
Evolutionary Algorithms for the Project Scheduling
Problem: Runtime Analysis and Improved Design∗

Leandro L. Minku
CERCIA

University of Birmingham
Birmingham B15 2TT, UK

Dirk Sudholt
Dept. of Computer Science

University of Sheffield
Sheffield S1 4DP, UK

Xin Yao
CERCIA

University of Birmingham
Birmingham B15 2TT, UK

ABSTRACT

Even though genetic algorithms (GAs) have been used for
solving the project scheduling problem (PSP), it is not
well understood which problem characteristics make it dif-
ficult/easy for GAs. We present the first runtime analy-
sis for the PSP, revealing what problem features can make
PSP easy or hard. This allows to assess the performance
of GAs and to make informed design choices. Our theory
has inspired a new evolutionary design, including normalisa-
tion of employees’ dedication for different tasks to eliminate
the problem of exceeding their maximum dedication. The-
oretical and empirical results show that our design is very
effective in terms of hit rate and solution quality.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Keywords

Search-based software engineering, runtime analysis, project
scheduling, theory, evolutionary algorithms

1. INTRODUCTION
Scheduling tasks and assigning resources in large-scale

software projects is a very challenging problem. In the
project scheduling problem (PSP) [4, 2, 5] the goal is to
assign employees to tasks such that all employees have all
required skills for their tasks, task precedence constraints
among tasks are respected, the completion time is min-
imised, and the cost in terms of salaries is minimised.

In contrast to other resource-constrained scheduling prob-
lems, employees can divide their attention among several
tasks at the same time. This is often modeled by dedication
values [2] representing the percentage of time an employee
spends on a certain task. Employees have a maximum ded-
ication, which must be respected to avoid overwork.

∗Authors in alphabetical order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

This renders the PSP more complex than classical
scheduling problems. Many researchers resorted to genetic
algorithms (GAs) to solve the problem. Different GAs were
presented for different variants of the PSP [6, 4, 2, 11, 5].
But it is not well understood which problem characteristics
make the problem difficult to solve for evolutionary algo-
rithms (EAs). Some progress was made in the well-known
work by Alba and Chicano [2]. They presented an effec-
tive GA and a systematic empirical performance analysis
on generated benchmark instances, to analyse the impact of
problem features on GA’s performance.

Our work makes two important contributions. We present
the first runtime analysis for the PSP. This theoretical ap-
proach has been applied to many problems from combinato-
rial optimisation [15, 14], and it has led to many interesting
results about how EAs perform. We use runtime analysis
to gain insight into how simple EAs perform on illustrative
instance classes. This sheds light on what instances are easy,
and which ones are hard to solve for EAs. It also helps to
make more informed design choices for the PSP.

Inspired by theoretical insight, we make a second, more
practical contribution: a new mechanism for normalising
dedication values. Alba and Chicano [2] showed that GAs
spend most of their effort avoiding overwork. This is a major
problem even on simple instances, as GAs have a very low hit
rate in finding feasible schedules. Our approach normalises
dedication values automatically. Normalisation is embedded
into the genotype-phenotype mapping, extending the map-
ping from [2]. Whenever an employee has a total dedication
greater than the maximum dedication, all dedication values
to active tasks are scaled accordingly. This completely re-
moves overwork from the problem. Instead of struggling to
find a solution without overwork, our approach allows EAs
to focus on the solution quality. In addition, we introduce
a tailored mutation operator and a new way of dealing with
infeasible solutions, guiding EAs to reach feasibility.

Both theoretical and empirical results show that our mod-
ifications are very effective. A (1+1) EA in our improved
design performs better than the existing GA [2]. It reaches
feasible solutions in 100% of all tested cases, whereas the
GA struggles to reach feasibility. Also in terms of solution
quality our approach was better.

This work demonstrates how theoretical research can im-
prove algorithm design in practice.

2. PROBLEM FORMULATION
Our problem formulation is based on existing work [2].

Assume we are given

• a set of employees e1, . . . , en with salaries s1, . . . , sn,
and skills skill1, . . . , skilln, respectively,

• a set of tasks t1, . . . , tm with efforts eff1, . . . , effm, and
required skills req1, . . . , reqm, respectively, and

• a task precedence graph (TPG), a directed graph with
tasks as nodes and task precedence as edges.

The set of tasks and TPG can be referred to as the project
to be scheduled. The goal is to assign employees to tasks in
order to minimize the completion time as well as the costs
for the project (i. e. salaries paid). Employees can work on
several tasks simultaneously, as indicated by their dedication
to certain tasks. The dedication is the fraction of their time
devoted to a particular task. The completion time is the
time the project is completed.

The amount of dedication of an employee ei to a task tj
is determined by a value xi,j ∈ {0/k, 1/k, . . . , k/k}, where
k ∈ N reflects the granularity of the solution. For k = 1
we only have dedications 0 and 1. For, say, k = 10 we have
k + 1 = 11 dedications of 0%, 10%, . . . , 100%. Employees
can only work on a task tj if all employees working together
have all the skills to do the task. More formally, we require

reqj ⊆
n
⋃

i=1

{skilli | xi,j > 0}. (1)

Alba and Chicano [2] also considered a maximum dedica-
tion for each employee. It reflects how much of a full-time
job an employee is able to work. This can reflect part-time
jobs as well as the willingness for working overtime. How-
ever, for the sake of simplicity we leave this for future work
and use the same maximum dedication of 1 for all employees.

