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Abstract—Negative Correlation Leamning (NCL) has been others, directly encouraging diversity. This key point gk
showing to outperform other ensemble learning approachesni  NCL a potentially powerful approach to on-line learning.
off-line mode. A key point to the success of NCL is that the However, when applied to on-line learning, NCL presents

learning of an ensemble member is influenced by the learning . - .
of the others, directly encouraging diversity. However, wien the problem that part of the diversity has to be built

applied to on-line learning, NCL presents the problem that @rt ~ Priori, as the same sequence of training data is sent to all
of the diversity has to be built a priori, as the same sequence the ensemble members. In this way, the choice of the base

of training data is sent to all the ensemble members. In this models to be used is limited and the use of more adequate

way, the choice of the base models to be used is limited and the neural network models for the problem to be solved may be
use of more adequate neural network models for the problem not possible

to be solved may be not possible. This paper proposes a new ) )
method to perform on-line learning based on NCL and On-line This paper proposes a new method to perform on-line
Bagging. The method directly encourages diversity, as NCL, learning based on NCL and On-line Bagging [6]. The method
but sends a different sequence of training data to each one of directly encourages diversity, as NCL, but sends a differen
the base models in an on-line bagging way. So, it allows the goqence of training data to each one of the base models in
use of deterministic base models such as Evolving Fuzzy Nelr . . ; .
Networks (EFUNNSs), which are specifically designed to perfm f"m_ on-line bagging way. So, it a_HOWS the use of determin-
on-line learning. Experiments show that on-line bagging NC  istic base models such as Evolving Fuzzy Neural Networks
using EFUNNs have better accuracy than NCL applied to on- (EFuUNNS) [15], which are specifically designed to perform
line learning using on-line Multi-Layer Perceptrons (MLPs) in  gn-line learning.

4 out of 5 classification databases. Besides, on-line baggiNCL Experiments show the importance of a wider range of
using EFUNNs manage to attain similar accuracy to NCL using . : :
off-line MLPs. base model choices and reveal that on-line bagging NCL
using EFUNNs have better (lower) classification error than
|. INTRODUCTION NCL applied to on-line learning using on-line Multi-Layer
On-line learning has been showing to be very useflferceptrons (MLPs) in 4 out of 5 classification databases
for a growing number of applications in which trainingfrom the UCI Machine Learning Repository [16]. Besides,
data is available continuously in time and/or there are timen-line bagging NCL using EFUNNs manage to attain similar
and space constraints. Examples of such applications a@ssification error to NCL using off-line MLPs, even being
industrial process control [1], computer security, ingght able to use each training instance only once, while off-line
user interfaces and market-basket analysis [2], infoonati MLPs can use the whole training set a certain number of
filtering [3], prediction of conditional branch outcomes inepochs.
microprocessors [4] and RoboCup [5]. This paper is further organized as follows: section Il
On-line learning algorithms process each training instangresents related work, section Il presents the proposed ap
once “on arrival” without the need for storage and reproproach, section IV presents the experiments done to show the
cessing, and maintain a current hypothesis that reflects #nportance of the proposed method and section V presents
the training instances so far [6]. In this way, the learninghe conclusions of the work.
algorithms take as input a single labelled training inséanc
as well as a hypothesis and output an updated hypothesis [4].
Recently, ensembles of classifiers have been successfullyRecently, ensemble learning methods have been showing
used to improve the accuracy of single classifiers in on-lin@ outperform single classifiers in on-line learning. Sati
learning [7], [6], [4]. Negative Correlation Learning (NEL I-A presents some successful on-line ensemble classiicat
[8], [9] is a ensemble learning method that has been showimgethods existent in the literature and explain how the ntktho
to outperform other ensemble learning methods in off-lin@roposed in this paper can overcome their weaknesses.
mode [10], [11], [12], including bagging [13] and boostingSection II-B contains some comments about the base models
[14]. A key point to the success of NCL is that the learning/sed in this work.
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members [17], [18] or finding alternatives to create différe generalization than a single classifier when their off-toe-
ensemble members when the same sequence of training daspondent algorithms also can. Very similar on-line baggi
is sent to all of them [19], [20]. These methods, except NCland boosting methods were also proposed in [4].

