base learning machines that may be considered as weak. For instance, combining bagging
with RTs may produce good results, as this could be considered an automated way to join the power of
ensembles to locality.

On the other hand, each base learning machine in a bagging ensemble is trained with only about 63.2%
of the unique examples from the available original training set [45]. So, another approach called random
committees/ensembles was also used. Random ensembles are based on the fact that different initial condi-
tions may cause different neural networks to converge into different local minima of the cost function. They
turn an apparent disadvantage, local minima in training neural networks, into something useful by averaging
(in the case of regression) the predictions of base learning machines trained using different random seeds.
Despite its simplicity, this procedure works surprisingly well in many, but not all, cases [46, 47, 48]. If the
base learning machines are independent of each other, the squared prediction error of the ensemble is equal
to or less than the mean of the squared prediction errors of the base learning machines [49]. The problem
of this approach is that there is no guarantee that a good level of diversity will be achieved, as random
ensembles do not always lead to uncorrelated base learning machines just by using different random seeds
[43].

NCL [43, 14] was chosen for having strong theoretical foundations for regression problems, explicitly
controlling diversity through the error function of the base learning machines [23]. Its disadvantage is that
it is usually used with strong learning machines. Besides, it can only be used with neural networks. Other
learning machines such as RTs cannot be currently used.

The choice of base learning machines for the ensembles was based not only on combinations of local
learning machines to ensembles, but also on the ensemble’s intrinsics. The expected error of a predictor can
be decomposed into bias and variance terms [50]. The bias measures how different the expected predictions
are in comparison to the actual values. The variance measures how much the predictor varies from one
training set to another, drawn from the same distribution. Bagging is an approach that can improve
ensemble performance by reducing the variance [12], working well with learning machines such as MLPs,
RBFs and RTs. However, learning machines such as k-NN already have low variance [51] and cannot be
improved through bagging. For that reason, we used MLPs, RBFs and RTs as base learning machines for
bagging, but not k-NN (or other analogy based learning machines). Learning machines such as deterministic
regression trees or k-NN do not produce different models with different random seeds, so they cannot be
used with a random ensemble, which is typically used with neural networks [49].

RQ2 involves analysing different locality approaches and determining which of them is more adequate
for SEE. With that in mind, the following locality approaches were chosen:
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• RTs;

• K-Nearest Neighbours (k-NN) [52] based on normalised features and Euclidean distance; and

• Clustering approaches: Expectation Maximization (EM) [52]; Spectral Clustering (SC) [53, 54]; and
K-Means [52] based on normalised features and Euclidean Distance.

K-NN was chosen because it represents a traditional way to perform SEE by analogy [34]. EM was
chosen for having been previously successfully used in the SEE domain [18]. SC was chosen because it is
not restricted to hypersphere clusters in the space of input features and there is no evidence that SEE data
clusters should have hypersphere shape. K-means was chosen for being a very simple approach restricted
to hypersphere shape, offering a good comparison to indicate whether SEE data needs or not non-spherical
clusters.

In order to use the clustering approaches for predictions, a single RT was created to learn each cluster
of training examples. Similarly to Cuadrado Gallego et al.’s work with regression equations [18], whenever
required to perform a prediction, the approach determines to which cluster the example belongs and then
uses the corresponding RT for estimating the effort.

In order to answer RQ3, additional approaches which are based on rules, similarly to RTs, were also used
to compose an ensemble of multiple types of base learning machines. These are Decision Tables, Conjective
Rules and M5 Rules [13].

All the learning machines but NCL were based on the Weka implementation [13]. The regression trees
were based on the REPTree implementation available from Weka. We recommend the software Weka should
the reader wish to get more details about the implementation and parameters. The SC algorithm was the
one provided by Dragone [55]. The software used for NCL is available upon request.

4.2. Choice of Evaluation Methods

The following measures of performance were used in this work [28, 8, 21]: Mean Magnitude of the Relative
Error (MMRE), Percentage of Estimates within 25% of the actual values (PRED(25)), Mean Absolute Error
(MAE) and Standardized Accuracy (SA). MMRE and PRED(25) were chosen because they were used in
previous work evaluating ensembles, and one of our aims is to build upon those works to determine through
principled experiments whether ensembles are or not generally better than single learning machines (RQ1).
The results of the ensembles evaluation using these measures were published at PROMISE’11 [56]. Those
experiments are extended in the current work by using MAE and SA, which are more reliable performance
measures. Unless stated otherwise, the analysis will always refer to the measures calculated on the test set.

Our previous work [56] shows that no learning machine is consistently the best across different data sets.
However, learning machines may be singled out as being most frequently among the best. So, in the current
work, we omit the evaluation done in our previous work to determine whether a certain learning machine
is consistently the best based on Menzies et al.’s rejection rules [28]. Those rules were previously used to
determine whether a certain approach is the best for a given data set through pairwise comparisons with
every other approach. Instead, we use Friedman statistical test to determine whether the performance of
the learning machines in terms of MAE is statistically significantly different from each other considering
multiple data sets.

Friedman was recommended by Demšar [20] as an adequate test for comparing multiple learning machines
across multiple data sets. This statistical test also provides a ranking of algorithms as follows. Let rji be the
rank of the j-th of k algorithms on the i-th of N data sets. The average rank of algorithm j is calculated as
Rj = 1

N

∑
i r

j
i . The rounded average ranks can provide a fair comparison of the algorithms given rejection

of the null hypothesis that all the approaches are equivalent. Nevertheless, Wilcoxon sign-rank tests [31] are
typically used to compare a particular model to other models across multiple data sets after rejection of the
Friedman null hypothesis, where necessary. Holm-Bonferroni corrections can be used to avoid high Type-I
error due to the multiple tests performed.

As data sets are very heterogeneous in SEE and the performance of the approaches may vary greatly
depending on the data set, it is also important to check what approaches are usually among the best and,
when they are among the worst, whether the magnitude of the performance is much worse from the best
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approach for that data set or not. This type of analysis also helps to identify on what type of data sets
certain approaches behave better. It is worth noting that statistical tests such as Friedman and Wilcoxon
are based on the relative ranking of approaches, thus not considering the real magnitude of the differences
in performance when used for comparison across multiple data sets. So, even if a Friedman test accepts the
null hypothesis that all approaches perform similarly across multiple data sets, it is still valid to check what
approaches are most often among the best, on what type of data sets, and the magnitude of the differences
in performance. In our previous work [56], we only checked what approaches were among the best (in terms
of MMRE and PRED(25)), not considering the magnitude of the differences in performance. In the current
work, we extend the evaluation framework to (1) check the approaches among the best in terms of MAE
and (2) check the magnitude of the differences in performance by determining whether an approach has SA
worse than the best approach for each given data set in more than 0.1 units.

