
On-line Bagging Negative Correlation Learning

L. Minku and X. Yao

Abstract— Negative Correlation Learning (NCL) has been
showing to outperform other ensemble learning approaches in
off-line mode. A key point to the success of NCL is that the
learning of an ensemble member is influenced by the learning
of the others, directly encouraging diversity. However, when
applied to on-line learning, NCL presents the problem that part
of the diversity has to be built a priori, as the same sequence
of training data is sent to all the ensemble members. In this
way, the choice of the base models to be used is limited and the
use of more adequate neural network models for the problem
to be solved may be not possible. This paper proposes a new
method to perform on-line learning based on NCL and On-line
Bagging. The method directly encourages diversity, as NCL,
but sends a different sequence of training data to each one of
the base models in an on-line bagging way. So, it allows the
use of deterministic base models such as Evolving Fuzzy Neural
Networks (EFuNNs), which are specifically designed to perform
on-line learning. Experiments show that on-line bagging NCL
using EFuNNs have better accuracy than NCL applied to on-
line learning using on-line Multi-Layer Perceptrons (MLPs) in
4 out of 5 classification databases. Besides, on-line bagging NCL
using EFuNNs manage to attain similar accuracy to NCL using
off-line MLPs.

I. I NTRODUCTION

On-line learning has been showing to be very useful
for a growing number of applications in which training
data is available continuously in time and/or there are time
and space constraints. Examples of such applications are
industrial process control [1], computer security, intelligent
user interfaces and market-basket analysis [2], information
filtering [3], prediction of conditional branch outcomes in
microprocessors [4] and RoboCup [5].

On-line learning algorithms process each training instance
once “on arrival” without the need for storage and repro-
cessing, and maintain a current hypothesis that reflects all
the training instances so far [6]. In this way, the learning
algorithms take as input a single labelled training instance
as well as a hypothesis and output an updated hypothesis [4].

Recently, ensembles of classifiers have been successfully
used to improve the accuracy of single classifiers in on-line
learning [7], [6], [4]. Negative Correlation Learning (NCL)
[8], [9] is a ensemble learning method that has been showing
to outperform other ensemble learning methods in off-line
mode [10], [11], [12], including bagging [13] and boosting
[14]. A key point to the success of NCL is that the learning
of an ensemble member is influenced by the learning of the

Fernanda L. Minku and Xin Yao are with the Centre of Excellence
for Research in Computational Intelligence and Applications (CERCIA),
School of Computer Science, The University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK (emails:{F.L.Minku, X.Yao}@cs.bham.ac.uk).

This work was supported by the United Kingdom Government andthe
School of Computer Science of the University of Birmingham in the form
of an Overseas Research Students Award (ORSAS) and a School Research
Scholarship.

others, directly encouraging diversity. This key point makes
NCL a potentially powerful approach to on-line learning.

However, when applied to on-line learning, NCL presents
the problem that part of the diversity has to be builta
priori , as the same sequence of training data is sent to all
the ensemble members. In this way, the choice of the base
models to be used is limited and the use of more adequate
neural network models for the problem to be solved may be
not possible.

This paper proposes a new method to perform on-line
learning based on NCL and On-line Bagging [6]. The method
directly encourages diversity, as NCL, but sends a different
sequence of training data to each one of the base models in
an on-line bagging way. So, it allows the use of determin-
istic base models such as Evolving Fuzzy Neural Networks
(EFuNNs) [15], which are specifically designed to perform
on-line learning.

Experiments show the importance of a wider range of
base model choices and reveal that on-line bagging NCL
using EFuNNs have better (lower) classification error than
NCL applied to on-line learning using on-line Multi-Layer
Perceptrons (MLPs) in 4 out of 5 classification databases
from the UCI Machine Learning Repository [16]. Besides,
on-line bagging NCL using EFuNNs manage to attain similar
classification error to NCL using off-line MLPs, even being
able to use each training instance only once, while off-line
MLPs can use the whole training set a certain number of
epochs.

This paper is further organized as follows: section II
presents related work, section III presents the proposed ap-
proach, section IV presents the experiments done to show the
importance of the proposed method and section V presents
the conclusions of the work.

II. RELATED WORK

Recently, ensemble learning methods have been showing
to outperform single classifiers in on-line learning. Section
II-A presents some successful on-line ensemble classification
methods existent in the literature and explain how the method
proposed in this paper can overcome their weaknesses.
Section II-B contains some comments about the base models
used in this work.

A. On-line Ensemble Learning

Some of the on-line ensemble learning methods existent
in the literature send the same sequence of data to all the
ensemble members. These methods present the problem that
part (or all) of the model diversity has to be builta priori
rather than emerging from data itself. In many cases, these
methods consist of different ways of combining the ensemble



members [17], [18] or finding alternatives to create different
ensemble members when the same sequence of training data
is sent to all of them [19], [20]. These methods, except NCL,
perform independent training of the ensemble members.