perform independent training of the ensemble members. 114 on-line approaches based on bagging and boosting
Nevertheless, ensemble learning methods which directifesent some of the problems that bagging and boosting
encourage diversity by considering the interaction amongresent. For example, diversity among the ensemble members
all ensemble members during the learning, such as NClg very important to produce successful ensembles [23].
have been showing to outperform other ensemble learninghyever, as on-line bagging is an approximation of bagging,
approaches in off-line mode [10], [11], [21]. So, ensemblghe ensemble members are also created independently. So,
learning methods in which the ensemble members are nN@lere is no warranty that they will be enough diverse to

trained independently have a potential advantage over-meflyoduce an ensemble with good accuracy.

ods which perform independent training in on-line mode. .
. ; . The ensemble members of the on-line methods based on
Some other on-line ensemble learning methods existent

. ; - “boosting have some influence from the others. However,
in the literature do not send the same sequence of traini ' . .
rth first ensemble members trained are not influenced by

data to all the ensemble members. Instead, they consist A : Lo .
. : . the last ones and diversity is not directly encouraged. Be-
different ways of sending training data to the ensembles

. ; Sides, boosting algorithms tend to overfit training instnc
members, so that diversity does not have to be partly g ayg g

completely designed priori. Most of these methods are on—?£4]' According to [25], this h_a_|o_pens begause the boostln_g
; : ! . method to update the probabilities associated to each-train
line versions of bagging [13] and boosting [14].

, o , , ing instance may over-emphasize noisy training instances.
An example is Modified Adaptive Boosting (MadaBoost)gegiges; the classifiers created by boosting are combined

[22]. This method is a modification of AdaBoost [14] WhiChusing weighted voting. Previous work [26] has shown that

can be used in the filtering framework without having ex'optimizing the combining weights can lead to overfitting,

tremely high execution time. This modification bounds thg .o an unweighted voting scheme is generally robust to
weight that is attributed to the training instances, redgci overfitting.

the time necessary for the filter to choose an example to be ) ) )
used in the learning process. The weighting update schemdVCL is an ensemble learning method that can be applied to

is also slightly modified, in order to obtain a formal proofon-liné leaming. In this method, the training of an ensembl
of convergence to MadaBoost. This method can redudBember is influenced by the others, directly encouraging
considerably the execution time of AdaBoost in the filteringliVersity through the use of a penalty correlation term in

framework and, at the same time, obtain similar or bett pe error function of the base model learning algorithm. In
generalization. off-line mode, ensembles which directly encourage ditgrsi

Two notable on-line ensemble learning methods for clas<sonsidering the interaction among all the ensemble members
during the learning [10], [11], [21] have been showing to

fication are On-line Bagging and On-line Boosting [6]. On- ; h ble | . hod h as bagai
line bagging is based on the fact that, when the numb@ttperiorm other ensemble learning methods such as bagging

of training instances tends to infinite in off-line baggingﬁrg_boosmt‘r?' S(:F]th's |s|_a potentlallgl powetrrf]uldadvantta‘g(ip
each ensemble membercontains K; copies of each of over the other on-line ensembie methods existent In

the original training instances, where the distribution/of the Ilgaraturea Tr?e nega]'Elve correr:at:jon qmon(i; the el?sem?;IL
tends to aPoisson(1) distribution. So, in on-line bagging, MEMPers and the use of unweighted voting also makes

whenever a training instance is available, it is pres;enté&buSt in relation to overfitting.
K; times to each ensemble memhemwhere K; is drawn Recently, NCL has been applied to incremental learhing
from a Poisson(1) distribution. The classification is done [27], showing to be a promising approach in this area.
by unweighted majority vote, as it is done in Bagging. However, when applied to on-line learning, NCL presents
On-line boosting works in a similar way to on-line bag-the problem that part of the diversity has to be built
ging, but it uses @oisson(v4) distribution. The parameter Priori, as the same sequence of training data is sent to all
~4 associated to an instandds increased when presented tothe ensemble members. In this way, the choice of the base
the next ensemble member if the current ensemble membBpdels to be used is limited and the use of more adequate
misclassifies the instance. Otherwise, it is decreasedign t neural network models for the problem to be solved may
way, 74 has the same role as the weight of the instandee not possible. The method proposed in this paper can
d in AdaBoost. The on-line boosting algorithm gives theovercome this problem, taking advantage of the NCL features
instances misclassified by one stage (one classifier) half tip overcome the problems of the other methods existent in
total weight in the next stage and the correctly classifiethe literature and allowing the choice of a wider range of
instances are given the remaining half of the weight. To udease models, including deterministic classifiers.
the system, the classification made by the whole ensemble
is by weighted majority vote, with weights based on the

accuracy Of. the ense.mble members' lwe consider that an incremental learning algorithm cannlegaining
Both on-line bagging and boosting are able to get betteata gathered in several batches, instead of learning eachpte separately.



