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ABSTRACT
Software Effort Estimation (SEE) may suffer from changes in the
relationship between features describing software projects and
their required effort over time, hindering predictive performance
of machine learning models. To cope with that, most machine
learning-based SEE approaches rely on receiving a large number
of Within-Company (WC) projects for training over time, being
prohibitively expensive. The approach Dycom reduces the number
of required WC training projects by transferring knowledge from
Cross-Company (CC) projects. However, it assumes that CC projects
have no chronology and are entirely available before WC projects
start being estimated. Given the importance of taking chronology
into account to cope with changes, it may be beneficial to also take
the chronology of CC projects into account. This paper thus investi-
gates whether and under what circumstances treating CC projects
as multiple data streams to be learned over time may be useful
for improving SEE. For that, an extension of Dycom called OATES
is proposed to enable multi-stream online learning, so that both
incoming WC and CC data streams can be learnt over time. OATES
is then compared against Dycom and five other approaches on a
case study using four different scenarios derived from the ISBSG
Repository. The results show that OATES improved predictive per-
formance over the state-of-the-art when the number of CC projects
available beforehand was small. Learning CC projects over time as
multiple data streams is thus recommended for improving SEE in
such scenario. When the number of CC projects available before-
hand was large, OATES obtained similar predictive performance to
the state-of-the-art. Therefore, CC data streams are unnecessary in
this scenario, but are not detrimental either.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cessmanagement; •Computingmethodologies→Online learn-
ing settings; Ensemble methods.
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1 INTRODUCTION
Software Effort Estimation (SEE) consists in estimating the effort
required to develop software projects (e.g., in person-hours), based
on project features such as estimated size, team expertise, program-
ming language, etc. Due to the difficulty in performing human-made
effort estimations [15, 18], many researchers have investigated the
possibility of using machine learning approaches as decision sup-
port tools for this task [8, 12, 19, 47]. However, building well per-
forming machine learning SEE models is itself not an easy task.
One of the challenges is that the training sets that a given company
can collect from within its environments are typically small and
heterogeneous, which can hinder predictive performance [10].

The relatively small training set size compared to other machine
learning problems [25, 31] comes from the high cost of collecting
the actual effort of software projects [21]. To overcome this problem,
existing work has investigated the adoption of Cross-Company (CC)
projects for training [19, 28]. CC data sets can alleviate the problem
of small training set size because, even if each company acquires
just a small number of training projects, a dataset containing data
from several of such companies will be larger. Existing CC project
repositories are available [17, 31] for SEE and some existing CC
SEE approaches adopting them were able to maintain or improve
predictive performance over WC SEE [38, 40, 48].

Heterogeneity means that the training sets are composed of a
variety of software projects that are considerably different from
each other. Among others, heterogeneity may occur as a result of
different projects adopting widely different practices, or employing
staff with considerably different backgrounds. This is the case both
for Within-Company (WC) and Cross-Company (CC) datasets, but
the use of CC training projects could potentially intensify hetero-
geneity [32]. Heterogeneity can also occur due to changes suffered
by companies over time [38], such as key employees leaving the
company, or changes in management strategies. These changes can
alter the relationship between input features describing the projects
and their required effort, a phenomenon called concept drift [13].

Local learning is a popular approach to tackle heterogeneity
[6, 30, 39]. It gives predictions based only on the existing training
projects that are most similar to the projects being estimated, po-
tentially reducing the negative impact of heterogeneity. However,
such locality is defined based on input features describing the soft-
ware projects, being unable to deal with heterogeneity resulting
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from concept drift. To deal with concept drift, it is necessary to
take into account the chronology of software projects, i.e., projects
should be processed and learned as data streams. However, most
SEE approaches for tackling concept drift (e.g., sliding window ap-
proaches [1–4, 20, 26, 27, 29]) rely on receiving a large number of
WC projects for training over time. This makes them prohibitively
expensive due to the high cost of collecting the required effort of
such projects. The approach Dycom [40] reduces the number of
required WC training projects by transferring knowledge from CC
projects. However, it assumes that CC projects have no chronology
and are all available before WC estimations start being required.
Only the WC training projects form a data stream that can be learnt
over time. Given the benefits of learning WC projects over time to
improve predictive performance by tackling concept drift, it may
also be beneficial to learn CC training projects as data streams.

This paper thus aims at investigating whether and under
what circumstances treating learning CC projects as multi-
ple data streams to be learned over time may be useful for
improving SEE. For that, an extension of Dycom called Online
Multi-Stream Transfer Effort Estimator (OATES) is proposed. Dif-
ferent from existing work, OATES is able to reduce the number
of WC projects required for training without hindering predictive
performance by learning both WC and CC training projects one-
by-one as they arrive, i.e., in an online way. It overcomes Dycom’s
key limitation of requiring all CC training projects to be available
beforehand. The following research questions are addressed:

RQ1 Can OATES reduce the number of required WC training
projects in SEE without hindering predictive performance?
To what extent? This first question validates OATES by in-
vestigating whether it is able to maintain Dycom’s strength
and overcome sliding windows’ weakness when WC train-
ing sets are small. This would mean that a company using
OATES could potentially save the cost of collecting a large
amount of WC training projects.

RQ2 Can the use of CC data streams for training over time lead
to improvements in predictive performance? Could it hinder
predictive performance? To what extent and under what
circumstances? This is the main question investigated in this
paper. It determines whether it is useful to learn incoming
CC projects over time through OATES.