Nevertheless, ensemble learning methods which directly
encourage diversity by considering the interaction among
all ensemble members during the learning, such as NCL,
have been showing to outperform other ensemble learning
approaches in off-line mode [10], [11], [21]. So, ensemble
learning methods in which the ensemble members are not
trained independently have a potential advantage over meth-
ods which perform independent training in on-line mode.

Some other on-line ensemble learning methods existent
in the literature do not send the same sequence of training
data to all the ensemble members. Instead, they consist of
different ways of sending training data to the ensembles
members, so that diversity does not have to be partly or
completely designeda priori. Most of these methods are on-
line versions of bagging [13] and boosting [14].

An example is Modified Adaptive Boosting (MadaBoost)
[22]. This method is a modification of AdaBoost [14] which
can be used in the filtering framework without having ex-
tremely high execution time. This modification bounds the
weight that is attributed to the training instances, reducing
the time necessary for the filter to choose an example to be
used in the learning process. The weighting update scheme
is also slightly modified, in order to obtain a formal proof
of convergence to MadaBoost. This method can reduce
considerably the execution time of AdaBoost in the filtering
framework and, at the same time, obtain similar or better
generalization.

Two notable on-line ensemble learning methods for classi-
fication are On-line Bagging and On-line Boosting [6]. On-
line bagging is based on the fact that, when the number
of training instances tends to infinite in off-line bagging,
each ensemble memberi containsKi copies of each of
the original training instances, where the distribution ofKi

tends to aPoisson(1) distribution. So, in on-line bagging,
whenever a training instance is available, it is presented
Ki times to each ensemble memberi, whereKi is drawn
from a Poisson(1) distribution. The classification is done
by unweighted majority vote, as it is done in Bagging.

On-line boosting works in a similar way to on-line bag-
ging, but it uses aPoisson(γd) distribution. The parameter
γd associated to an instanced is increased when presented to
the next ensemble member if the current ensemble member
misclassifies the instance. Otherwise, it is decreased. In this
way, γd has the same role as the weight of the instance
d in AdaBoost. The on-line boosting algorithm gives the
instances misclassified by one stage (one classifier) half the
total weight in the next stage and the correctly classified
instances are given the remaining half of the weight. To use
the system, the classification made by the whole ensemble
is by weighted majority vote, with weights based on the
accuracy of the ensemble members.

Both on-line bagging and boosting are able to get better

generalization than a single classifier when their off-linecor-
respondent algorithms also can. Very similar on-line bagging
and boosting methods were also proposed in [4].

The on-line approaches based on bagging and boosting
present some of the problems that bagging and boosting
present. For example, diversity among the ensemble members
is very important to produce successful ensembles [23].
However, as on-line bagging is an approximation of bagging,
the ensemble members are also created independently. So,
there is no warranty that they will be enough diverse to
produce an ensemble with good accuracy.

The ensemble members of the on-line methods based on
boosting have some influence from the others. However,
the first ensemble members trained are not influenced by
the last ones and diversity is not directly encouraged. Be-
sides, boosting algorithms tend to overfit training instances
[24]. According to [25], this happens because the boosting
method to update the probabilities associated to each train-
ing instance may over-emphasize noisy training instances.
Besides, the classifiers created by boosting are combined
using weighted voting. Previous work [26] has shown that
optimizing the combining weights can lead to overfitting,
while an unweighted voting scheme is generally robust to
overfitting.

NCL is an ensemble learning method that can be applied to
on-line learning. In this method, the training of an ensemble
member is influenced by the others, directly encouraging
diversity through the use of a penalty correlation term in
the error function of the base model learning algorithm. In
off-line mode, ensembles which directly encourage diversity
considering the interaction among all the ensemble members
during the learning [10], [11], [21] have been showing to
outperform other ensemble learning methods such as bagging
and boosting. So, this is a potentially powerful advantage of
NCL over the other on-line ensemble methods existent in
the literature. The negative correlation among the ensemble
members and the use of unweighted voting also makes NCL
robust in relation to overfitting.

Recently, NCL has been applied to incremental learning1

[27], showing to be a promising approach in this area.
However, when applied to on-line learning, NCL presents
the problem that part of the diversity has to be builta
priori , as the same sequence of training data is sent to all
the ensemble members. In this way, the choice of the base
models to be used is limited and the use of more adequate
neural network models for the problem to be solved may
be not possible. The method proposed in this paper can
overcome this problem, taking advantage of the NCL features
to overcome the problems of the other methods existent in
the literature and allowing the choice of a wider range of
base models, including deterministic classifiers.

1We consider that an incremental learning algorithm can learn training
data gathered in several batches, instead of learning each example separately.



B. Base Models

In this work we use two different base models. One of
them is Multi-Layer Perceptrons (MLPs) [28] and the other
is Evolving Fuzzy Neural Networks (EFuNNs) [15].

The algorithm used to train the MLPs is the stochastic
back-propagation [29]. Some authors refer to this algorithm
as on-line back-propagation. It is important not to confuse
the term on-line learning used in this work with the term
on-line learning related to the back-propagation algorithm.
In the later, the term is used to indicate that the weights are
updated right after the presentation of each training instance.
However, the whole training set can be presented several
times to the neural network. In order to avoid confusion, we
will not refer to the stochastic back-propagation algorithm as
on-line back-propagation in this work.