So, building upon out previous work [56], recent work on evaluation of models for SEE [21], and Demšar’s
work on comparison over multiple data sets [20], we use an evaluation framework based on the following
three steps:

1. Friedman statistical test and ranking across multiple data sets to determine whether approaches behave
statistically significantly differently considering several data sets.

2. Determine which approaches are usually among the first and second highest ranked approaches and,
possibly, identify to which type of data sets approaches tend to perform better.

3. Check how much worse each approach is from the best approach for each data set.

A good approach would be highly ranked by Friedman and statistically significantly different from lower
ranked approaches, would be more frequently among the best, and would not perform too bad in terms of
SA when it is not among the best.

The evaluation was based on 30 rounds of executions for each data set. In each round, for each data
set, 10 examples were randomly picked for testing and the remaining were used for the training of all the
approaches being compared. Holdout of size 10 was suggested by Menzies et al. [28] and allows the largest
possible number of projects to be used for training without hindering the testing. For sdr, half of the
examples were used for testing and half for training, due to the small size of this data set.

The experiments use the PROMISE data sets explained in section 3.1, the ISBSG subsets explained in
section 3.2 and a data set containing the union of all the ISBSG subsets. The union was used in order to
create a data set likely to be more heterogeneous than the previous ones.

4.3. Choice of Parameters

The choice of parameters is a critical step in ML experiments, as results can vary greatly depending on
it. For instance, a learning machine that would have better performance under certain choices could have
worse performance under other choices. It is important that the method used for choosing the parameters
is made clear in papers using ML, so that differences in the results obtained can be better understood.

In order to choose the parameters, we performed five preliminary rounds of executions using all the
combinations of parameters shown in Table 6 for each data set and learning approach. The parameters
providing the lowest MMRE for each data set were chosen to perform 30 rounds of final executions, which
were used in the comparison analysis. In this way, each approach enters the comparison using the parameters
that are most likely to provide the best results for each particular data set. These parameters were omitted
due to the large number of combinations of approaches and data sets used. The performance measure
MMRE was chosen for being used in all previous work evaluating existing automated ensembles.

When ensembles of multiple types of base learning machines were used, parameter values for conjunctive
rules varied among {3, 4, 5} for choosing number of folds for pruning. Parameter values for M5 rules varied
among {2, 4, 8} for choosing the minimum number of instances at a leaf node.

In this work, clustering approaches were used together with RTs, as explained in section 4.1. The RT
parameters were chosen as explained above. However, the parameters of the clustering approaches were
selected using a different strategy. The silhouette values were used as a heuristic to automatically tune
parameters for each set of training examples. The value (among the values shown in Table 7) that provided
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Table 6: Parameter values for preliminary executions.

Approach Parameters
MLP Learning rate = {0.1, 0.2, 0.3, 0.4, 0.5}

Momentum = {0.1, 0.2, 0.3, 0.4, 0.5}
# epochs = {100, 500, 1000}
# hidden nodes = {3, 5, 9}

RBF # clusters = {2, 3, 4, 5, 6}
Minimum std. deviation for the clusters

= {0.01, 0.1, 0.2, 0.3, 0.4}
REPTree Minimum total weight for instances in a leaf

= {1, 2, 3, 4, 5}
Minimum proportion of the data variance at

a node for splitting to be performed
= {0.0001, 0.001, 0.01, 0.1}

Ensembles # base learning machines = {10, 25, 50}
All the possible parameters of the adopted

base learning machines, as shown above
NCL Penalty strength = {0.3, 0.4, 0.5}
K-NN Number of neighbours = {1, 2, 4, 8, 16}

the highest average silhouette value was chosen, unless it leads to a single cluster or to cluster sizes smaller
than three. In this case, the parameter value generating the second highest average silhouette value was
chosen and so forth.

Table 7: Parameter values for clustering approaches.

Approach Parameters
EM Minimum standard deviation = {10−6, 10−5, 10−4, 10−3}

Maximum number of iterations = 1000
Number of clusters automatically determined by cross-validation

SC Maximum normalized cut value = {0.3, 0.5, 0.7, 0.9}
K-Means Cluster size = {2, 3, 4, 5}

Maximum number of iterations = 500

5. Evaluation of Existing Automated Ensemble Approaches Against Single Learning Machines

This section mainly aims at determining whether existing automated ensembles of learning machines
generally improve effort estimations given by single learning machines, including potentially adequate locality
approaches such as RTs, and which of them would be more useful (RQ1). This is done by evaluating ensemble
learning approaches against single learning machines using the framework presented in section 4. This section
also partly investigates RQ2 by evaluating the performance of RT and RBF, which are locality approaches.
All the analyses in terms of MAE, SA and ∆ are new to this paper, whereas analyses based on MMRE and
PRED(25) were previously published in our PROMISE’11 paper [56].

As a pre-analysis, we can observe that very different performances were obtained for different data sets:
The MMRE obtained by the best performing approach for each particular data set varied from 0.37 to 2.00.
The MdMRE varied from 0.21 to 0.78. The PRED(25) varied from 0.17 to 0.55. The correlation between
estimated and real effort varied from 0.05 to 0.91. The SA varied from 0.26 to 0.64. Table 8 shows the SA
and effect size ∆ in comparison to random guess obtained by the approach with the highest, second highest
and lowest SA for each data set.
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Table 8: SA and effect size ∆ for approaches ranked as first, second and last in terms of SA for each data set.