B. Base Models

Algorithm 1 EFuNN Learning Algorithm

In this work we use two different base models. One of

them is Multi-Layer Perceptrons (MLPs) [28] and the othefPuts: current EFUNN, training patterd, number of

is Evolving Fuzzy Neural Networks (EFUNNS) [15].

training patterns presented so far and training parameters

The algorithm used to train the MLPs is the stochastig?umber of membership functions; type of membership
back-propagation [29]. Some authors refer to this algorith functlons; initial sensitivity thres.h_o.ld’ of t_he nodes, WhICh.
as on-line back-propagation. It is important not to confust also used to determmg the initial radius of the receptive
the term on-line learning used in this work with the ternfield of a noder; when it is created §(r;) = 1 — 5);
on-line learning related to the back-propagation algarith €rror thresholdE; aggregation parameteNagg; pruning
In the later, the term is used to indicate that the weights aR&rametersOLD and Pr; m-of-n value, which is the
updated right after the presentation of each training icsta  NUMber of highest activation nodes used in the learning;
However, the whole training set can be presented sevef@RXimum radius of the receptive field rad; rule extraction
times to the neural network. In order to avoid confusion, wéresholdsl'l and7'2).
will not refer to the stochastic back-propagation algaritas OUtPut: updated EFUNN.

on-line back-propagation in this work.
Stochastic back-propagation can be applied to perform
both on-line and off-line learning. In on-line learning,cha

1) If this is the first learning of EFUNN, set the first
rule nodery to memorized: Wl(rg) = z¢(d) and
W2(ro) = t5(d).

training instance has to be processed only once and then dis2) Else

carded. So, it is possible to use only 1 epoch for learning. We
will refer to the stochastic back-propagation which useyg on

1 epoch as on-line stochastic back-propagation. It would be
possible to present each training instances a certain numbe
of times “on-arrival”, as it was done by [30]. However, as
it is commented in section IV-A, this does not improve the
resulting ensemble’s classification error.

EFuNNSs are neural network models specifically designed
to perform on-line learning. They are fast (only one pass
through the training examples is necessary), local and con-
structive. Local and constructive learning is very impotta
to avoid catastrophic forgetting, which problem known for
making on-line learning more challenging.

EFuNNs have a five-layer architecture. The first layer
represents the input vector, the second represents thg fuzz
quantification of the input vector, the third represents the
associations between fuzzy input space and fuzzy output
space, the fourth represents the fuzzy quantification of the
output vector and the fifth represents the output vector.

Learning occurs at the rule nodes layer. Each nigdef
this layer is represented by two vectors of connection wsigh
(W1(rj) and W2(rj)). W1 represents the coordinates of the
nodes in the fuzzy input space and it is adjusted through
unsupervised learninV2 represents the coordinates of the
nodes in the fuzzy output space and it is adjusted through
supervised learning. The learning rules are the following:

o Wi(rj) =W1(r;) +Irl(ry) * (zs(d) — W1(rj))

o W2(rj) = W2(rj) + r2(rj) = (ty(d) — A2) x Al(r;)

2.1 Calculate the activationd1 of all rule nodes,
e.g.,Al =1—-D(W1(r;),zs(d)), whereD is a
distance measure.

2.2 Select the rule node, that has the smallest dis-
tance D(W1(ry),z¢(d)) and that has activation
Al(rg) >= S(rg). In the case om-of-nlearning,
selectm nodes instead of just one node.

2.3 If this node does not exist, create a new rule node.

2.4 Else

2.4.1 Determine the activatiod2 of the output
layer and the normalized output errrr =
subabs(t(d), Fey)/Nout, where t(d) is the
desired outputf. is the obtained output and
Nout is the number of nodes of the output
layer.

2.4.2 If Err > E, create a new rule node.

2.4.3 Else, apply the learning rules¥g1(r;) and
W2(ry) (in the case ofm-of-nlearning, the
rules are applied to the rule nodes).