Stochastic back-propagation can be applied to perform
both on-line and off-line learning. In on-line learning, each
training instance has to be processed only once and then dis-
carded. So, it is possible to use only 1 epoch for learning. We
will refer to the stochastic back-propagation which uses only
1 epoch as on-line stochastic back-propagation. It would be
possible to present each training instances a certain number
of times “on-arrival”, as it was done by [30]. However, as
it is commented in section IV-A, this does not improve the
resulting ensemble’s classification error.

EFuNNs are neural network models specifically designed
to perform on-line learning. They are fast (only one pass
through the training examples is necessary), local and con-
structive. Local and constructive learning is very important
to avoid catastrophic forgetting, which problem known for
making on-line learning more challenging.

EFuNNs have a five-layer architecture. The first layer
represents the input vector, the second represents the fuzzy
quantification of the input vector, the third represents the
associations between fuzzy input space and fuzzy output
space, the fourth represents the fuzzy quantification of the
output vector and the fifth represents the output vector.

Learning occurs at the rule nodes layer. Each noderj of
this layer is represented by two vectors of connection weights
(W1(rj) and W2(rj)). W1 represents the coordinates of the
nodes in the fuzzy input space and it is adjusted through
unsupervised learning.W2 represents the coordinates of the
nodes in the fuzzy output space and it is adjusted through
supervised learning. The learning rules are the following:

• W1(rj) = W1(rj) + lr1(rj) ∗ (xf (d) −W1(rj))
• W2(rj) = W2(rj) + lr2(rj) ∗ (tf (d)−A2) ∗A1(rj)

where:xf (d) andtf (d) are the fuzzy input and fuzzy output
vectors of the training patternd; lr1(rj) and lr2(rj) are the
learning rates for theW1 andW2 weights of the noderj at
a particular time during the learning;A2 is the fuzzy output
activation vector andA1(rj) is the activation value of the
rule noderj . The learning rate of a node can be the inverse
of the number of training patterns accommodated so far by
that node.

The EFuNN learning algorithm is briefly described below.
For more details, it is recommended to read [15].

Algorithm 1 EFuNN Learning Algorithm
————————————————————————
Inputs: current EFuNN, training patternd, number of
training patterns presented so far and training parameters
(number of membership functions; type of membership
functions; initial sensitivity thresholdS of the nodes, which
is also used to determine the initial radius of the receptive
field of a noderj when it is created (R(rj) = 1 − S);
error thresholdE; aggregation parameterNagg; pruning
parametersOLD and Pr; m-of-n value, which is the
number of highest activation nodes used in the learning;
maximum radius of the receptive fieldMrad; rule extraction
thresholdsT 1 andT 2).
Output: updated EFuNN.

1) If this is the first learning of EFuNN, set the first
rule noder0 to memorized: W1(r0) = xf (d) and
W2(r0) = tf (d).

2) Else

2.1 Calculate the activationsA1 of all rule nodes,
e.g.,A1 = 1−D(W1(rj), xf (d)), whereD is a
distance measure.

2.2 Select the rule noderk that has the smallest dis-
tanceD(W1(rk), xf (d)) and that has activation
A1(rk) >= S(rk). In the case ofm-of-nlearning,
selectm nodes instead of just one node.

2.3 If this node does not exist, create a new rule node.
2.4 Else

2.4.1 Determine the activationA2 of the output
layer and the normalized output errorErr =
subabs(t(d), Fef )/Nout, where t(d) is the
desired output,Fef is the obtained output and
Nout is the number of nodes of the output
layer.

2.4.2 If Err > E, create a new rule node.
2.4.3 Else, apply the learning rules toW1(rk) and

W2(rk) (in the case ofm-of-n learning, the
rules are applied to them rule nodes).

2.5 Apply aggregation procedure after the presenta-
tion of Nagg patterns.

2.6 Update the parametersS(rk), R(rk), Age(rk)
and TA(rk). TA(rk) can be, for example, the
sum of the activationsA1 obtained for all exam-
ples thatrk accommodates.

2.7 Prune rule nodes according toOLD andPr.
2.8 Extract rules according toT 1 andT 2.

————————————————————————

III. O N-LINE BAGGING NCL

This section proposes a new on-line ensemble learning
method called on-line bagging NCL. As it was discussed
in section II-A, this method is able to take advantage of the
NCL strong points and, at the same time, overcome the NCL
problem that part of the diversity has to be builta priori,
which limits the choices of base models to be used.

On-line bagging NCL uses a penalty term in the error
function to be optimized by the neural network learning



algorithm. In the same way as in NCL, the penalty term is
used to penalize positive correlation of errors from different
neural networks, i.e. , to encourage negative correlation
between the error of an ensemble member and the error of
the rest of the ensemble.

Let F (d) be the arithmetic average of the ensemble
member outputs for the training patternd:

F (d) =
1

M

M
∑

i=1

Fi(d) , (1)

whereFi(d) is the output of theith individual neural network
on the training patternd.