Approach SA ∆
Cocomo81 Bag+MLP 0.5968 0.9679

RT 0.5902 0.9572
RBF 0.3024 0.4904

Nasa93 RT 0.6205 1.2647
Bag+RT 0.6167 1.2569
NCL 0.1207 0.2460

Nasa Bag+RT 0.6423 1.5401
RT 0.6409 1.5367
RBF 0.2618 0.6277

Sdr RT 0.2626 0.7508
Bag+RT 0.2066 0.5907
Rand+MLP −2.9981 · 108 −1.3140 · 108

Desharnais Bag+MLP 0.5248 1.7132
Bag+RT 0.5049 1.6484
RBF 0.3724 1.2157

Org1 MLP 0.4573 0.6670
Bag+MLP 0.4441 0.6478
RT 0.2245 0.3275

Org2 Bag+RBF 0.2719 0.9941
Bag+MLP 0.2716 0.9930
NCL 0.0280 0.1025

Org3 Bag+RT 0.5511 1.3237
RT 0.5347 1.2843
NCL 0.4331 1.0402

Org4 MLP 0.3276 0.6995
RBF 0.3175 0.6779
NCL 0.0248 0.0530

Org5 Bag+RT 0.4259 1.9993
Bag+MLP 0.4038 1.8957
NCL 0.2117 0.9939

Org6 Bag+RBF 0.4930 2.2358
MLP 0.4680 2.1224
NCL 0.3617 1.6405

Org7 Bag+RBF 0.3017 1.3739
Bag+MLP 0.2948 1.3425
RBF 0.0285 0.1300

OrgAll Bag+RT 0.4416 1.0523
RT 0.4318 1.0288
Bag+MLP 0.3319 0.7907
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5.1. Friedman Ranking

As a first step of the evaluation, the Friedman ranking of the ensembles, single learning machines and
random guess in terms of MAE was determined and Friedman statistical test was used to check whether
these approaches have statistically significantly different MAE. The ranking generated by the test is shown
in Table 9. The Friedman test rejects the null hypothesis that all approaches perform similarly (statistic
Ff = 12.124 > F (8, 96) = 2.036). As we can see from the table, random guess was always ranked last. An
additional test was performed without including random guess and the null hypothesis was also rejected
(statistic Ff = 4.887 > F (7, 84) = 2.121).

Table 9: Friedman ranking of approaches in terms of MAE.

Rounded Avg. Rank Avg. Rank Std. Dev. Rank Approach
3 2.77 1.69 Bag+RT

3.38 2.18 Bag+MLP
3.46 1.98 Bag+RBF

4 4.15 2.58 RT
5 4.54 2.22 MLP

5.23 1.54 Rand+MLP
6 5.92 2.02 RBF
7 6.54 1.66 NCL+MLP
9 9.00 0.00 Random Guess

All bagging approaches performed comparatively well, being on average ranked third. RTs were ranked
on average just below, as fourth. As the null hypothesis that all approaches perform similarly was rejected,
Wilcoxon sign-rank tests with Holm-Bonferroni corrections were performed to determine whether the RT’s
MAE is similar or different from Bag+RT’s, Bag+MLP’s and Bag+RBF’s across multiple data sets. Table
10 shows the p-values.

Table 10: Wilcoxon sign-rank tests for comparison of RT’s MAE to Bag+RT’s, Bag+MLP’s and Bag+RBF’s across multiple
data sets. The p-value in yellow (light grey) background represents statistically significant difference with Holm-Bonferroni
corrections at the overall level of significance of 0.05.

Approaches Compared P-Value
RT vs Bag+RT 0.0134
RT vs Bag+MLP 0.4143
RT vs Bag+RBF 0.4143

The tests reveal that ensembles in general do not necessarily perform better than an adequate locality ap-
proach such as RTs. Bag+MLP and Bag+RBF obtained statistically similar performance to RTs. However,
Bag+RT, which is an ensemble of locality learning machines, obtains higher and statistically significantly
different Friedman ranking in terms of MAE from single RTs. The number of win/tie/loss of Bag+RT versus
RT is 10/1/2, further confirming the good performance of Bag+RTs.

Even though single RBFs use locality, they did not perform so well. A possible reason for that is that,
even though locality is used in the hidden nodes, the output nodes are based on linear functions.

5.2. Approaches Most Often Ranked First or Second in Terms of MAE, MMRE and PRED(25)

As a second step of the evaluation, the learning machines most often ranked as first or second in terms of
MAE, MMRE and PRED(25) were determined. Part of the reason to report results in terms of MMRE and
PRED(25) here is to allow comparison of our conclusions to previous works in the area, which are based on
these measures. However, verifying whether different results are achieved when using different performance
measures can also provide interesting insight on the behaviour of the approaches, as discussed in section 5.4.
Some results in terms of SA are also presented in order to provide more easily interpretable results.
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In order to check how valid this analysis is, we first compare the SA and effect size ∆ of the approach
ranked as first, second and last in terms of MAE for each data set. Table 8 shows these values. As we can
see, the approaches ranked first or second frequently achieve SA at least 0.20 higher (better) than the worst
approaches. That is reflected in the overall average SA considering all data sets, which improves from 0.2251
(approaches ranked last) to 0.4599 and 0.4712 (approaches ranked first and second, respectively). The effect
size ∆ in relation to random guess is frequently changed from small/medium to large, emphasizing the
importance of using higher ranked approaches. Wilcoxon rank-sum statistical tests using Holm-Bonferroni
corrections at the overall level of significance of 0.05 for comparing the approaches ranked first and second
against random guess detect statistically significant difference for all cases. The p-values are very low,
ranging from 1.6492 · 10−4 to 5.6823 · 10−19, confirming that the performance of these approaches is indeed
better than random guessing.

Table 11(a) shows the learning machines ranked most often as first or second in terms of MAE. The
results show that Bag+RTs, Bag+MLPs and RTs are singled out, appearing among the first two ranked
approaches in 27%, 23% and 23% of the cases, whereas all other approaches together sum up to 27% of
the cases. It is worth noting that Bag+RBF, which achieved high Friedman rank, does not appear so often
among the best two approaches. One might think that Bag+RBF’s rank for each data set could be more
median, but more stable. However, the standard deviation of the ranks (Table 9) is similar to Bag+RT’s
and Bag+MLP’s. So, the latter approaches are preferable over Bag+RBFs.

The table also shows that RTs are comparatively higher ranked for PROMISE than for ISBSG, achieving
similar ranking to bagging approaches for PROMISE, but lower ranking for ISBSG. Even though RTs
perform statistically similarly to Bag+MLPs and Bag+RBFs (section 5.1), the difference in performance is
statistically significant in comparison to Bag+RTs. Further Wilcoxon sign-rank tests to compare RTs and
Bag+RTs considering separately PROMISE and ISBSG data show that there is no statistically significant
difference considering PROMISE on its own (p-value 1), but there is considering ISBSG (p-value 0.0078).
So, approaches joining the power of bagging ensembles to the locality of RTs may be particularly helpful
for more heterogeneous data.