3. PREVIOUS WORK
Alba and Chicano’s work [2] is probably the most well-

known and represents the state-of-the-art in solving PSP
using GAs. They represent candidate solutions for the PSP
as a matrix of binary values which encode the dedications
xi,j for each employee ei and task tj . The recombination
operator is a 2-D single point crossover, which randomly se-
lects a row and a column and then swaps the elements in the
upper left and in the lower right quadrant of the two parents.
They used bit-flip mutation, binary tournament selection of
two parents for recombination, and survival selection based
on elitist replacement of the worst individual.

A candidate solution is considered infeasible if there is a
task with no employee associated, or the skills constraint
(eq. 1) is not satisfied, or there are employees working over-
time. Overtime can happen when tasks are executed in par-
allel, as the total dedication of employees in the candidate
solution can exceed 1. Based on that, the fitness function is
defined as follows:

f(x) =

{

1/q if the solution is feasible
1/(q + p) otherwise,

where q = wcost · cost + wtime · time,
p = wpenal +wundt · undt + wreqsk · reqsk +wover · over,
and wcost, wtime, wpenal, wundt, wreqsk and wover are pre-
defined parameters, cost and time are the cost and comple-
tion time of the solution, undt is the number of tasks with
no employee associated, reqsk is the number of skills still
required to perform all project tasks, and over is the total
overwork time spent by all employees during the project.

Their fitness function penalizes infeasible solutions, but
whether or not it gives hints as to how to reach feasible so-
lutions depends on the chosen values for several pre-defined
parameters (wpenal, wundt, wreqsk and wover). Moreover,
Alba and Chicano’s experimental analysis reveals that the
constraint overwork can cause their GA to have very low
hit rate in finding feasible solutions. This holds even for
very simple instances where the skill constraints have been
removed (every employee has all skills) and all employees
have the same salary.

4. OUR APPROACH
In order to overcome problems related to the hit rate and

to improve solution quality, we propose an improved design,
which consists of two main points. The first one is normal-
ising employee’s dedications (section 4.1) to eliminate the
problem of overwork. The second one is to give a clear gra-
dient for searching towards feasibility by introducing a new
type of penalty in the evaluation of cost and completion time
(section 4.2). We do not aim to improve the GA itself. In-
stead, we show in our experimental analysis (section 6) that
our improved design allows very good results to be achieved
even when using a very simple EA such as the one explained
in section 4.3. The use of other EAs is left as future work.

4.1 Normalising Dedications
Instead of penalizing overwork and letting an EA search

for feasible solutions, we normalise the dedication values. If
at some point of time the total dedication of an employee ei
across all active tasks is di > 1 then her/his dedication for
all tasks is divided by di. This reflects a very natural way
of an employee dividing her/his attention to several tasks.

For instance, assume there are two tasks t1, t2 suitable for
employee e1. Assume also that the employee works on both
tasks at overlapping time intervals. If x1,1 + x1,2 > 1, the
employee works overtime whenever she/he works on both t1
and t2 at the same time. If x1,1 + x1,2 ≤ 1, on the other
hand, resources are wasted when the employee works on a
single task. So, no matter the values for x1,1 and x1,2, there
will always be overwork or resources wasted—unless both
tasks start and finish at exactly the same time. Note that,
depending on x1,1 and x1,2, there could be even both re-
sources wasted when the employee is working on a single
task and overwork when working on both tasks at the same
time (whenever x1,1 < 1 ∧ x1,2 < 1 ∧ x1,1 + x1,2 > 1).

Note that we do not normalise “underwork”, i. e., total
dedications less than 1. This would otherwise remove the
possibility of balancing cost vs. completion time.

Normalisation allows for much more fine-grained schedules
as employees can automatically re-scale their dedications as
soon as tasks are finished or new tasks are started. Exam-
ples of schedules with normalisation are given later on in
Figure 1. First we describe how the final schedule can be
computed from dedication values and the problem instance.

4.2 Evaluating Costs and Completion Time
Algorithm 1 computes both cost and completion time ac-

cording to an implicit Gantt diagram. For schedules that are
infeasible because certain skills are missing, the algorithm
returns very high costs and completion times. Both val-
ues grow with the number of missing/required skills. When
cost and completion times are used in any reasonable single-
or multi-objective fitness function, this gives a clear gradi-

ent for search algorithms towards feasibility. The algorithm
makes the mapping informally described in [2] explicit and
it includes the modifications presented here.

The algorithm first tests whether the genotype is feasible
in that every task can be completed in finite time (lines 1-3).
That is the case when the skills constraint (eq. 1) is not sat-
isfied. Note that this includes the case in which there is a
task with no employee designated. So, if the genotype is in-
feasible, a penalty vector (reqsk · 2

∑n
i=1

∑m
j=1 sieffj , reqsk ·

2k
∑m

j=1 effj) is returned (line 5), where reqsk is the number
of required skills. Both values are higher than for any feasi-
ble schedule as the cost is always at most

∑n
i=1

∑m
j=1 sieffj

and the time is always at most k
∑m

j=1 effj . Also, any de-
crease in the number of required skills strictly decreases both
components through reqsk. This gives strong hints for any
search algorithm to reach the feasible region.

If the dedication matrix is the genotype during optimisa-
tion, the final schedule can be called phenotype. The final
schedule for any feasible genotype can be assessed by stor-
ing the di,j-values from each iteration, along with the corre-
sponding time stamps. This defines a mapping that trans-
forms any genotype (i. e., a matrix of dedication values) to
a corresponding phenotype (i. e., a schedule).