If the error function used by the base models is the mean
squared error, the errorEi for the ith ensemble member on
the training patternd can be adapted in the following way
to accommodate the penalty term:

Ei(d) =
1

2
(Fi(d)− t(d))2 + γpi(d) , (2)

wheret(d) is the target output of the training exampled, pi
is the correlation penalty function andγ is a parameter used
to adjust the strength of the penalty. The penalty functionpi
may use the following equation:

pi(d) = (Fi(d)− F (d))
∑

i6=j

(Fj(d)− F (d)) . (3)

The partial derivative ofEi(d) with respect to the output
of the networki on thedth training pattern is:

∂Ei(d)

∂Fi(d)
= Fi(d)−t(d)−γ

[

2

(

1−
1

M

)

(Fi(d) − F (d))

]

.

(4)
This partial derivative can be used to perform the weight ad-
justments of the neural networks that belong to the ensemble.

Consider an ensemble composed by on-line base models
which use error functions adapted to the use the penalty
function. Similarly to on-line bagging, on-line bagging NCL
presents each training instanceki times to the on-line learn-
ing algorithm, whereki is drawn from aPoisson(1) distri-
bution. However, before the learning of a training example
d, the arithmetic average of the outputs of the ensemble
members ond has to be calculated, in order to be used by the
on-line learning algorithms of the ensemble members. The
algorithm is presented below:

Algorithm 2 On-line Bagging NCL
————————————————————————
Inputs: ensemble of neural networksh; training exampled;
strength parameterγ; on-line learning algorithmLo which
uses an error function adapted to the use ofpi.
Output: updated ensemble of neural networksh.

1) CalculateF (d).
2) For each ensemble memberhi, do:

2.1 Setki according to Poisson(1).
2.2 Doki times:

2.2.1 hi = Lo(hi, F (d), γ, d).

————————————————————————

IV. EXPERIMENTS

This section presents the experiments done with NCL
and On-line Bagging NCL in order to validate and check
the importance of the new method. Section IV-A presents
the databases and the experimental setup used. Section IV-
B shows that NCL with on-line MLPs is not suitable to
perform on-line learning. Section IV-C shows that on-line
bagging NCL is able to outperform NCL using on-line MLPs
when EFuNNs are used as the base models and shows that
MLPs are not so suitable to on-line learning as other models.
Besides, this section shows that on-line bagging NCL using
EFuNNs can get similar classification error to NCL using off-
line MLPs, emphasizing even more the importance of having
a wider range of choices for the base model. The results are
presented using classification error, instead of accuracy,in
order to provide a better visualization of the graphics.

A. Databases and Experimental Setup

The databases used in the experiments were Adult, Letter
Recognition, Mushroom, Optical Recognition of Handwrit-
ten Digits and Vehicle Silhouettes, from the UCI Machine
Learning Repository [16]. The number of input attributes,
classes and instances of each database are shown in table I.

TABLE I

DATABASES

Database Inputs Classes Instances
Adult 14 2 45222
Letter 16 26 20000
Mushroom 21 2 8124
Optdigits 64 10 5620
Vehicle 18 4 846

The parameters used in the experiments, except the learn-
ing rate used for the stochastic back-propagation learning,
were chosen after visual inspection of some preliminary
executions varying the parameters. After that, 5 runs of 2-fold
cross-validation were performed with the chosen parameters.
All the comparisons presented in sections IV-B and IV-C
are confirmed by 5x2 cross-validation F tests with 95% of
confidence, as recommended in [31] and [32].

For the on-line stochastic back-propagation learning, 5
runs of 2-fold cross-validation were performed for each of
the 6 learning rates from 1 to 0.00001, to guarantee that
the classification errors obtained are not result from a bad
learning rate choice. The best classification error averages
were attained by using learning rate 0.1 for all databases but
Vehicle, in which the best classification error average was
obtained by using 0.01. The results reported in the rest of
the paper are the ones obtained with the best learning rates
for each database. Experiments using 5 runs of 2-fold cross-
validation were also done presenting each training instance a
certain number of times (more than 1) “on-arrival” and then
discarded, as it was done in [30] to perform on-line learning.



TABLE II

MLP PARAMETERS

Database Hidden nodes Epochs Learning rate
Adult 5 100 0.1
Letter 40 300 0.1
Mushroom 25 100 0.05
Optdigits 10 100 0.1
Vehicle 30 1500 0.1

However, the accuracies did not improve in comparison with
the use of off-line MLPs. So, the rest of the paper shows only
the results obtained by presenting each training instance only
once “on-arrival”.

The ensembles created in the experiments were composed
by 10 MLPs combined by majority-vote and the penalty
strength wasγ = 0.4. It is important to notice that the
preliminary executions showed that the on-line ensemble
learning methods are quite robust to the choice ofγ, as long
as its value is not close to the upper boundary [33] of this
parameter. So, the differences in the classification error are
highly dependent on the base learner, making its choice an
important step when using on-line NCL or on-line bagging
NCL. However, further detailed study about the influence of
γ on the classification error in on-line mode is important and
proposed as a future work.