Table 11(b) shows the two learning machines most often ranked as first and second in terms of MMRE.
Both RTs and Bag+MLPs are very often among the first two ranked learning machines according to MMRE.
The trend can be observed both in the PROMISE and ISBSG data sets. For PROMISE, RTs or Bag+MLPs
appear among the first two ranked approaches in 70% of the cases, whereas all other learning machines
together sum up to 30%. For ISBSG, RTs or Bag+MLPs appear among the first two ranked in 62.5% of
the cases, whereas all other learning machines together sum up to 37.5%. Wilcoxon sign-rank tests show
that these two approaches perform similarly in terms of MMRE (p-value of 0.2439).

The analysis considering PRED(25) shows that both RTs and Bag+MLPs are again frequently among the
first two ranked (Table 11(c)), but Rand+MLP becomes more competitive. If we consider PROMISE data by
itself, ensembles such as Bag+MLPs are more frequently ranked higher than single learning machines, even
though that is not the case for ISBSG. However, a Wilcoxon sign-rank test across multiple data sets shows
that Bag+MLPs and RTs are statistically similar in terms of MMRE (p-value of 0.7483). Tests considering
PROMISE and ISBSG data separately do not find statistically significant difference either (p-value of 0.8125
and 0.3828, respectively).

As we can see, RTs and Bag+MLPs are singled out as more frequently among the best both in terms
of MMRE, PRED(25) and MAE and they perform statistically similarly independent of the performance
measure. Other approaches such as Rand+MLP and Bag+RTs become more or less competitive depending
on the performance measure considered. Bag+RBFs, differently from the Friedman ranking, is not singled
out, i.e., it is not frequently among the best. Our study also shows that Bag+RTs outperform RTs in terms
of MAE mainly for ISBSG data sets, which are likely to be more heterogeneous.

5.3. Magnitude of Performance Against the Best

In this section, we analyse how frequently an approach is worse than the best MAE approach in more
than 0.1 units of SA. There are 34 cases in which approaches are worse than the best MAE approach of
the data set in more than 0.1 units of SA. P-values of Wilcoxon tests to compare these approaches to
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Table 11: Number of data sets in which each learning machine was ranked first or second according to MAE, MMRE and
PRED(25). Learning machines never among the first or second are omitted.

(a) Acording to MAE

PROMISE Data ISBSG Data All Data
RT: 4 Bag+MLP: 4 Bag+RT: 7
Bag+RT: 4 Bag+RT: 3 RT: 6
Bag+MLP: 2 Bag+RBF: 3 Bag+MLP: 6

MLP: 3 MLP: 3
RT: 2 Bag+RBF: 3
RBF: 1 RBF: 1

(b) Accoding to MMRE

PROMISE Data ISBSG Data All Data
RT: 4 RT: 5 RT: 9
Bag + MLP: 3 Bag + MLP 5 Bag + MLP: 8
Bag + RT: 2 Bag + RBF: 3 Bag + RBF: 3
MLP: 1 MLP: 1 MLP: 2

Rand + MLP: 1 Bag + RT: 2
NCL + MLP: 1 Rand + MLP: 1

NCL + MLP: 1

(c) Acording to PRED(25)

PROMISE Data ISBSG Data All Data
Bag + MLP: 3 RT: 5 RT: 6
Rand + MLP: 3 Rand + MLP: 3 Rand + MLP: 6
Bag + RT: 2 Bag + MLP: 2 Bag + MLP: 5
RT: 1 MLP: 2 Bag + RT: 3
MLP: 1 RBF: 2 MLP: 3

Bag + RBF: 1 RBF: 2
Bag + RT: 1 Bag + RBF: 1

the best MAE are below 0.05 in 28 cases. If we apply Holm-Bonferroni corrections considering all the 34
comparisons, the difference is statistically significant in 20 out of 34 cases (59%). So, it is reasonable to
consider the number of times that each approach is worse than the best in order to evaluate its performance.

Table 12 shows how many times each approach is worse than the best MAE approach in more than 0.1
units of SA. As we can see, RTs and Bag+RTs are rarely worse than the best MAE approach in more than
0.1 SA. They are worse in only 1 in 13 data sets. Bag+MLPs, Bag+RBFs and MLPs behave slightly worse,
with the difference in SA higher than 0.1 SA in 3 data sets.

5.4. Discussion

Summarizing, we can see that Bag+RTs present a very good behaviour for SEE. They have higher
average (Friedman) rank, are more frequently among the best in terms of MAE and are rarely worse than
the best MAE approach of the data set in more than 0.1 units of SA. This is an example of how joining
the power of bagging ensembles to a good locality approach can help improving SEE. Bag+RTs were
particularly helpful to improve performance in terms of MAE for ISBSG data sets, which are likely to be
more heterogeneous. Such a behaviour provides part of the answer to RQ1: adequate ensemble approaches
benefiting from locality, such as Bag+RTs, are singled out as performing in general comparatively better than
single learning machines for SEE, including locality approaches such as RTs. These results also provide the
insight that future research on improving SEE using automated learning machines may benefit from further
exploiting the advantages of ensembles and locality together, contributing to answer RQ3.
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Table 12: Number of times that an approach is worse than the best MAE approach of the data set in more than 0.1 units of
SA.

Approaches Number of Times
RT, Bag+RT 1
Bag+MLP, Bag+RBF, MLP 3
Rand+MLP 5
RBF 8
NCL+MLP 10

The analysis also shows that, even though RTs perform worse than Bag+RTs in terms of MAE, they do
not perform poorly in comparison to other approaches. Their MAE is statistically similar to Bag+MLPs
and Bag+RBFs, showing that the power of ensembles on its own is not enough to generally outperform
adequate locality learning machines such as RTs, complementing the answer to RQ1. The comparisons
performed in this section are also partly related to RQ2, showing that the locality approach RT performs
well in comparison to other approaches and is rarely worse than the best performing approach in more than
0.1 units of SA.

The analysis from this section, together with the framework presented in section 4, provide an answer
to RQ4. As no approach is always the best independent of the data set, ideally, an organisation should
perform experiments following a principled framework in order to choose a model for their particular data
set. Nevertheless, if an organisation has no resources to perform such experiments, Bag+RTs are more likely
to perform comparatively well across different data sets and are rarely worse than the best approach for a
particular data set in more than 0.1 SA. Even though single RTs may perform slightly worse than Bag+RTs,
they do not perform bad in comparison to other approaches and may be used if the practitioners would like
to understand the rules used by the learning machine to perform estimations.