The algorithm iteratively constructs the schedule. We
check which tasks can be active at the current point of time
(line 7). The normalised dedication for all suitable employ-
ees is computed for all these tasks (line 12). Then we deter-
mine the earliest point of time t at which a task is finished
(line 14). All finished tasks are being marked as finished
(line 20), so that the next iteration can include new tasks,
according to the task precedence graph. If there are tasks
that have been started, but are not finished yet, their effort
is updated to the remaining effort needed for completing
them (line 18). This accounts for potentially piecewise eval-
uations of particular tasks. Along the way, all completion
times and costs in all iterations are added up (lines 15-16).

The computational complexity of the genotype-phenotype
mapping and the fitness evaluation can be bounded by
O(nm2), with the use of appropriate data structures. The
basic idea is to maintain counters for the in-degree of each
vertex. The counters and the set V ′ can be updated effi-
ciently whenever edges are removed from the TPG: if the
counter of a vertex reaches 0, it is added to V ′. The time
complexity is quite low, given that the input size is Θ(nm).
The feasibility check can be implemented in time O(nm).

4.3 Evolutionary Algorithm
As one of our goals is to present the first runtime analy-

sis for the PSP, we follow many previous examples in this
area and consider one of the simplest EAs: the (1+1) EA.
It is simple because it neither uses a population nor recom-
bination (crossover). One generation consists of mutation,
and then selection checks whether the mutation has found
an improvement.

Alba and Chicano [2] used a binary encoding to repre-
sent the xi,j . Instead, we work directly in the search space
{0/k, . . . , k/k}nm. Mutation chooses which components to
change and then for each one it picks a new value uniformly
at random. Algorithm 2 describes the (1+1) EA for our
search space, for minimising some fitness function f .

The fitness function to be used in our experimental anal-
ysis is f(x) = wcost · cost+wtime · time, where cost and time

Algorithm 1 Evaluate(cost, time,TPG)
Output: (cost, time)

1: Let reqsk = 0.
2: for all tasks tj do
3: reqsk = reqsk + |reqj \

⋃n
i=1{skilli | xi,j > 0}|.

4: if reqsk > 0 then

5: Output

(

reqsk · 2
n
∑

i=1

m
∑

j=1

sieffj , reqsk · 2k
m
∑

j=1

effj

)

;

stop.
6: while TPG 6= ∅ do
7: Let V ′ be the set of all unfinished tasks without in-

coming edges in TPG.
8: if V ′ = ∅ then
9: Output “Problem instance not solvable!” and stop.
10: for all tasks tj in V ′ do
11: for all employees ei do
12: Let di,j :=

xi,j

max
(

1,
∑

t`∈V ′ xi,`

) .

13: Compute the total dedication dj :=
∑n

i=1 di,j .
14: Let t := minj(effj/dj).
15: Let cost := cost + t

∑n
i=1 si

∑m
j=1 di,j .

16: Let time := time + t.
17: for all tasks tj in V ′ do
18: Let effj := effj − t · dj .
19: if effj = 0 then
20: Mark tj as finished and remove it and its incident

edges from TPG.
21: Output (cost, time) and stop.

Algorithm 2 (1+1) EA for project scheduling

1: repeat
2: Create x′ by copying x.
3: for each 1 ≤ i ≤ n, 1 ≤ j ≤ m do
4: With probability 1/(nm) replace x′

i,j by a value
chosen u. a. r. from {0/k, 1/k, . . . , k/k} \ {xi,j}.

5: if f(x′) ≤ f(x) then x := x′.
6: until happy

are obtained from algorithm 1. The runtime analysis is not
restricted to this fitness function.

5. RUNTIME ANALYSIS
In the following, we estimate the optimisation time of the

(1+1) EA, defined as the first generation in which a global
optimum is found. We will also investigate randomised local
search (RLS). It differs from the (1+1) EA in that during
mutation exactly one dedication value is changed. The entry
is chosen uniformly at random.

We make few assumptions about the fitness function f to
keep the analyses as general as possible. We only assume
that f is Pareto-compliant in a strict sense: if x′ Pareto-
dominates x (i. e., cost(x′) ≤ cost(x) ∧ time(x′) ≤ time(x))
and x does not Pareto-dominate x′ then f(x′) < f(x). That
is, any improvement in one or both objectives also improves
the fitness f . This applies to any weighted combination
of cost and completion time. In the special case where all
employees have the same salary, the costs are always the
same. Then f boils down to minimising the completion time.

5.1 Optimal Completion Times
We start with a structural result. The two goals of min-

imising costs and completion time are often conflicting. We

first look at the extreme case of minimising the completion
time only. In every feasible solution for each task the team
has the required skills for the task. This also holds if more
employees join in working on a task, regardless of their skills.
The following theorem is an immediate conclusion.

Theorem 1. For every solvable PSP instance, the com-
pletion time is minimal if in the schedule all employees al-
ways work full time. Then the completion time is 1/n ·
∑m

j=1 effj.
If normalisation is used, a sufficient condition for mini-

mality is that all dedication values are 1.

The second statement is not true without normalisation.
Without it, the difficulty for optimization is to find the ideal
balance between different tasks, while avoiding overwork.
When normalisation is used, this difficulty disappears.

5.2 A General Lower Bound
We first present a lower bound on the expected running

time, indicating the least time we should allow for running
an EA on the problem. The only requirement is that there
is a single globally optimal dedication matrix with respect
to the chosen fitness function. This also applies in settings
where there is a single Pareto-optimal solution for minimis-
ing cost and completion time. In a more general sense, the
analysis applies to the time for finding any fixed target point.