The EFuNN parameters were the following: error thresh-
old E = 0.1, initial sensibility thresholdS = 0.9, maximum
radius of receptive fieldMrad = 0.5, membership functions
number = 3, membership functions type = triangular,m −

of − n = 3, no rules extraction, no aggregation and no
pruning, except for Adult, in which pruning was used with
Pr = 1 and node ageOLD = 200, and Vehicle, in which
the error threshold wasE = 0.001.

The number of hidden nodes used for both on-line and off-
line MLPs trained with stochastic back-propagation learning
and the number of epochs and the learning rate used for off-
line stochastic bask-propagation learning are shown in table
II.

B. On-line NCL Vs. Off-line NCL

This section presents a comparison between NCL using
on-line and off-line stochastic back-propagation MLPs. It
shows that NCL with on-line MLPs is unsuitable for on-line
learning, due to the high classification errors obtained.

The classification error averages of the ensembles of on-
line MLPs and off-line MLPs produced by NCL are shown
in figure 1 It is possible to observe that both the train
and test (generalization) errors obtained by the ensembles
of on-line MLPs are usually considerably and sometimes
even drastically increased in comparison with the use off-
line MLPs. Except for the Adult database, the classification
errors obtained using on-line MLPs are always more than
twice the classification errors obtained using off-line MLPs.
In Letter and Vehicle, the classification error averages using
on-line MLPs are even higher than 50%, being unacceptable.

For all databases but Adult, 5x2 cross-validation F tests

[32] indicate that NCL with on-line MLPs produces worse
classification errors than NCL with off-line MLPs. Table
III shows the averages (Av), standard deviations (SD) and
statisticf of the 5x2 cross-validation F tests. The statistics
f higher than 4.74 indicate that there is statistical significant
difference between the averages with 95% of confidence.
These statistics are marked with the symbol “*” in this and
all the other tables of the paper.

The Adult database has a large number of training in-
stances, causing the classification errors of NCL with on-line
and off-line MLPs to be statistically the same. It is important
to notice that, even if for large databases on-line MLPs can
get classification errors similar to off-line MLPs, this would
mean that in order to achieve a similar performance, on-line
MLPs would need a greater number of training instances than
off-line MLPs and the learning system as a whole would
take more time to start making predictions with acceptable
accuracy.

The experiments presented in this section indicate that
NCL is not suitable to on-line learning when on-line MLPs
are used as the base models. As the only difference between
NCL applied in on-line and off-line mode is the base model,
it is possible that the bad classification errors obtained are
due to the on-line MLPs. On-line bagging NCL allows the
use of more suitable base models to perform on-line learning,
such as EFuNNs. Section IV-C presents experiments with this
method, confirming that on-line MLPs are not so suitable for
on-line learning as other classifiers such as EFuNN. So, the
possibility of a wider range of choice for base model is an
important characteristic of on-line bagging NCL.

C. On-line NCL Vs. On-line Bagging NCL

The classification error averages of the ensembles of
EFuNNs produced by on-line bagging NCL and of the
ensembles of on-line MLPs produced by NCL are shown
in figure 1. Table IV shows the classification error aver-
ages, standard deviations and statisticsf of the 5x2 cross-
validation F tests done to compare these methods. The
experiments show that for all databases but Adult, on-
line bagging NCL with EFuNNs obtains statistically better
(lower) classification error than NCL with on-line MLPs.
Again, the large number of training instances of Adult causes
the classification error averages to be statistically the same.

These results show that the on-line bagging using EFuNNs
can get better classification error than NCL using on-
line MLPs, validating the proposed method. However, it
is important to check whether on-line bagging NCL with
EFuNNs outperforms NCL with on-line MLPs because of
the possibility to choose EFuNNs as the base models or
because of on-line bagging. In order to do that, the following
2 comparisons were done:

1) NCL with on-line MLPs versus on-line bagging NCL
with on-line MLPs - to check whether on-line bagging
NCL by itself is improving or not the classification
error in relation to NCL.

2) On-line bagging NCL with on-line MLPs versus on-
line bagging NCL with EFuNNs - to complement the



Fig. 1. Average classification error

TABLE III

CLASSIFICATION ERROR AVERAGES, STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSS-VALIDATION F TESTS[32] OF THE ENSEMBLES

OF ON-LINE MLPS AND OFF-LINE MLPS TRAINED WITH NCL. VALUES f MARKED WITH THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT

DIFFERENCE WITH95%OF CONFIDENCE.