2.5 Apply aggregation procedure after the presenta-
tion of Nagg patterns.

2.6 Update the parameters(ry), R(rx), Age(ry)
and T A(r). TA(ry) can be, for example, the
sum of the activations!1 obtained for all exam-
ples thatr, accommodates.

2.7 Prune rule nodes according@.D and Pr.

2.8 Extract rules according t61 and7'2.

where:z ¢ (d) andts(d) are the fuzzy input and fuzzy output
vectors of the training patterdy ir1(r;) andir2(r;) are the
learning rates for thél’1 andW2 weights of the node; at

IIl. ON-LINE BAGGING NCL

This section proposes a new on-line ensemble learning

a particular time during the learningk2 is the fuzzy output method called on-line bagging NCL. As it was discussed
activation vector andd1(r;) is the activation value of the in section II-A, this method is able to take advantage of the
rule noder;. The learning rate of a node can be the inversBICL strong points and, at the same time, overcome the NCL
of the number of training patterns accommodated so far lgroblem that part of the diversity has to be bualtpriori,
that node. which limits the choices of base models to be used.

The EFuNN learning algorithm is briefly described below. On-line bagging NCL uses a penalty term in the error
For more detalils, it is recommended to read [15]. function to be optimized by the neural network learning



algorithm. In the same way as in NCL, the penalty term is 2.2.1 h; = Lo(hs, F(d), 7, d).
used to penalize positive correlation of errors from difer
neural networks, i.e. , to encourage negative correlation
between the error of an ensemble member and the error of IV. EXPERIMENTS
the rest of the ensemble. This section presents the experiments done with NCL
Let F(d) be the arithmetic average of the ensembland On-line Bagging NCL in order to validate and check
member outputs for the training pattedn the importance of the new method. Section IV-A presents
the databases and the experimental setup used. Section IV-
B shows that NCL with on-line MLPs is not suitable to
perform on-line learning. Section IV-C shows that on-line
bagging NCL is able to outperform NCL using on-line MLPs
whereF;(d) is the output of théth individual neural network \yhen EFUNNs are used as the base models and shows that
on the training patterd. MLPs are not so suitable to on-line learning as other models.
If the error function used by the base models is the meafsides, this section shows that on-line bagging NCL using
squared error, the errdr; for theith ensemble member on EFyNNs can get similar classification error to NCL using off-
the training pattern/ can be adapted in the following way |ine MLPs, emphasizing even more the importance of having

1 M
F(d) = 57 2_Fi(d) . (1)

to accommodate the penalty term: a wider range of choices for the base model. The results are
1 ) presented using classification error, instead of accuracy,
Ei(d) = 5 (Fi(d) = 1(d))” +pi(d) (2)  order to provide a better visualization of the graphics.

wheret(d) is the target output of the training examplep, A. Databases and Experimental Setup

is the correlation penalty function andis a parameter used  The databases used in the experiments were Adult, Letter
to adjust the strength of the penalty. The penalty funcfion Recognition, Mushroom, Optical Recognition of Handwrit-

may use the following equation: ten Digits and Vehicle Silhouettes, from the UCI Machine
Learning Repository [16]. The number of input attributes,
pi(d) = (Fi(d) — F(d)) Z(Fj(d) — F(d)) . ©) classes and instances of each database are shown in table I.
i#] TABLE |
The partial derivative ofF;(d) with respect to the output DATABASES
of the networki on thedth training pattern is: Database | Tnputs | Classes| InStances

Adult 14 2 45222
aEZ(d) |: ( 1 ) :| Letter 16 26 20000
= Fy(d)—t(d)—~ |2 (1 — = ) (F;(d) — F(d . Mushroom | 21 2 8124
OF;(d) (d)—Hd)— M (F:(d) (@) Optdigits 64 10 5620
4) Vehicle 18 4 846

This partial derivative can be used to perform the weight ad-
justments of the neural networks that belong to the ensemble