Theorem 2. Consider a PSP instance with n employees
and m tasks, nm > 1, with a single global optimum (a fixed
target) in the fitness function used. The expected optimiza-
tion time (time to hit the target) of RLS and the (1+1) EA,
with or without normalisation, is at least Ω(knm log(nm)).

Proof. Call an entry of the dedication matrix bad if it dis-
agrees with the global optimum. Observe that in order to
find the optimum it is necessary to change all bad entries
at least once in a mutation. Each entry is bad at initial-
ization with probability k/(k + 1). The expected number
of bad initial entries is knm/(k + 1). By classical Chernoff

bounds [13], with probability e−Ω(nm) the initial number of
bad entries is at least nm/3. Assume an initial number of
nm/3 bad entries and define t := (knm− 1) ln(nm/3). The
probability of not changing a particular entry in t mutations
is (1− 1/(nm))t. The probability that there is a bad entry
which is never turned good during t mutations is at least

1−

(

1−

(

1−
1

knm

)t
)nm/3

≥ 1−
(

1− e− ln(nm/3)
)nm/3

≥ 1−

(

1−
3

nm

)nm/3

≥ 1− e−1.

Using the union bound for the initialization, with probability
at least 1 − e−1 − e−Ω(nm) = Ω(1) the algorithm has not
found an optimum after t = Ω(knm · ln(nm)) steps. This
establishes the bound Ω(1) · t = Ω(knm · log(nm)).

The lower bound increases linearly with the granularity pa-
rameter k. This makes sense as every entry needs to be set
to one out of k possible choices, and mutation makes these
choices uniformly. The term nm ln(nm) reflects the time
until mutation has affected all wrong dedication values.

5.3 Time to Feasibility
In order to see how efficiently our treatment of infeasible

solutions guides evolution towards feasible search points, we
estimate the expected time until feasibility is reached.

To this end, we first cite a recent result from drift analysis.
It is used to determine the expected time until a Markov
chain {Xt}t∈N reaches a designated target state 0.

Theorem 3 (Johannsen’s Variable Drift Thm.[10]).
Let {Xt}t∈N be a sequence of random variables over a finite
state space S ⊆ R

+
0 and let xmin := min{x ∈ S : x > 0}.

Furthermore, let T be the random variable that denotes the
first point in time t ∈ N for which Xt = 0. Suppose that
there exists a continuous and monotone increasing function
h : R+

0 → R
+ such that E(Xt −Xt+1 | Xt) ≥ h(Xt) holds

for all t < T . Then,

E(T | X0) ≤
xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx

Using this variable drift, we get the following with a very rea-
sonable assumption: the total number of skills is not larger
than some polynomial in nm.

Theorem 4. Consider RLS or the (1+1) EA, with or
without normalisation, on any solvable instance where
∑n

i=1 |skilli| ≤ (nm)δ for some constant δ ≥ 0. The expected
time until some feasible schedule is found is O(nm log(nm)).

The upper bound is by a factor of k smaller than the lower
bound from Theorem 2. This indicates that the time to
feasiblity is only a small fraction of the optimisation time.

Proof of Theorem 4. Note that, as long as the current so-
lution is infeasible, the fitness is uniquely determined by
the number of required skills. Let X0, X1, . . . describe this
number and its development over time. A feasible solution
is found once this value reaches 0. We claim that

E(Xt+1 −Xt | Xt > 0) ≥ Xt ·
1

enm

for both algorithms (for RLS one can remove the fac-
tor e). Applying the variable drift theorem (Theorem 3)
with h(x) = x/(enm) yields an upper bound of

1

1− 1
enm

+

∫ X0

1

enm

x
dx = O(1) + enm · ln(X0)

and this is O(nm log(nm)) as X0 ≤
∑n

i=1 |skilli| ≤ (nm)δ,
so log(X0) ≤ δnm = O(nm).

It remains to prove the claim. Fix any task tj and
let mj := |reqj \

⋃n
i=1{skilli | xi,j > 0}| describe the number

of required skills with respect to tj . As the instance is solv-
able, making all employees work on tj reduces the number
of required skills by mj . A mutation that only increases the
dedication of a fixed employee with xi,j = 0 has probability
at least 1/(nm) · (1− 1/(nm))nm−1 ≥ 1/(enm). Hence, the
expected reduction of |reqj \

⋃n
i=1{skilli | xi,j > 0}| in one

generation is at least mj ·1/(enm). As this holds for all tasks
and Xt =

∑m
j=1 mj , we get E(Xt+1 −Xt | Xt > 0) ≤ Xt ·

1/(enm). This implies the claim and the upper bound.

5.4 Easy Instances: Linear Schedules
Now we turn to a class of illustrative “easy” instances.

Assessing how effective an EA is on easy instances is an ex-
cellent starting point for an analysis. It gives a good baseline

for comparisons with other results on the running time, and
most importantly we learn about the search behaviour of an
EA. We need a good understanding of easy instances before
we can move on to more complicated instance classes.

As easy cases we consider schedules with a “linear” struc-
ture: the task precedence graph is a chain of m vertices,
or more generally any directed acyclic graph that contains
such a chain. In this case all tasks have to be completed
sequentially. Note that if normalisation is switched on, it is
never actually applied as at each time only one task is pro-
cessed. The issue of whether normalisation is used or not is
irrelevant for linear schedules.