Train error Test error
NCL with On-line NCL with Off-line f NCL with On-line NCL with Off-line f
MLPs Av +- SD MLPs Av +- SD MLPs Av +- SD Av +- SD

Adult 0.19383 +- 0.01980 0.16193 +- 0.01438 3 0.19633 +- 0.01848 0.16247 +- 0.01222 3
Letter 0.63195 +- 0.04651 0.17184 +- 0.00693 *97 0.63435 +- 0.04768 0.18577 +- 0.00863 *77
Mush. 0.03508 +- 0.00418 0.00000 +- 0.00000 *56 0.03543 +- 0.00495 0.00020 +- 0.00062 *46
Opt. 0.09135 +- 0.01967 0.01331 +- 0.00170 *12 0.09868 +- 0.02200 0.03274 +- 0.00428 *9
Vehicle 0.64255 +- 0.04712 0.04043 +- 0.00682 *614 0.66478 +- 0.05651 0.17494 +- 0.02654 *111

TABLE IV

CLASSIFICATION ERROR AVERAGES, STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSS-VALIDATION F TESTS[32] OF THE ENSEMBLES

OF ON-LINE MLPS TRAINED WITH NCL AND OF THE ENSEMBLES OFEFUNNS TRAINED WITH ON-LINE BAGGING NCL. VALUES f MARKED WITH

THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95%OF CONFIDENCE.

Train error Test error
NCL with on-line On-line bagging NCL with on-line On-line bagging

MLPs NCL with EFuNNs f MLPs NCL with EFuNNs f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.19383 +- 0.01980 0.21567 +- 0.01858 0 0.19633 +- 0.01848 0.21852 +- 0.01963 0
Letter 0.63195 +- 0.04651 0.12192 +- 0.00457 *120 0.63435 +- 0.04768 0.16530 +- 0.00357 *85
Mush. 0.03508 +- 0.00418 0.00007 +- 0.00012 *55 0.03543 +- 0.00495 0.00010 +- 0.00013 *49
Opt. 0.09135 +- 0.01967 0.01630 +- 0.00157 *11 0.09868 +- 0.02200 0.03128 +- 0.00395 *8
Vehicle 0.64255 +- 0.04712 0.12222 +- 0.00965 *1365 0.66478 +- 0.05651 0.29551 +- 0.01142 *231

first comparison, checking the importance of the base
learner to the performance of on-line bagging NCL.

Table V shows the classification error averages, standard
deviations and statisticsf of the 5x2 cross-validation F tests
for the first comparison. It is possible to observe that on-line
bagging NCL with on-line MLPs obtains either statistically
equal or worse classification error averages than NCL with
on-line MLPs. So, on-line bagging NCL by itself cannot
improve the classification in relation to NCL.

Table VI shows the classification error averages, standard

deviations and statisticsf of the 5x2 cross-validation F tests
for the second comparison. It is possible to observe that on-
line bagging NCL with EFuNNs obtains statistically better
classification error than on-line bagging NCL with on-line
MLPs for all databases but Adult.

These two comparisons show that EFuNNs play a very
important role in improving on-line bagging NCL’s classifi-
cation. So, the possibility to choose deterministic classifiers
such as EFuNNs is an important characteristic of on-line bag-
ging NCL, making it possible to improve its generalization



TABLE V

CLASSIFICATION ERROR AVERAGES, STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSS-VALIDATION F TESTS[32] OF THE ENSEMBLES

OF ON-LINE MLPS TRAINED WITH NCL AND OF THE ENSEMBLES OF ON-LINE MLPS TRAINED WITH ON-LINE BAGGING NCL. VALUES f MARKED

WITH THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95% OF CONFIDENCE.

Train error average Test error average
NCL with On-line Bagging NCL NCL with On-line Bagging NCL

On-line MLP with On-line MLP f On-line MLP with On-line MLP f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.19383 +- 0.01980 0.21034 +- 0.04975 1 0.19633 +- 0.01848 0.21266 +- 0.05008 1
Letter 0.63195 +- 0.04651 0.76792 +- 0.05509 3 0.63435 +- 0.04768 0.77045 +- 0.05412 3
Mush. 0.03508 +- 0.00418 0.06278 +- 0.01293 *7 0.03543 +- 0.00495 0.06381 +- 0.01530 *7
Opt. 0.09135 +- 0.01967 0.17651 +- 0.02607 *6 0.09868 +- 0.02200 0.18552 +- 0.02737 *6
Vehicle 0.64255 +- 0.04712 0.67021 +- 0.04291 2 0.66478 +- 0.05651 0.68156 +- 0.04213 0

TABLE VI

CLASSIFICATION ERROR AVERAGES, STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSS-VALIDATION F TESTS[32] OF THE ENSEMBLES

OF ON-LINE MLPS TRAINED WITH ON-LINE BAGGING NCL AND OF THE ENSEMBLES OFEFUNNS TRAINED WITH ON-LINE BAGGING NCL. VALUES

f MARKED WITH THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95% OF CONFIDENCE.