Consider an ensemble composed by on-line base modelsThe parameters used in the experiments, except the learn-
which use error functions adapted to the use the penalfjyd rate used for the stochastic back-propagation learning
function. Similarly to on-line bagging, on-line bagging NC were chosen after visual inspection of some preliminary
presents each training instankgtimes to the on-line learn- €xecutions varying the parameters. After that, 5 runs afl@-f
ing algorithm, wherek; is drawn from aPoisson(1) distri- ~ cross-validation were performed with the chosen paramseter
bution. However, before the learning of a training examplé|!l the comparisons presented in sections IV-B and IV-C
d, the arithmetic average of the outputs of the ensembife confirmed by 5x2 cross-validation F tests with 95% of
members ol has to be calculated, in order to be used by theonfidence, as recommended in [31] and [32].
on-line learning algorithms of the ensemble members. The For the on-line stochastic back-propagation learning, 5
algorithm is presented below: runs of 2-fold cross-validation were performed for each of
the 6 learning rates from 1 to 0.00001, to guarantee that
the classification errors obtained are not result from a bad
learning rate choice. The best classification error average
were attained by using learning rate 0.1 for all databases bu
Vehicle, in which the best classification error average was
obtained by using 0.01. The results reported in the rest of
the paper are the ones obtained with the best learning rates

Algorithm 2 On-line Bagging NCL

Inputs: ensemble of neural networks training examplei;
strength parametey; on-line learning algorithn,, which
uses an error function adapted to the use,of

Output: updated ensemble of neural netwdnks

1) Calculater(d). for each database. Experiments using 5 runs of 2-fold cross-
2) For each ensemble membeyr, do: validation were also done presenting each training ingtanc
2.1 Setk; according to Poisson(1). certain number of times (more than 1) “on-arrival” and then

2.2 Dok; times: discarded, as it was done in [30] to perform on-line learning



TABLE Il

MLP PARAMETERS [32] indicate that NCL with on-line MLPs produces worse

classification errors than NCL with off-line MLPs. Table

Database | Hidden nodes| Epochs]| Learning rate [l shows the averages (Av), standard deviations (SD) and
fdtl:'t fo égg 8-1 statistic f of the 5x2 cross-validation F tests. The statistics
etter . . . . . .. . .
VUSHIGOm o5 100 005 f_ higher than 4.74 indicate that there_ is statistical S|gqrﬁc
Optdigits 10 100 01 difference between the averages with 95% of confidence.
Vehicle 30 1500 0.1 These statistics are marked with the symbol “*” in this and

all the other tables of the paper.
The Adult database has a large number of training in-
ﬁtances, causing the classification errors of NCL with ae-li
nd off-line MLPs to be statistically the same. It is impotta
notice that, even if for large databases on-line MLPs can
get classification errors similar to off-line MLPs, this wdu

. . mean that in order to achieve a similar performance, on-line
The ensembles created in the experiments were compoge

by 10 MLPs combined by majority-vote and the penalty Es would need a greater n_umberof training instances than
A . off-line MLPs and the learning system as a whole would
strength wasy = 0.4. It is important to notice that the

preliminary executions showed that the on-line ensembf(feike more time to start making predictions with acceptable

learning methods are quite robust to the choice cds long aceuracy.
) . ’ . The experiments presented in this section indicate that
as its value is not close to the upper boundary [33] of th'Rl

. : e CL is not suitable to on-line learning when on-line MLPs
parameter. So, the differences in the classification emer a :
) L . _“are used as the base models. As the only difference between
highly dependent on the base learner, making its choice

important step when using on-line NCL or on-line baggin fEL applied in on-line and off-line mode is the base model,

NCL. However, further detailed study about the influence (?% is possible that the bad classification errors obtained ar

o . : i ue to the on-line MLPs. On-line bagging NCL allows the
~ on the classification error in on-line mode is important an : ) .
use of more suitable base models to perform on-line learning
proposed as a future work.

such as EFUNNSs. Section IV-C presents experiments with this

The EFuN-I\I.paramet.er.s_; were the following: error thres method, confirming that on-line MLPs are not so suitable for
old F = 0.1, initial sensibility thresholds = 0.9, maximum

) R . X on-line learning as other classifiers such as EFUNN. So, the
radius of receptive field/rad = 0.5, membership functions ibility of id f choice for b del i
number = 3, membership functions type = triangufar— Poss! lity of a wi er range of cnoice for base modet 1S an