We also assume that all salaries are equal. So the problem
boils down to minimising the completion time. We first give
a result for RLS as it is easier to analyse.

Theorem 5. Consider an instance with n employees with
equal salaries and m tasks with arbitrary positive efforts.
Let the task precedence graph contain an m-vertex chain as
subgraph. Then the expected optimization time of RLS, with
or without normalisation, is of order Θ(knm ln(nm)).

Proof. The lower bound follows from Theorem 2.
By Theorem 4 we know that a feasible solution is found in

time O(nm ln(nm)). Afterwards, increasing the dedication
of any employee strictly decreases the time until this task,
and hence the whole schedule, is completed. The remaining
expected optimization hence equals the expected time until
all entries of the dedication matrix are 1 (cf. Theorem 1).

As no entry can be decreased in RLS, we can use the fol-
lowing argument. Call an entry xi,j good if xi,j = 1 and bad
otherwise. The number of bad entries is monotone decreas-
ing over time. If the current number is `, the probability of
further decreasing it equals `/(knm) as any entry xi,j < 1 is
set to xi,j = 1 with probability 1/k. The expected time until
this happens is knm/`. Summing all expected times, start-
ing with at most nm bad entries, yields the upper bound

nm
∑

`=1

knm

`
= knm ·

nm
∑

`=1

1

`
= O(knm log(nm)).

We also prove a polynomial upper bound for the
(1+1) EA, if all efforts are polynomial in n,m.

Theorem 6. In the setting of Theorem 5, if additionally
effj ≥ 1 for all 1 ≤ j ≤ m then the expected optimisa-
tion time of the (1+1) EA, with or without normalisation,
is bounded by ek3n3m

∑m
j=1 effj .

Proof. Clearly, the completion time is at most k
∑m

j=1 effj .
We claim that for each non-optimal schedule there is always
at least one mutation that decreases the completion time by
at least 1/(kn2).

Consider a task j where not all employees have full ded-
ication. The decrease of the completion is minimal in case
n− 1 employees have full dedication and the remaining em-
ployee has dedication (k−1)/k. Then a mutation increasing
the latter value to 1 decreases the time for this task by

effj

n− 1/k
−

effj

n
=

effj/k

n2 − n/k
≥

1

kn2
.

The probability of making this mutation is at least
1/(eknm). Then the expected decrease of the completion
time is at least 1/(ekn3m). The upper bound then follows

from drift analysis (Theorem 3): we take Xt as the differ-
ence to the optimal completion time, note X0 ≤ k

∑m
j=1 effj

and put h := 1/(ekn3m).

The upper bound for the (1+1) EA is much higher than the
upper bound for RLS. We conjecture that an upper bound
of O(knm ln(nm)) also applies for the (1+1) EA, i. e., both
algorithms have the same asymptotic running time.

Proving this, however, is tough. Even though the prob-
lem looks similar to the simple problem OneMax, many
obstacles make it much more complex: arbitrary weights for
tasks, a non-linear relation between single dedication values
and their contribution to fitness, and a representation with
strings of more than 2 values.

If k = 1, i. e., only dedications 0 and 1 are allowed, the
analysis becomes easier. It is not hard to see that then
the fitness function is monotone: flipping only 0-bits to 1
and not flipping any 1-bit to 0 results in a strict fitness
improvement. By Doerr et al. [8] this yields the following.

Theorem 7. In the setting of Theorem 6, if k = 1
then the expected optimisation time of the (1+1) EA is

O((nm)3/2). Additionally, if the mutation probability is
changed to c/(nm) for a constant 0 < c < 1 the expected
time is even bounded by O(nm log(nm)).

This supports our conjecture that the (1+1) EA is as effec-
tive as RLS for linear schedules.

5.5 Difficult Instances
We also look at difficult instances to get insight into what

makes the PSP hard. Linear schedules are easy to solve, so
we consider settings with tasks being processed in parallel.
We have already seen in section 4.1 that without normal-
isation an EA struggles in finding an optimal balance be-
tween dedications for different tasks. With normalisation
this problem becomes a lot easier. But we show in the fol-
lowing that even with normalisation, RLS and the (1+1) EA
can struggle in finding an optimal balance.

In particular, RLS can get stuck in local optima even on
a very simple and tiny problem instance where costs are
irrelevant. The instance contains two tasks with efforts 4
and 5, respectively. There is only one employee, so trivially
we always get a fixed cost for any feasible schedule. Starting
with equal dedication values of 1/2, both tasks finish at
similar times. The task with higher effort takes two more
time steps, throughout which the employee only works half
time, see Figure 1 (a). This increases the completion time,
compared to the optimal schedule where both dedications
are 1, see Figure 1 (d). Any local operation either creates
an infeasible schedule or it increases the imbalance between
the two tasks. This increases the time period at the end
where the employee only works half time and it makes the
schedule even worse, see Figure 1 (b), (c).

RLS has a positive probability of starting in the local op-
timum, and no local mutation is accepted. Thus, we get:

Theorem 8. There is an instance with k = 2, only m = 2
tasks and just n = 1 employee (see Figure 1) where RLS with
normalisation has an infinite expected optimization time.

This example shows that the global mutation operator
used in the (1+1) EA is important in general.