Train error average Test error average
On-line Bagging NCL On-line Bagging NCL

On-line MLP EFuNN f On-line MLP EFuNN f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.21034 +- 0.04975 0.21567 +- 0.01858 0 0.21266 +- 0.05008 0.21852 +- 0.01963 1
Letter 0.76792 +- 0.05509 0.12192 +- 0.00457 *103 0.77045 +- 0.05412 0.16530 +- 0.00357 *95
Mush. 0.06278 +- 0.01293 0.00007 +- 0.00012 *41 0.06381 +- 0.01530 0.00010 +- 0.00013 *28
Opt. 0.17651 +- 0.02607 0.01630 +- 0.00157 *30 0.18552 +- 0.02737 0.03128 +- 0.00395 *26
Vehicle 0.67021 +- 0.04291 0.12222 +- 0.00965 *190 0.68156 +- 0.04213 0.29551 +- 0.01142 *71

TABLE VII

CLASSIFICATION ERROR AVERAGES, STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSS-VALIDATION F TESTS[32] OF THE ENSEMBLES

OF OFF-LINE MLPS TRAINED WITH NCL AND OF THE ENSEMBLES OFEFUNNS TRAINED WITH ON-LINE BAGGING NCL. VALUES f MARKED WITH

THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95%OF CONFIDENCE.

Train error Test error
NCL with off-line On-line bagging NCL with off-line On-line bagging

MLPs NCL with EFuNNs f MLPs NCL with EFuNNs f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.16193 +- 0.01438 0.21567 +- 0.01858 3 0.16247 +- 0.01222 0.21852 +- 0.01963 4
Letter 0.17184 +- 0.00693 0.12192 +- 0.00457 *38 0.18577 +- 0.00863 0.16530 +- 0.00357 3
Mush. 0.00000 +- 0.00000 0.00007 +- 0.00012 1 0.00020 +- 0.00062 0.00010 +- 0.00013 1
Opt. 0.01331 +- 0.00170 0.01630 +- 0.00157 *6 0.03274 +- 0.00428 0.03128 +- 0.00395 2
Vehicle 0.04043 +- 0.00682 0.12222 +- 0.00965 *26 0.17494 +- 0.02654 0.29551 +- 0.01142 *26

in relation to NCL.

Another important comparison to show the importance of
the method proposed in this paper is the comparison between
on-line bagging NCL with EFuNNs and NCL with off-
line MLPs. Figure 1 shows the classification error averages
obtained by both the approaches. Table VII shows the clas-
sification error averages, standard deviations and statistics
f of the 5x2 cross-validation F tests. The statistical tests
show that there is no statistical significant difference between
the test classification errors obtained by on-line bagging

NCL with EFuNNs and NCL with off-line MLPs, except
for the Vehicle database, which is a short database. This is
an impressive result, as in off-line learning the MLPs can
process the whole training set a certain number of epochs,
while EFuNNs process each training example only once. This
analysis emphasizes even more the importance of having a
wider range of choices for the base model, which is allowed
by the proposed method.



V. CONCLUSIONS

This paper proposes a new method to on-line ensemble
learning called on-line bagging NCL. Using this method,
the training of an ensemble member is influenced by the
training of the others, directly encouraging diversity. This
is an advantage of the proposed method over the other on-
line ensemble methods existent in the literature, except NCL.
The advantage of the new method over NCL is that it sends
a different sequence of training data to each one of the
ensemble members, so that it is not necessary to build part
of the diversity a priory. In this way, a wider range of base
models can be used, including deterministic neural networks.
So, on-line bagging NCL allows the choice of more adequate
models to on-line learning, such as EFuNN.

The experiments show that NCL using on-line MLPs have
high classification error due to the non suitability of on-line
MLPs as base models. They also show that the proposed
method using EFuNNs can outperform NCL using on-line
MLPs in 4 out of 5 classification databases thanks to the
wider range of base model choices, which allow the use of
EFuNNs as the base model.

Moreover, on-line bagging NCL using EFuNNs manage to
attain similar test classification error to NCL using off-line
MLPs in 4 out of 5 databases. This is an impressive result, as
in off-line learning the MLPs can process the whole training
set a certain number of epochs, while EFuNNs process each
training example only once. This analysis emphasizes even
more the importance of having a wider range of choices for
the base model, which is allowed by the proposed method.

REFERENCES

[1] M. Tagscherer, L. Kindermann, A. Lewandowski, and P. Protzel,
“Overcome neural limitations for real world applications by providing
confidence values for network prediction,” inProceedings of the
Sixth International Conference on Neural Information Processing
(ICONIP’99), vol. 2, Perth, Australia, 1999, pp. 520–525.

[2] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: A new
ensemble method for tracking concept drift,” inProceedings of the
Third International IEEE Conference on Data Mining (ICDM’03).
Los Alamitos, CA: IEEE Press, 2003, pp. 123–130.

[3] K. Lang, “Newsweeder: Learning to filter netnews,” inProceedings of
the Twelfth International Conference on Machine Learning (ICML’95).
San Francisco, CA: Morgan Kaufmann Publishers, 1995, pp. 331–339.

[4] A. Fern and R. Givan, “Online ensemble learning: An empirical study,”
Machine Learning, vol. 53, pp. 71–109, 2003.

[5] RoboCup Federation, “RoboCup official site,” 2007. [Online].
Available: http://www.robocup.org/

[6] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” inProceedings of the Seventh
ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD’01). New York: ACM Press, 2001, pp. 359–364.

[7] C. Domingo and O. Watanabe, “MadaBoost: A modification ofad-
aboost for the filtering framework,” Department of Mathematical and
Computing Sciences, Tokyo Institute of Technology, Tokyo,Tech. Rep.
TR-C138, 1999.