' ; : ' important characteristic of on-line bagging NCL.
of —n = 3, no rules extraction, no aggregation and no

pruning, except for Adult, in which pruning was used withC. On-line NCL Vs. On-line Bagging NCL
Pr =1 and node ag&®LD = 200, and Vehicle, in which  The classification error averages of the ensembles of
the error threshold wa& = 0.001. EFUNNs produced by on-line bagging NCL and of the
The number of hidden nodes used for both on-line and ofensembles of on-line MLPs produced by NCL are shown
line MLPs trained with stochastic back-propagation leagni in figure 1. Table IV shows the classification error aver-
and the number of epochs and the learning rate used for offges, standard deviations and statisticef the 5x2 cross-
line stochastic bask-propagation learning are shown itetabvalidation F tests done to compare these methods. The
Il experiments show that for all databases but Adult, on-
i ) line bagging NCL with EFUNNSs obtains statistically better
B. On-line NCL Vs. Off-line NCL (lower) classification error than NCL with on-line MLPs.
This section presents a comparison between NCL usifggain, the large number of training instances of Adult cause
on-line and off-line stochastic back-propagation MLPs. Ithe classification error averages to be statistically thmesa
shows that NCL with on-line MLPs is unsuitable for on-line These results show that the on-line bagging using EFUNNSs
learning, due to the high classification errors obtained. can get better classification error than NCL using on-
The classification error averages of the ensembles of olire MLPs, validating the proposed method. However, it
line MLPs and off-line MLPs produced by NCL are shownis important to check whether on-line bagging NCL with
in figure 1 It is possible to observe that both the traifEFUNNs outperforms NCL with on-line MLPs because of
and test (generalization) errors obtained by the ensemblé® possibility to choose EFUNNs as the base models or
of on-line MLPs are usually considerably and sometimegecause of on-line bagging. In order to do that, the follgwin
even drastically increased in comparison with the use off comparisons were done:
line MLPs. Except for the Adult database, the classification 1) NCL with on-line MLPs versus on-line bagging NCL
errors obtained using on-line MLPs are always more than  with on-line MLPs - to check whether on-line bagging
twice the classification errors obtained using off-line MLP NCL by itself is improving or not the classification
In Letter and Vehicle, the classification error averageagisi error in relation to NCL.
on-line MLPs are even higher than 50%, being unacceptable.2) On-line bagging NCL with on-line MLPs versus on-
For all databases but Adult, 5x2 cross-validation F tests  line bagging NCL with EFUNNSs - to complement the

However, the accuracies did not improve in comparison wit
the use of off-line MLPs. So, the rest of the paper shows on
the results obtained by presenting each training instanke o
once “on-arrival”.
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TABLE Il
CLASSIFICATION ERROR AVERAGES STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSSVALIDATION F TESTS[32] OF THE ENSEMBLES
OF ON-LINE MLPS AND OFFLINE MLPS TRAINED WITH NCL. VALUES f MARKED WITH THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT
DIFFERENCE WITH95%OF CONFIDENCE

Vehicle

Average classification error

Train error Test error

NCL with On-line | NCL with Off-line f NCL with On-line | NCL with Off-line f

MLPs Av +- SD MLPs Av +- SD MLPs Av +- SD Av +- SD
Adult 0.19383 +- 0.01980 0.16193 +- 0.01438 3 0.19633 +- 0.01848 0.16247 +- 0.01222 3
Letter | 0.63195 +- 0.04651 0.17184 +- 0.00693 *97 | 0.63435 +- 0.04768 0.18577 +- 0.00863 *77
Mush. | 0.03508 +- 0.00418 0.00000 +- 0.000000 *56 | 0.03543 +- 0.00495% 0.00020 +- 0.00062 *46
Opt. 0.09135 +- 0.01967 0.01331 +- 0.00170 *12 | 0.09868 +- 0.02200 0.03274 +- 0.00428 *9
Vehicle | 0.64255 +- 0.04712 0.04043 +- 0.00682 *614 | 0.66478 +- 0.05651 0.17494 +- 0.02654 *111

TABLE IV

CLASSIFICATION ERROR AVERAGES STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSSVALIDATION F TESTS[32] OF THE ENSEMBLES
OF ON-LINE MLPS TRAINED WITH NCL AND OF THE ENSEMBLES OFEFUNNS TRAINED WITH ON-LINE BAGGING NCL. VALUES f MARKED WITH
INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95% OF CONFIDENCE

THE SYMBOL “*”