The conclusions above are mainly drawn based on MAE and SA, which are considered as more adequate
and reliable performance measures than MMRE and PRED(N). In terms of behaviour independent of the
performance measure used, RTs and Bag+MLPs are always singled out as being frequently first or second
ranked, whereas Bag+RT is less frequently among the best in terms of MMRE and PRED(25). So, in
terms of MMRE and PRED(25), ensembles cannot be considered as generally outperforming adequate
single learning machine approaches such as RTs. Such a difference in the evaluation based on MAE and
MRE-based measures gives us an interesting insight. It suggests that the slightly worse performance of RTs
and Bag+MLPs in comparison to Bag+RTs in terms of MAE may be related to the fact that RTs and
Bag+MLPs suffer more from underestimations. This issue should be further analysed as future work and
could be helpful for improving the performance of these approaches for SEE.

It is worth noting that previous works on ensembles have used mostly measures based on MRE [9, 8, 10].
One of the reasons for us to report results using MMRE and PRED(N) in addition to MAE and SA is to
compare our conclusions to the conclusions obtained by some of those works.

In terms of MMRE and PRED(N), even though our work provides a different (practically the opposite)
conclusion from Braga et al. [9], it does not necessarily contradict their reported results. Considering that
the best performances obtained by their ensembles and single learning machines is very similar in their
experiments, had statistical tests been done, their conclusion could possibly have been more similar to ours.

Another important point to be mentioned is that the bagging version used here is not the same version
used by Kultur et al. [8]. In Kultur et al.’s work, instead of taking the simple average of the outputs of the
base learning machines as the output of the ensemble, the outputs of the base learning machines are first
clustered using adaptive resonance theory. After that, the simple average of the estimations in the largest
cluster is considered as the output of the ensemble.

As Kultur et al.’s approach is not available as open source, we performed the following test to compare
Bag+MLPs with the best result that the bagging ensemble could produce should other scheme than the
simple average be used as the output of the ensemble. The best result was produced by making the output
of the ensemble as the best output produced by any of its base learning machines. This ideal ensemble can
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improve both MMRE, PRED(25) and MAE for several data sets, according to Wilcoxon sign-rank tests
considering the level of significance of 0.05 using Holm-Bonferroni corrections. So, Bag+MLPs still have
potential to be improved for SEE, in particular considering the choice of the base models to be used for
predictions. This is an additional insight (RQ3) provided by this section.

It is also worth making a note on the preprocessing of the data sets. As explained in section 3, data sets
were preprocessed using k-means for outliers removal. Outliers are examples different from usual and that
cannot be well estimated by the models generated. Experiments done using RTs and Bag+MLPs reveal
that the error obtained when attempting to use the models to estimate solely outlier projects is worse than
the average obtained using non-outlier examples, both in terms of MAE and PRED(25). Interestingly, the
error in terms of MMRE is not much affected. As MMRE tends to bias models towards underestimations
[21], these outliers are likely to be projects underestimated by the models.

We have also repeated the experiments using Bag+RTs, Bag+MLPs and RTs, but without performing
this part of the preprocessing, i.e., allowing the train/test sets to contain outliers. The experiments reveal
that the SAs obtained are considerably reduced. So, in practice, the use of a clustering approach such as
k-means is recommendable to remove outliers from the training sets and to identify whether a test example
is an outlier.

6. Comparison of Locality Approaches

This section concentrates mainly on answering RQ2: what locality approach is more adequate for SEE
tasks? In particular, how well does RT locality do in comparison to other locality approaches? On what
type of data sets? This research question is new to the current paper. The analysis presented in section 5
partly contributes to its answer by evaluating RT’s suitability in comparison to other approaches. In the
current section, we analyse different locality approaches not only in order to verify which of them is more
appropriate for SEE, but also to provide insight on improving SEE (RQ3). The approaches analysed are:
RTs, EM, k-means, SC and k-NN.

6.1. Number of Clusters Generated

Table 13 shows the average number of clusters generated by EM, k-means and SC. As we can see, EM
and SC tend to produce a single cluster in 5 and 4 out of 13 data sets, respectively. On the one hand, these
approaches can be considered to fail to correctly identify training examples with similar features in the SEE
domain. On the other hand, we could consider that they manage to identify when their type of locality is or
is not useful. As shown in Table 13, these approaches frequently produce a single cluster when data sets are
very small. K-means never produced less than 2 clusters because the number of clusters itself is a parameter
which was chosen among 2–5. RTs produce a single node in more than a third of the runs only for sdr, which
is a very small data set. The executions also reveal that EM sometimes produces empty clusters, i.e., even
though the empty cluster was created using the available training data, no training example is associated
to it when determining to which cluster the training examples belong. That happened 1–6 times for data
sets Org1, Org2, Org4–7.

6.2. Friedman Ranking

In order to evaluate the quality of the separation of data provided by the clustering approaches in
comparison to the locality provided by RTs and k-NN, the clustering algorithms were associated to RTs
as explained in section 4.1. If this scheme provides better performance than single RTs, it shows that the
corresponding clustering algorithm can be more beneficial to SEE than RTs by themselves.

The Friedman ranking of the approaches is shown in Table 14. The Friedman test detected no statistically
significant difference in the MAE of these approaches (statistic Ff = 0.2612 < F (4, 48) = 2.565). SC and
EM sometimes perform very similarly to RTs because they generate a single cluster, thus basically making
predictions based solely on a single RT. However, k-means always produces at least 2 clusters, obtaining
MAE legitimately similar to RT’s.
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Table 13: Average number of clusters – values in yellow (light grey) represent more than 1/3 of runs with less than two clusters.

Data Set Number of Projects EM K-Means SC
Cocomo81 63 3.10 2.20 1.90
Nasa93 90 6.13 3.67 1.53
Nasa 58 4.67 4.03 3.27
Sdr 12 1.00 2.10 5.00
Desharnais 74 2.90 2.00 2.00
Org1 75 2.70 2.00 1.93
Org2 32 1.10 2.83 1.73
Org3 158 2.76 2.03 1.00
Org4 117 3.40 3.03 2.00
Org5 20 1.70 2.13 1.26
Org6 21 1.06 2.20 1.03
Org7 21 1.20 2.00 1.03
OrgAll 444 4.03 2.07 2.00

Table 14: Friedman ranking of locality approaches.