[8] Y. Liu and X. Yao, “Simultaneous training of negatively correlated
neural networks in an ensemble,”IEEE Transactions on Systems, Man,
and Cybernetics - Part B: Cybernetics, vol. 29, no. 6, pp. 716–725,
1999.

[9] ——, “Ensemble learning via negative correlation,”Neural Networks,
vol. 12, pp. 1399–1404, 1999.

[10] M. Islam, X. Yao, and K. Murase, “A constructive algorithm for
training cooperative neural network ensembles,”IEEE Transactions
on Neural Networks, vol. 14, no. 4, pp. 820–834, 2003.

[11] Z. Wang, X. Yao, and Y. Xu, “An improved constructive neural
network ensemble approach to medical diagnoses,” inProceedings of
the Fifth International Conference on Intelligent Data Engineering and
Automated Learning (IDEAL’04), Lecture Notes in Computer Science,
vol. 3177. Exeter, UK: Springer, 2004, pp. 572–577.

[12] A. Chandra, H. Chen, and X. Yao,Multi-objective Machine Learning.
Springer-Verlag, 2006, ch. Trade-off Between Diversity and Accuracy
in Ensemble Generation, pp. 429–464.

[13] L. Breiman, “Bagging predictors,”Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[14] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,”Journal of Computer and
System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[15] N. Kasabov, “Evolving fuzzy neural networks for super-
vised/unsupervised online knowledge-based learning,”IEEE
Transactions on Systems, Man and Cybernetics - Part B: Cybernetics,
vol. 31, no. 6, pp. 902–918, 2001.

[16] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI
repository of machine learning databases,” 1998. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[17] N. Littlestone, “Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm,”Machine Learning, vol. 2, pp. 285–
318, 1988.

[18] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Information and Computation, vol. 108, pp. 212–261, 1994.

[19] C. P. Lim and R. F. Harrison, “Online pattern classification with
multiple neural network systems: An experimental study,”IEEE Trans-
actions on Systems, Man, and Cybernetics - Part C: Applications and
Reviews, vol. 33, no. 2, pp. 235–247, 2003.

[20] S. B. Kotsiantis and P. E. Pintelas, “An online ensembleof classifiers,”
in Proceedings of the Fourth International Workshop on Pattern
Recognition in Information Systems (PRIS’04). Porto, Portugal:
INSTICC Press, 2004, pp. 59–68.

[21] A. Chandra and X. Yao, “Evolving hybrid ensembles of learning
machines for better generalisation,”Neurocomputing, vol. 69, pp. 686–
700, 2006.

[22] C. Domingo and O. Watanabe, “Madaboost: A modification of ad-
aboost,” in Proceedings of the Thirteenth Annual Conference on
Computational Learning Theory. San Francisco: Morgan Kaufmann
Publishers Inc, 2000, pp. 180–189.

[23] T. G. Dietterich, “Machine learning research: Four current directions,”
Artificial Intelligence, vol. 18, no. 4, pp. 97–136, 1997.

[24] Y. Freund and R. E. Schapire, “Game theory, on-line prediction
and boosting,” inProceedings of the Ninth Annual Conference on
Computational Learning Theory. New York: ACM Press, 1996, pp.
325–332.

[25] D. Opitz and R. Maclin, “Popular ensemble methods:
An empirical study,” Journal of Artificial Intelligence
Research, vol. 11, pp. 169–198, 1999. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/opitz99a-
html/paper.html

[26] P. Sollich and A. Krogh, “Learning with ensembles: How over-fitting
can be useful,”Advances in Neural Information Processing Systems,
vol. 8, pp. 190–196, 1996.

[27] F. L. Minku, H. Inoue, and X. Yao, “Negative correlationin incremen-
tal learning,” Natural Computing Journal - Special Issue on Nature-
inspired Learning and Adaptive Systems, p. 32p, 2008 (accepted).

[28] C. M. Bishop, Neural Networks for Pattern Recognition. United
Kingdom: Oxford University Press, 2005.

[29] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Muller, “Efficient Back-
Prop,” in Neural networks: tricks of the trade. Berlin: Springer, 1998,
p. 44p.

[30] N. C. Oza and S. Russell, “Online bagging and boosting,”in Pro-
ceedings of the 2005 IEEE International Conference on Systems, Man
and Cybernetics, vol. 3. New Jersey: Institute for Electrical and
Electronics Engineers, 2005, pp. 2340– 2345.

[31] T. G. Dietterich, “Approximate statistical tests for comparing super-
vised classification learning algorithms,”Neural Computation, vol. 10,
pp. 1895–1923, 1998.

[32] E. Alpaydin, “Combined 5x2cv F test for comparing supervised
classification learning algorithms,”Neural Computation, vol. 11, pp.
1885–1892, 1999.

[33] G. Brown, J. L. Wyatt, and P. Tiño, “Managing diversityin regression
ensembles,”Journal of Machine Learning Research, vol. 6, pp. 1621–
1650, 2005.