Train error Test error
NCL with on-line On-line bagging NCL with on-line On-line bagging
MLPs NCL with EFUNNSs f MLPs NCL with EFUNNs | f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.19383 +- 0.01980 0.21567 +- 0.01858 O 0.19633 +- 0.01848 0.21852 +- 0.01963 O
Letter | 0.63195 +- 0.04651 0.12192 +- 0.00457 *120 | 0.63435 +- 0.04768 0.16530 +- 0.00351 *85
Mush. | 0.03508 +- 0.00418 0.00007 +- 0.00012 *55 | 0.03543 +- 0.00495 0.00010 +- 0.00013 *49
Opt. 0.09135 +- 0.01967 0.01630 +- 0.00157 *11 | 0.09868 +- 0.02200 0.03128 +- 0.00395 *8
Vehicle | 0.64255 +- 0.04712 0.12222 +- 0.0096% *1365 | 0.66478 +- 0.05651 0.29551 +- 0.01142 *231

first comparison, checking the importance of the basgeviations and statisticg of the 5x2 cross-validation F tests
learner to the performance of on-line bagging NCL. for the second comparison. It is possible to observe that on-

Table V shows the classification error averages, standai€ P29ging NCL with EFUNNs obtains statistically better

deviations and statistics of the 5x2 cross-validation F tests
for the first comparison. It is possible to observe that oe-li

classification error than on-line bagging NCL with on-line
MLPs for all databases but Adult.

bagging NCL with on-line MLPs obtains either statistically These two comparisons show that EFUNNSs play a very
equal or worse classification error averages than NCL witimportant role in improving on-line bagging NCL'’s classifi-
on-line MLPs. So, on-line bagging NCL by itself cannotcation. So, the possibility to choose deterministic cless

improve the classification in relation to NCL.

such as EFUNNSs is an important characteristic of on-line bag
Table VI shows the classification error averages, standagihg NCL, making it possible to improve its generalization



TABLE V
CLASSIFICATION ERROR AVERAGES STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSSVALIDATION F TESTS[32] OF THE ENSEMBLES
OF ON-LINE MLPS TRAINED WITH NCL AND OF THE ENSEMBLES OF ONLINE MLPS TRAINED WITH ON-LINE BAGGING NCL. VALUES f MARKED
WITH THE SYMBOL “*" INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95% OF CONFIDENCE

Train error average Test error average
NCL with On-line Bagging NCL NCL with On-line Bagging NCL
On-line MLP with On-line MLP f On-line MLP with On-line MLP f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.19383 +- 0.01980 0.21034 +- 0.04975| 1 | 0.19633 +- 0.01848 0.21266 +- 0.05008 | 1
Letter | 0.63195 +- 0.04651 0.76792 +- 0.05509| 3 | 0.63435 +- 0.04768 0.77045 +- 0.05412| 3
Mush. | 0.03508 +- 0.00418 0.06278 +- 0.01293| *7 | 0.03543 +- 0.00495 0.06381 +- 0.01530| *7
Opt. 0.09135 +- 0.01967 0.17651 +- 0.02607 | *6 | 0.09868 +- 0.02200 0.18552 +- 0.02737 | *6
Vehicle | 0.64255 +- 0.04712 0.67021 +- 0.04291| 2 | 0.66478 +- 0.05651 0.68156 +- 0.04213| O

TABLE VI
CLASSIFICATION ERROR AVERAGES STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSSVALIDATION F TESTS[32] OF THE ENSEMBLES
OF ON-LINE MLPS TRAINED WITH ON-LINE BAGGING NCL AND OF THE ENSEMBLES OFEFUNNS TRAINED WITH ON-LINE BAGGING NCL. VALUES
f MARKED WITH THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95% OF CONFIDENCE

Train error average Test error average
On-line Bagging NCL On-line Bagging NCL
On-line MLP EFuUNN f On-line MLP EFuUNN f
Av +- SD Av +- SD Av +- SD Av +- SD

Adult 0.21034 +- 0.04975% 0.21567 +- 0.01858 O 0.21266 +- 0.05008 0.21852 +- 0.01963 1