Rounded Avg. Rank Avg. Rank Std. Dev. Rank Approach
3 2.77 1.30 RT

2.77 1.64 K-NN
3.00 1.15 K-Means
3.23 1.42 SC
3.23 1.69 EM

6.3. Approaches Most Often Ranked First or Second in Terms of MAE

Table 15 shows the approaches most often ranked as first or second in terms of MAE, separated according
to PROMISE and ISBSG, and according to data set size. Interestingly, the approaches do not perform so
differently from each other depending on the size of the data set. Clustering approaches manage to be among
the best in a similar frequency to RTs and k-NN, including k-means, which always divides the training data
in at least two clusters. It is worth noting, though, that k-means would be more likely to perform worse for
smaller data sets if the learning approaches used for each training data cluster were not based on locality.

When considering either PROMISE or ISBSG data sets, the approaches present a clearer difference in
behaviour. Approaches such as k-NN or k-means tend to be more frequently among the best for ISBSG,
which is likely to be more heterogeneous, whereas RTs tend to be more frequently among the best for
PROMISE.

Table 15: Number of data sets in which each locality approach was ranked first or second according to MAE.

PROMISE Data ISBSG Data Less Than 50 Projects More Than 50 Projects All Data
RT: 4 K-NN: 5 EM: 3 RT: 4 RT: 6
SC: 2 K-Means: 4 RT: 2 K-NN: 4 K-NN: 6
EM: 2 EM: 3 K-NN: 2 K-Means: 3 K-Means: 5
K-means: 1 RT: 2 K-Means: 2 SC: 3 EM: 5
K-NN: 1 SC: 2 SC: 1 EM: 2 SC: 4

6.4. Magnitude of Performance Against the Best

There are 21 cases in which the approaches analysed (RT, EM, k-means, SC and k-NN) have performance
worse than the best MAE approach of the data set in more than 0.1 units of SA. Wilcoxon tests to verify
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the statistically significance retrieve p-value less than 0.05 for 16 out of these 21 cases. Holm-Bonferroni
corrections lead to 9 (43%) cases being statistically significantly different. The number of times that each
approach is worse than the best in more than 0.1 SA is shown in Table 16.

Table 16: Number of times that an approach is worse than the best MAE approach of the data set in more than 0.1 units of
SA.

Approaches Number of Times
RT 2
EM 4
K-NN, SC 5
K-Means 6

As we can see, even though k-means’ and k-NN’s Friedman ranking in terms of performance is similar
to RT’s and all these approaches appear overall frequently among the best two in terms of MAE, k-means
and k-NN are less reliable. K-means’ SA is more than 0.1 worse than the best approach in 6 out of 13 data
sets, and k-NN’s is worse in 5 data sets. RTs, on the other hand, are worse in more than 0.1 units of SA
only in 2 data sets.

6.5. Discussion

This section shows that EM and SC sometimes fail to separate training examples by identifying their
similar features. However, if using them for creating new approaches that are not required to always divide
the data into different clusters, we could consider these approaches to be able to detect when their type of
locality is helpful. As the approaches analysed in this section are considered all statistically similar across
multiple data sets, all of them could be further exploited in future work to improve SEE. The clusters
provided by k-means and the locality provided by k-NN may be particularly helpful for more heterogeneous
data sets. However, when these approaches are not beneficial, they can cause SA worse than the best in
more than 0.1 units. RTs are more rarely worse than the best in more than 0.1 units, being more reliable
than the other approaches analysed.

This analysis provides an answer to RQ2 by analysing the adequacy of different locality approaches to
SEE, how well RTs do in comparison to other approaches and on what type of data set the approaches
are likely to be more useful. Even though RTs have several features likely to be beneficial to SEE, other
approaches are also beneficial. The study also provides insight on how to improve SEE (RQ3). It shows that
future research for improving SEE should try to benefit from different types of locality, as all the approaches
analysed here can be potentially useful in different ways.

7. Insight Based on Successful Ensemble and Locality Approaches

Sections 5 and 6 give some insights on how to improve SEE and some directions for future work. For
instance, they highlight the importance of both ensembles and locality, showing that future research may
particularly benefit from combining the two to improve SEE through automated approaches. They also show
that different types of locality can provide different benefits. The current section explores these issues further.
Section 7.1 reproduces the analysis from our previous paper [56] on the benefit of the hierarchy of features
provided by RTs in comparison to correlation-based feature selection. Section 7.2 is new to this paper and
analyses different strategies of combining ensembles and locality, and their potential benefits. As explained
in section 1, the key contribution of this paper is not in a new algorithm, but better understanding/insight
based on experimental studies.

7.1. Analysis of RTs and Feature Selection

As explained in section 2.2, using the relative importance of features for the predictions, as done by
RTs, may be particularly beneficial to SEE. In this section, we analyse whether the separation of features
provided by RTs is important only as a correlation-based feature selector or whether the relative importance

22



of features is key to the performance of RTs. If the relative importance is very beneficial, other approaches
which currently perform similarly to RTs might be improved by incorporating hierarchy of features.

A correlation-based feature selection (CFS) method [57] with greedy stepwise search [13] was used in
the analysis. This method was chosen because it uses a similar idea to information gain in the RTs to
check what features are more significant. It additionally checks the correlation among features themselves.
Greedy stepwise search was used because it allows ranking features. The main reason for using this CFS
is its similarity to the working of RTs, with the key difference that simply using its selected features as
inputs for a learning machine does not provide it with a hierarchy of relative importance of the features. So,
CFS is particularly helpful for understanding the behaviour of RTs and how beneficial its use of the relative
importance of features is to SEE. This filter method was also used instead of a wrapper method so that the
same set of features can be used for different models, as explained bellow.

As a first step, we ran all the experiments using the framework presented in section 4, but after performing
feature selection. This study showed that feature selection by itself did not change the fact that RTs and
Bag+MLPs were usually among the best in terms of MMRE, PRED(25) and MAE. The approaches that
obtained most improvements in performance were Bag+RBF, RBF and NCL. However, the improvements
were not large even for these approaches. Bag+RBF’s SA average considering all data sets was 0.0522
higher, RBF’s was 0.0533 and NCL’s was 0.0484 higher than when not using features selection.

As a second step for this analysis, we compared the ranking of features given by feature selection against
the features appearing in more than 50% of the RTs until their third level, for each data set. An example
is shown in Table 17. The results show that: (1) the RTs do not use all the features selected by CFS, even
though they usually use at least one of these; (2) the RTs use some features not selected by CFS; and (3)
the RTs put higher ranked features according to CFS in higher levels of the tree, confirming the use of the
relative importance of features.