The above instance can also be generalised towards more
than two tasks. Set eff1 = eff2 = · · · = effm−1 = 2m and

50%

50%

(a) x1,1 = 1/2, x1,2 = 1/2

33% 50%

67%

(b) x1,1 = 1/2, x1,2 = 1

67%

33% 50%

(c) x1,1 = 1, x1,2 = 1/2

50%

50% 100%

(d) x1,1 = 1, x1,2 = 1

Figure 1: Gantt diagrams of all feasible schedules
for the example from Theorem 8 and the employee’s
dedication. (a) is a local optimum, (d) is the only
global optimum.

effm = 2m + 1. There are no precedence constraints. Set
k = m and n = 1, that is, there is only one employee.

This yields a setting which can also become hard for the
(1+1) EA. Similar to the instance from Theorem 8, setting
all dedication values to 1/k = 1/m yields a local optimum.
All other solutions are worse, as they create an imbalance
between tasks—except for solutions where all dedications
are equal and larger than 1/m. In order to escape from the
local optimum, all dedication values need to be changed in a
single mutation. The expected running time then increases
exponentially in the number of tasks.

Theorem 9. For every m ∈ N there is an instance with
m tasks and one employee where the (1+1) EA with normal-

isation has expected optimisation time at least 1
m

(

m2

m+1

)m

.

We omit a formal proof due to space constraints. This result
shows that global optimisation can be very hard, even if
finding a solution of reasonable quality might be easy.

In particular, even though normalisation makes it easier
to balance dedications, there is still a risk of non-optimal
equilibria between dedications for tasks processed in par-
allel. This can present a major obstacle for EAs as many
dedications might need to be changed in a single mutation.

6. EXPERIMENTAL ANALYSIS
This section presents an experimental analysis of our al-

gorithm with the objective of further analysing the effects of
normalisation. In order to do so, we compare our algorithm
against a state-of-the-art GA [2] and a (1+1) EA without
normalisation1. The latter was used to check whether nor-
malisation is the main reason for the differences in the results
obtained by our algorithm and the GA.

The (1+1) EA without normalisation works similarly to
our algorithm with normalisation, but with an extra con-
dition on the fitness function to consider overwork. In this
case, the fitness is f(x) = wpess+over if the skills constraint
(eq. 1) is satisfied but there is overwork. The value over is
the total amount of overwork time spent by all employees
during the project [2] and
wpess = wcost · 2

∑n
i=1

∑m
j=1 sieffj + wtime · 2k

∑m
j=1 effj .

This section is further divided as follows: section 6.1
presents the data sets used in the experiments; section 6.2

1Our implementation of the (1+1) EA with and without
normalisation was based on the Opt4J framework [12].

presents the parameters; section 6.3 presents the results in
terms of hit rate (number of runs in which a feasible solution
was found); and section 6.4 in terms of solution quality.

6.1 Data Sets
In order to make a fair comparison against the GA, we

used the same 48 instances (benchmarks 1-5) of the PSP gen-
erated by Alba and Chicano for their experimental analysis
[2]. As the number of instances is high, we avoid biasing the
conclusions and remove the possibility of hand-tuning the
algorithm to a particular problem instance. Moreover, we
can verify how the algorithms are affected by problem fea-
tures such as number of employees, number of tasks, number
of employees’ skills and number of project demanded skills.

Benchmarks 1-3 were used to analyse the effect of vary-
ing each of three problem features (number of employees,
number of tasks, and number of employees’ skills) while
maintaining the other features fixed. These data sets use
the same salary for all employees ($10,000), so that, given a
project, the cost of all solutions for this project is always the
same. In this way, the ideal cost per unit of time is known
and it is possible to evaluate how close a given solution is to
the optimum in terms of completion time.

Benchmark 1 is composed of 4 instances varying the num-
ber of employees among 5, 10, 15 and 20. Benchmark 2 is
composed of 3 instances varying the number of tasks among
10, 20 and 30. Benchmark 3 is composed of 5 instances
varying the number of employees’ skills among 2, 4, 6, 8
and 10 skills, which are randomly selected from a set of 10
project skills. Each task requires five different skills in this
benchmark. In benchmarks 1 and 2, all employees have all
necessary skills, i. e., the skills constraint (eq. 1) is always
satisfied. Instances within each of the benchmarks 1 and 3
represent the same project to be developed (i. e., they have
the same tasks and TPG) with the number of tasks fixed
as 10. Each instance of benchmark 2 represents a different
project, as the number of tasks is different. In benchmarks
2 and 3, the number of employees is fixed as 5.

Benchmarks 4 and 5 are composed of instances that rep-
resent different projects and each employee has a different
salary. Each benchmark is composed of 18 instances which
vary all the previous problem features. The number of em-
ployees can be 5, 10 or 15 and the number of tasks 10, 20 or
30. In benchmark 4, the total number of project skills is 10,
and two ranges were considered separately for the number of
employees’ skills: 4-5 and 6-7. In benchmark 5 the number
of project demanded skills can be 5 or 10, and the number
of skills per task and employee is in the range 2-3.

6.2 Setup
For a fair comparison between our algorithm and the GA,

we used the following parameters, which correspond to the
parameters used previously [2]: constant for the granularity
of the solution k = 7; wcost = 10−6; wtime = 10−1; number
of generations 5064 (= number of fitness evaluations consid-
ering their initial population of size 64); and the number of
independent runs per problem instance 100.

6.3 Hit Rate
Table 1 shows the hit rates for all benchmarks. Our

(1+1) EA with normalisation always achieved hit rate 100,
i. e., all runs always found a feasible solution. The modified
Wald confidence interval [1] with 95% of confidence for that

is [96.83,100.00]. This is a significant improvement in com-
parison to the GA, which frequently presented much lower
hit rates, sometimes even hit rates of zero. It is worth noting
that the upper limits of the confidence intervals for hit rates
of 90 or less are lower than the lower limit for hit rates of
100.