Letter | 0.76792 +- 0.05509 0.12192 +- 0.00457 *103 | 0.77045 +- 0.05412 0.16530 +- 0.00357 *95
Mush. | 0.06278 +- 0.01293 0.00007 +- 0.00012 *41 | 0.06381 +- 0.01530 0.00010 +- 0.00013 *28
Opt. 0.17651 +- 0.02607 0.01630 +- 0.0015¢7 *30 | 0.18552 +- 0.02737% 0.03128 +- 0.00395 *26
Vehicle | 0.67021 +- 0.04291 0.12222 +- 0.00965 *190 | 0.68156 +- 0.04213 0.29551 +- 0.01142 *71

TABLE VII
CLASSIFICATION ERROR AVERAGES STANDARD DEVIATIONS AND f STATISTICS OF THE5X2 CROSSVALIDATION F TESTS[32] OF THE ENSEMBLES
OF OFFLINE MLPsS TRAINED WITH NCL AND OF THE ENSEMBLES OFEFUNNS TRAINED WITH ON-LINE BAGGING NCL. VALUES f MARKED WITH
THE SYMBOL “*” INDICATE STATISTICAL SIGNIFICANT DIFFERENCE WITH95% OF CONFIDENCE

Train error Test error
NCL with off-line On-line bagging NCL with off-line On-line bagging
MLPs NCL with EFUNNs | f MLPs NCL with EFUNNs | f
Av +- SD Av +- SD Av +- SD Av +- SD
Adult 0.16193 +- 0.01438 0.21567 +- 0.01858 3 | 0.16247 +- 0.01222 0.21852 +- 0.01963 4
Letter | 0.17184 +- 0.00693 0.12192 +- 0.00457 *38 | 0.18577 +- 0.00863 0.16530 +- 0.00357 3
Mush. | 0.00000 +- 0.00000 0.00007 +- 0.00012 1 | 0.00020 +- 0.00062 0.00010 +- 0.00013 1
Opt. 0.01331 +- 0.00170 0.01630 +- 0.00157 *6 | 0.03274 +- 0.0042§ 0.03128 +- 0.00395 2
Vehicle | 0.04043 +- 0.00682 0.12222 +- 0.0096% *26 | 0.17494 +- 0.02654 0.29551 +- 0.01142 *26
in relation to NCL. NCL with EFUNNs and NCL with off-line MLPs, except

Another important comparison to show the importance der _the Vehi_cle database,_which_is a sho_rt database. This is
the method proposed in this paper is the comparison betwe@f impressive result, as in off-line learning the MLPs can
on-line bagging NCL with EFuNNs and NCL with off- Process the whole training set_a_ certain number of epochs,
line MLPs. Figure 1 shows the classification error average¥hile EFUNNS process each training example only once. This
obtained by both the approaches. Table VII shows the cla@Dalysis emphasizes even more the importance of having a
sification error averages, standard deviations and statistWider range of choices for the base model, which is allowed
£ of the 5x2 cross-validation F tests. The statistical test®y the proposed method.
show that there is no statistical significant differencevaen
the test classification errors obtained by on-line bagging



V. CONCLUSIONS [11]

This paper proposes a new method to on-line ensemble
learning called on-line bagging NCL. Using this method,
the training of an ensemble member is influenced by thﬁ‘z]
training of the others, directly encouraging diversity.isTh
is an advantage of the proposed method over the other on-
line ensemble methods existent in the literature, excem.NC[13]
The advantage of the new method over NCL is that it sengigy
a different sequence of training data to each one of the
ensemble members, so that it is not necessary to build pﬁrg]
of the diversity a priory. In this way, a wider range of base
models can be used, including deterministic neural netsvork
So, on-line bagging NCL allows the choice of more adequaFfG]
models to on-line learning, such as EFUNN.

The experiments show that NCL using on-line MLPs have
high classification error due to the non suitability of omeli [17]
MLPs as base models. They also show that the proposed
method using EFUNNs can outperform NCL using on-lin€l8]
MLPs in 4 out of 5 classification databases thanks to t
wider range of base model choices, which allow the use 0
EFuUNNSs as the base model.

Moreover, on-line bagging NCL using EFUNNs manage t&o]
attain similar test classification error to NCL using ofidi
MLPs in 4 out of 5 databases. This is an impressive result, as
in off-line learning the MLPs can process the whole training%;2 ]
set a certain number of epochs, while EFUNNSs process eacf11
training example only once. This analysis emphasizes even
more the importance of having a wider range of choices fd¢?l
the base model, which is allowed by the proposed method.
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