Table 17: CFS ranking and RT features relative importance for cocomo81: features ranking, first tree level in which the feature
appeared in more than 50% of the trees, and percentage of the trees in which it appears in that level. Features bellow the
horizontal line are not selected by CFS.

Features ranking Tree level % of trees
LOC Level 0 100.00%
Development mode
Required software reliability Level 1 90.00%
Modern programing practices
Time constraint for cpu Level 2 73.33%
Data base size Level 2 83.34%
Main memory constraint
Turnaround time
Programmers capability
Analysts capability
Language experience
Virtual machine experience
Schedule constraint
Application experience Level 2 66.67%
Use of software tools
Machine volatility
Process complexity

So, feature selection by itself was not able to change the relative performance of different learning
approaches. However, instead of simply using a subset with the most important features, RTs gave more
importance to more important features as shown by the feature ranking, being able to achieve comparatively
good performance and suggesting that hierarchy of features is important when working with ML for SEE.
This is an insight on how to improve SEE (RQ3), specially considering improvements in other learning
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machines than RTs, which might be improved by incorporating hierarchy of features.
It is also interesting to verify which features are usually at the top level of the hierarchy produced by

the RTs, as these are considered to be the most influential features for the SEEs. The number of lines of
code (LOC) and the functional size are the features that most frequently appear at the top level. Table
17 shows an example for cocomo81, for which 100% of the RTs used LOC at the top level (level 0). It is
reasonable that this feature appears at the top of the hierarchy, as larger programs require involvement of
many programmers, increasing the communication complexity and effort.

Nasa93 was the only data set where another feature than LOC or functional size appeared at the top
level in more than 50% of the RTs. For this data set, 100% of the RTs used the feature CPU time constraint
at the top level. Interestingly, even though nasa and nasa93 are two data sets from the same organisation,
the RTs did not use the same feature at the top level for these two data sets. For nasa, 96.67% of the RTs
used LOC at the top level. In order to better understand why this happened, we analysed the values of
the feature CPU time constraint for these two data sets. As shown in Table 18, the standard deviation of
this feature for nasa93 is much higher than that for nasa. A Levene test [58] shows that the difference in
variance is statistically significant (p-value of 0.0036). This indicates that CPU time constraint varies more
for nasa93 than for nasa. Very different CPU time constraints are likely to directly affect the difficulty of
the software development, thus considerably influencing its required effort. For example, extra high CPU
time constraint should require much more effort than low CPU time constraint. So, it is reasonable that
this is considered as an important feature for nasa93.

Table 18: CPU time constraint information.
Data Set Minimum Maximum Avg Std. dev
Nasa93 1.00 1.66 1.133 0.203
Nasa 1.00 1.66 1.076 0.138

It is also worth noting that the non-functional system features that are becoming more important in the
modern systems could also affect the hierarchy provided by the RTs. For example, as writing secure code
becomes more important for some companies, security-related features may raise in the hierarchy.

7.2. Combining Ensembles and Locality into Tailored Approaches

Section 5 shows that Bag+RT is a way to join the power of locality and automated ensembles to improve
SEE over several other approaches. This is very encouraging for future research in the area of automated
ensembles and locality for SEE. The reason is that even though Bag+RTs present several features that
motivate their usage for SEE, tailored but automated approaches building upon the behaviour of this and
other approaches should be able to improve performance even further. In this section, we analyse the
potential of two types of combinations of locality and ensembles tailored for SEE, with the aim of providing
more insight on how to improve SEE.

RTs and Bag+MLPs are two approaches that did considerably well in section 5, even though not so well
as Bag+RT. As RT is based on locality and Bag+MLPs is based on ensembles, we investigate the effect of
two types of approach:

1. Using ensembles to combine several different learning machines which are based on feature rules,
similarly to the locality of the RTs. In this case, ensembles are used at a higher level and locality
at a lower level in an attempt to improve RTs. We call this approach “Mult”, for multiple types of
base learning machines. The base learning machines were RT, decision table, conjunctive rule and M5
Rules [13].

2. Using a clustering approach as a locality approach and creating a Bag+MLP for each training set
cluster. In this case, a locality approach (k-means) is used at a higher level and ensembles at a lower
level in an attempt to improve Bag+MLP. We call this approach “Clusb”, for cluster bagging.

The main issue to be investigated here is when ensembles and locality at a higher or lower level are more
likely to provide improvements for SEE, giving directions for future work.
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Table 19 shows the improvement in SA obtained by Mult in comparison to RTs in yellow (light grey).
As we can see, the improvements still need to be increased in future work, being usually close to or better
than 0.05 SA, but lower than 0.1 SA. The insight provided here is regarding the relationship between the
improvement and data set size. The correlation between them is -0.3337. This is a reasonable negative
correlation, showing that larger improvements may be achieved for smaller data sets. Several other features
of the data sets are likely to also have some influence in the performance of the algorithms, making them
better or worse for each specific data set. However, we can see that the size is a feature with considerable
influence in this case, suggesting that such tailored ensembles at a higher level can be particularly helpful
for smaller data sets.

Table 19: Difference in SA between Mult and RTs. Cells in yellow (light grey) highlight the cases where Mult provides higher
SA.

Mult’s SA minus RT’s SA Data Set Size Data Set
-0.090502023 63 Cocomo81
-0.083715479 90 Nasa93
-0.083664355 58 Nasa
-0.025044093 444 OrgAll
-0.025036362 158 Org3
0.0187048882 21 Org6
0.0463227775 20 Org5
0.0481770822 75 Org1
0.0570139663 21 Org7
0.0593049005 117 Org4
0.0657496405 32 Org2
0.0780584515 74 Desharnais
0.0872040493 12 Sdr

It is worth noting, though that the effect of Mult can be detrimental when the data set is large. This
shows that the base learning machines used in addition to RTs can be particularly good or detrimental
depending on the data set, hindering Mult’s performance in the latter case.

Table 20 shows the improvements obtained by Clusb in relation to Bag+MLPs (results for sdr were
omitted as this data set is too small for clustering). Again, when there are improvements, they are smaller
than 0.1 SA, but mostly close to or better than 0.05 SA. The correlation between improvement and data set
size is 0.3055. Again, this is a reasonable amount of correlation considering SEE, and indicates that locality
at a higher level can be mainly advantageous for larger data sets. As shown in Table 20, Clusb can be even
detrimental for smaller data sets.