In order to check whether normalisation plays a signif-
icant role in improving the hit rates, the (1+1) EA with
normalisation was compared to the (1+1) EA without nor-
malisation. The hit rates for the latter algorithm were al-
most always lower, showing that normalisation is important
for improving hit rates. The (1+1) EA without normali-
sation sometimes achieved better and sometimes worse hit
rates than the GA, showing that the (1+1) EA itself can
sometimes be beneficial and sometimes detrimental for the
hit rates in comparison to the GA.

Another interesting observation is that our (1+1) EA with
normalisation always managed to achieve hit rate of 100
independent of the problem features. The study performed
by Alba and Chicano [2] revealed that their GA’s hit rate
varied depending on the problem features. For instance, it
was lower when there were more tasks, less employees’ skills
or more project demanded skills. Our experiments using
(1+1) EA without normalisation also present different hit
rates for different instances. So, normalisation again plays
an important role in making the hit rate less dependent on
the problem features. In other words, normalisation helps
to improve the robustness of the EA.

6.4 Solution Quality
In this section, we analyse the quality of the feasible solu-

tions in terms of average fitness, cost and completion time.
Only feasible solutions were used for computing the values
analysed in this section.

Following Demšar’s recommendation for comparing two
algorithms over multiple data sets [7], we used Wilcoxon
sign rank statistical test to compare the average fitness of the
(1+1) EA with and without normalisation over all problem
instances. The test shows statistically significant difference
at the level of significance of 0.05 (p-value of 8.2911 · 10−6).
The average fitness obtained by the (1+1) EA with nor-
malisation wins for all problem instances. So, normalisation
plays a key role in improving the fitness of the solutions. It is
not possible to perform this type of comparison against Alba
and Chicano’s GA because relevant parts of their numerical
results were not presented in their paper.

Besides the better average fitness across problem in-
stances, the variances in cost and completion time across
solutions for a same problem instance were also very low
when normalisation was used. The variance in cost was
never more than 0.03 percent of the average cost and the
variance in completion time was never more than 0.18 per-
cent of the average completion time of the project. When
normalisation was not used, the variance in cost was from
0.25–1.90 percent of the total cost and the variance in com-
pletion time was 4.65–52.19 percent of the total completion
time whenever there were more than three feasible solutions.

6.4.1 Benchmarks 1-3

Table 2 shows some values descriptive of the solution qual-
ity for benchmarks 1-3. The raw completion time for each
algorithm and problem instance was omitted due to space
restrictions. The cost for all solutions of benchmarks 1, 3

and the first instance of benchmark 2 were $980,000. The
cost for the second and third instances of benchmark 2 were
$2,600,000 and $2,700,000, respectively. This is expected
considering the instances with the same project to be devel-
oped and the fact that all employees have the same salary.

The cost per unit of time (cost/time) for benchmarks 2
and 3 is optimal at $50,000 (all employees working full time),
as there are 5 employees and all have the same salary. Each
problem instance of benchmark 1 has the optimal cost/time
increased by $50,000 in relation to the previous instance,
as the number of employees is increased by 5. As we can
see from table 2, our (1+1) EA with normalisation obtained
near optimal solutions for all these benchmarks. For bench-
marks 2 and 3, we can see that the cost/time was closer to
the optimum than the other algorithms’. So, for the same
project cost, our (1+1) EA with normalisation obtained so-
lutions with lower completion time. The same happened for
benchmark 1, as shown through the lower product of the
number of employees by the completion time (n · time) in
table 2. As the (1+1) EA without normalisation always pre-
sented worse completion time than the GA, normalisation
plays a key role in improving solution quality.

The results also reveal that the solution quality of our
(1+1) EA with normalisation was less affected by variations
in the number of employees, tasks and employees’ skills than
the other algorithms’. This is shown by its more similar
product n · time across instances of benchmark 1, and by
its more similar cost/time across instances of benchmarks 2
and 3. These values were more different across instances of
a same benchmark for the (1+1) EA without normalisation.
So, normalisation plays again an important role in making
the EA more robust.

6.4.2 Benchmarks 4-5

Even though we cannot compare cost and completion time
numerical values of our (1+1) EA with normalisation against
the GA for benchmarks 4 and 5, we analyse them against the
(1+1) EA without normalisation. In this case, even though
our (1+1) EA with normalisation always obtained consid-
erably better completion time (solutions took from 39.49
to 90.92 percent of the time spent by solutions generated
without normalisation), it obtained slightly worse cost (from
100.17 to 103.43 percent of the cost of solutions without nor-
malisation). Nevertheless, the slightly worse cost reflects the
choice of weights wcost and wtime in the fitness function. The
fitness values produced by the (1+1) EA with normalisation
were better, representing better solution quality considering
the given wcost and wtime. As future work, other weights or
a multi-objective evolutionary algorithm should be tested.

7. CONCLUSIONS
We have presented novel theoretical insight into the per-

formance of EAs for the PSP. This theory inspired improve-
ments in the design of EAs, including normalisation of dedi-
cation values, a tailored mutation operator, and fitness func-
tions with a strong gradient towards feasible solutions. Nor-
malisation removes the problem of overwork and allows an
EA to focus on the solution quality. It facilitates finding
the right balance between dedication values for different
tasks and allows employees to adapt their workload when-
ever other tasks are started or finished.