So, this section shows that approaches using tailored ensembles at a higher level may be particular useful
for improving performance on smaller data sets, whereas approaches using locality at a higher level may be
particularly useful for improving on larger data sets. Future work on joining ensembles and locality may
benefit from exploiting that.

8. Threats to Validity

Internal validity regards to establishing that a certain observable event was responsible for a change in
behaviour. It is related to the question “Is there something other than the treatment that could cause the
difference in behaviour?” [59]. In ML, it is essential to use a principled experimental framework. In our
study, we followed a framework that joins the power of statistical tests to the importance of the magnitude
of the differences in performance, besides considering parameters selection as an explicit step in order to
deal with internal validity.

Construct validity regards to accurately naming our measures and manipulations [59]. MMRE and
PRED(25) can be biased and were used in part of the work to allow comparison of our conclusions to
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Table 20: Difference in SA between Clusb and Bag+MLPs. Cells in yellow (light grey) highlight the cases where Clusb provides
higher SA.

Clusb’s SA minus Bag+MLP’s SA Data Set Size Data Set
-3.532254646 20 Org5
-1.407062325 32 Org2
-0.096944035 58 Nasa
-0.078153916 21 Org7
-0.062928635 74 Desharnais
-0.062255486 21 Org6
-0.017828149 75 Org1
0.0281382156 63 Cocomo81
0.0460938455 158 Org3
0.0684082225 117 Org4
0.0805119301 90 Nasa93
0.0911181081 444 OrgAll

previous works based on MRE measures. However, we based our conclusions mainly on MAE, which is a
non-asymmetric and unbiased performance measure. SA is also an unbiased measure recently proposed by
Shepperd and Mc Donell [21] and was used in order to provide more easily interpretable results.

External validity regards to generalizing the study’s results outside the study to other situations [59].
Typical external validity issues in ML are related to the use of few samples. In the present study, we used
thirteen different data sets containing a large variety of projects from different organisations and countries
in order to deal with this issue. This number is more than twice the number of data sets used in previous
work on automated ensembles for SEE, besides considering both PROMISE and ISBSG data sets.

9. Conclusions

This paper presents a principled and comprehensive evaluation of ensembles of learning machines for
SEE, an analysis of different locality approaches, an experimental framework for evaluating SEE models
and several insights on improving SEE. In this section, we revisit the research questions and summarize the
main content of their answers.

RQ1: Do existing automated ensembles of learning machines generally improve effort estimations given
by single learning machines, including potentially adequate locality approaches such as RTs? Which of them
would be more useful?

When considering MAE and SA as performance measures, Bag+RTs is shown to perform well. It is highly
ranked in terms of performance across multiple data sets, it is frequently among the best approaches for
each data set, and rarely performs considerably worse than the best approach for any data set. Overall, it
performs better than several other approaches, including RTs. This is an inspiring result for future work
on joining the power of ensembles to locality based on automated approaches. Bag+MLPs, which is an
ensemble approach not benefiting from locality, performed similarly to single RTs.

RQ2: What locality approach is more adequate for SEE tasks? In particular, how well does RT locality
do in comparison to other locality approaches? On what type of data sets?

RTs, EM, k-means, SC and k-NN were considered all statistically similar across multiple data sets. So, all
of them could be further exploited in future work to improve SEE. The clusters provided by k-means and
the locality provided by k-NN may be particularly helpful for more heterogeneous data sets. However, when
k-means and k-NN are not beneficial, they can get very poor performance. RTs are more reliable than the
other approaches analysed. EM and SC sometimes fail to separate projects into more than one cluster.
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RQ3: What insight on how to further improve software effort estimation can we gain by analysing
competitive ensemble and locality approaches?

Our paper provides several insights, which are based on extensive experimentation and analyses:

• Bag+RTs do particularly well in comparison to several other approaches, showing that comparatively
well performing fully automated approaches based on ensembles are possible and could probably be
further improved in terms of magnitude of performance by being tailored for SEE.

• Single RTs and Bag+MLPs perform slightly worse than Bag+RTs, but still perform well in comparison
to other approaches. The analyses show that both locality and ensembles can be beneficial to SEE,
and that joining these two types of approach can improve results further. Future work on improving
SEE through automated approaches may benefit from exploiting that further.

• Bag+MLP has room for improvements in terms of the choice of base model to be used for performing
predictions.

• When considering MMRE and PRED(25), which are based on the asymmetric measure MRE, RTs and
Bag+MLPs are singled out as frequently highly ranked. Bag+RTs perform less well in terms of these
measures. So, the slightly worse performance of RTs and Bag+MLPs in comparison to Bag+RTs in
terms of MAE may be related to the fact that RTs and Bag+MLPs suffer more from underestimations.
This issue should be further analysed as future work and could be helpful for proposing improvements
of these approaches for SEE.

• Future work on locality may benefit not only from “informed” locality learnt based on the target
effort of training examples, such as RT’s locality, but also from clustering approaches such as k-means
and traditional approaches such as k-NN. Care must be taken, though, as k-means and k-NN are less
reliable, possibly performing particularly bad for databases to which they are not beneficial.

• RT’s locality places more important features in higher levels of the trees, which is part of the reason
for their better performance. The benefits of such a hierarchy of features go beyond simply using a
correlation-based feature selector. So, feature hierarchy might be used for improving SEE where RTs
are not employed.

• Approaches using tailored ensembles at a higher level may be particular useful for improving perfor-
mance on smaller data sets. Approaches using locality at a higher level may be particularly useful
for improving on larger data sets. Future work on joining ensembles and locality may benefit from
exploiting that.

RQ4: How to evaluate/choose ML models for SEE?

An experimental framework was proposed, considering the choice of approaches, evaluation procedure and
parameters explicitly. Evaluation of different approaches across different data sets is recommended to follow
three steps based on (1) Friedman ranking and test, (2) identification of the approaches among the best
and the characteristics of the data sets to which they tend to perform better, and (3) how frequently the
approaches perform considerably worse than the best. As no approach is always the best for all data
sets, ideally, an organisation should perform experiments following a principled framework considering its
available data in order to choose a ML model. However, if an organisation has no resources to perform
such experiments, Bag+RTs are recommended, as they perform comparatively well across a large range
of data sets, and rarely perform worse than the best approach for any data set in more than 0.1 units of
SA. Even though RTs perform slightly worse, they could also be used should the software manager wish to
easily understand the rules underlying the model’s behaviour. In summary, this work provides an extensive
analysis and several insights that can be used by future works on improving SEE.
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