Runtime analyses for EAs with and without normalisation
have covered easy and difficult instances, and how long it

Table 1: Hit rate out of 100 runs for the (1+1) EA without normalisation, and the GA (obtained from [2]).
The hit rate for the (1+1) EA with normalisation was always 100.

Benchmark 1 Benchmark 2 Benchmark 3
Employees No Norm GA Tasks No Norm GA Employees’ skills No Norm GA

5 97 87 10 97 73 2 0 39
10 100 65 20 84 33 4 0 53
15 97 49 30 3 0 6 24 77
20 96 51 – – – 8 11 66
– – – – – – 10 100 75

Benchmark 4 Benchmark 5
Tasks 4-5 employees’ skills 6-7 employees’ skills 5 project skills 10 project skills

5,10,15 employees 5,10,15 employees 5,10,15 employees 5,10,15 employees
No Norm GA No Norm GA No Norm GA No Norm GA

10 2,0,89 94,97,97 9,100,100 84,100,97 10,49,90 98,99,100 0,0,0 61,85,85
20 0,2,17 0,6,43 0,78,11 0,76,0 0,2,67 6,9,12 0,0,0 8,1,6
30 0,0,0 0,0,0 0,6,0 0,0,0 0,0,1 0,0,0 0,0,0 0,0,0

Table 2: Quality of feasible solution for (1+1) EA with and without normalisation, and the GA (obtained
from [2]). The averages were calculated considering only the runs in which a feasible solution was found. The
best values are in bold. n, m and sk are the number of employees, tasks and employees’ skills.

Benchmark 1 Benchmark 2 Benchmark 3

n Avg. n · time Avg. cost/time1 m Avg. cost/time sk Avg. cost/time
Norm No Norm GA Norm Norm No Norm GA Norm No Norm GA

5 98.04 113.96 109.40 49,978 10 49,978 36,579 44,944 2 49,983 – 45,230
10 98.06 129.68 112.70 99,940 20 49,980 35,273 44,748 4 49,983 – 45,069
15 98.07 128.06 115.95 149,900 30 49,990 18,236 – 6 49,980 38,762 44,651
20 98.08 129.54 117.60 199,830 – – – – 8 49,979 36,518 44,617
– – – – – – – – – 10 49,978 37,182 44,427
1 Cost per time for benchmark 1 was omitted for the (1+1) EA without normalisation and the GA due to space constraints.

takes to find feasible solutions. For linear schedules both
the (1+1) EA and RLS are effective. However, despite using
normalisation they still struggle to escape from local optima
where many dedication values form an equilibrium.

Our empirical study confirmed that normalisation is very
effective in improving the hit rate, the solution quality and
making the EA more robust.

Future work includes experimental analysis of the run-
time or generation-to-success distributions [9, 3], use of other
weights for the fitness function and other EAs such as multi-
objective algorithms.

Acknowledgments: The authors thank Enrique Alba
for providing instances from [2] and the anonymous review-
ers for their constructive comments. This research was sup-
ported by EPSRC grant EP/D052785/1.

8. REFERENCES
[1] A. Agresti and B. Coull. Approximate is better than

“exact” for interval estimation of binomial proportions. The
American Statistician, 52:119–126, 1998.

[2] E. Alba and J. F. Chicano. Software project management
with GAs. Information Sciences, 177:2380–2401, 2007.

[3] D. Barrero, B. Castaño, M. R-Moreno, and D. Camacho.
Statistical distribution of generation-to-success in GP:
Application to model accumulated success probability. In
EuroDP ’11, pages 155–166. Springer, 2011.

[4] C. K. Chang, M. J. Christensen, and T. Zhang. Genetic
algorithms for project management. Annals of Software
Engineering, 11:107–139, 2001.

[5] C. K. Chang, H. Jiang, Y. Di, D. Zhu, and Y. Ge.
Time-line based model for software project scheduling with

genetic algorithms. Information and Software Technology,
50(11):1142 – 1154, 2008.

[6] C. Chao. SPMNET: A New Methodology for Software
Management. PhD thesis, The University of Illinois at
Chicago, 1995.

[7] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. JMLR, 7:1–30, 2006.

[8] B. Doerr, T. Jansen, D. Sudholt, C. Winzen, and
C. Zarges. Optimizing monotone functions can be difficult.
In PPSN ’10, pages 42–51. Springer, 2010.

[9] H. Hoos and T. Stützle. Local search algorithms for SAT:
An empirical evaluation. Journal of Automated Reasoning,
24(4):421–481, 2000.

[10] D. Johannsen. Random Combinatorial Structures and
Randomized Search Heuristics. PhD thesis, Universität des
Saarlandes, Saarbrücken, Germany and the
Max-Planck-Institut für Informatik, 2010.

[11] P. Kapur, A. Ngo-The, G. Ruhe, and A. Smith. Optimized
staffing for product releases and its application at
Chartwell Technology. Journal of Software Maintenance
and Evolution: Research and Practice, 20(5):365–386, 2008.

[12] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich. Opt4J
- A Modular Framework for Meta-heuristic Optimization.
In Proc. of GECCO ’11, pages 1723–1730. ACM, 2011.

[13] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[14] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity. Springer, 2010.

[15] P. S. Oliveto, J. He, and X. Yao. Time complexity of
evolutionary algorithms for combinatorial optimization: A
decade of results. Int’l Journal of Automation and
Computing, 4(3):281–293, 2007.