RQ3 When using incoming CC projects for training, to what ex-
tent collecting larger numbers of WC projects over time is
still useful for SEE? The adoption of CC training projects is
typically intended at reducing the need for collecting WC
projects. However, it would be valuable to know whether
acquiring larger numbers of WC training projects could fur-
ther improve predictive performance when used in addition
to CC training data. How beneficial that would be depends
on the potential improvements in predictive performance
that could be obtained. This question investigates that.

These RQs are answered based on a case study with projects
from the International Software Benchmarking Standards Group
(ISBSG) Repository [17]. OATES is compared against six approaches
on four different scenarios. It was able to drastically reduce the
number of WC projects required for training while maintaining
or improving predictive performance, being a valid approach to

reduce the cost of collectingWCprojects while dealingwith concept
drift in SEE (RQ1). Learning CC training projects over time can be
beneficial, but such benefit was only observed when the number
of CC training projects available beforehand was limited. When
that was not the case, learning additional CC training projects over
time was not helpful, but was not detrimental either. These results
suggest that it may not be necessary to cope with concept drift in
the CC projects. Instead, these projects are only needed to maintain
diverse knowledge that can be helpful for coping with concept drift
in the WC projects (RQ2). In addition, when learning incoming
CC projects over time, collecting larger numbers of WC training
projects over time becomes unlikely necessary, as this rarely led to
improvements in predictive performance (RQ3).

The remaining of this paper is organised as follows. Section 2
explains related work. Section 3 explains the proposed approach
OATES. Section 4 explains the datasets used in the case study. Sec-
tion 5 explains the experimental setup. Section 6 analyses the ex-
periments and answers RQ1 to RQ3. Section 7 presents threats
to validity. Section 8 discusses implications to practice. Section 9
presents conclusions and future work.

2 RELATEDWORK
This section discusses existing work on CC SEE, sliding window
approaches for SEE and time-transfer approaches for SEE, which are
closely related to this study. For a brief general overview of machine
learning for SEE, please refer to the supplementary material [35].

2.1 CC SEE
Collecting the actual effort of WC projects is expensive and lack
of training examples can lead to poor predictive performance [10].
Therefore, several studies have tried to use CC projects to increase
the size of the SEE training sets. However, simply adding any CC
project to the training set has led to similar or worse performance
than WCmodels [9, 19, 24, 52]. This is probably linked to the poten-
tial increase in the level of heterogeneity of datasets when using CC
training projects [32]. Approaches that attempt to handle hetero-
geneity have shownmore successful results in improving predictive
performance over WC approaches [11, 23, 48, 49]. However, these
approaches assume that heterogeneity only affects input features,
lacking mechanisms to cope with concept drift.

2.2 Sliding Window (SL) SEE Approaches
Taking the chronology of projects into account acts as an enabler to
tackle concept drift, given that concept drifts are changes observed
over time in the relationship between input features and required
effort of software projects. For instance, Kitchenham et al. [20]
reported that the best fitting regressionmodel changed substantially
over time in a case study with a WC dataset. Premraj et al. [42] also
reported that productivity changed over time in a study with a CC
dataset. Therefore, if chronology is ignored, obsolete SEE models
could lead to poor predictive performance.

SLs were the first machine learning SEE approaches specifically
designed to cope with concept drift. One of the earliest examples is
Kitchenham et al. [20]’s. For each new project pt to be estimated,
this approach trains a SEE model based on a “window” containing
past WC projects pt−1 to pt−n , where n > 1 is a pre-defined win-
dow size that specifies the number of past WC projects that the
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window can hold. Therefore, this window can be seen as “sliding”
over the data stream formed by the WC projects received over time,
respecting chronology and always keeping the same number of
most recent projects. A good window size prevents training SEE
models with old projects that could potentially represent differ-
ent contexts1, whereas poor choices can lead to worse predictive
performance than models trained on all past projects [26].

Overall, studies investigated SLs with different datasets (CSC
[20], ISBSG [1, 2, 26], MacDonell [29], Finnish [3, 27], Maxwell
[4]) and machine learning algorithms (different variations of lin-
ear regression [2, 20, 26] and k-nearest neighbours [1, 3, 4]). The
results suggest that SLs are more effective when using linear regres-
sion than k-nearest neighbours. Different variations of SLs have
also been investigated, such as SLs whose size is determined by
the duration (time) covered by the projects rather than by a fixed
number of projects, and SLs that give higher weights for more re-
cent projects. However, no evidence has been found in favour of
duration-based SLs over SLs based on the number of projects, and
weighting projects was only helpful when the windows were large.

SLs can be a simple yet effective way to handle concept drift
for some companies, but they require a large number of WC train-
ing projects. This is because SLs require a good number of recent
enough training projects so that they can cope with concept drift
while still having enough training projects to produce well perform-
ing SEE models [3, 10, 26, 27].

2.3 Time Transfer SEE Approaches
Given the limitation of sliding windows when WC training sets are
small, Minku and Yao [38, 41] investigated the use of CC projects
to augment the training set while taking chronology and concept
drift into account. Their approach was able to successfully transfer
knowledge from past models to improve predictive performance
over WC SEE models. This was achieved by tracking which WC
and CC models were beneficial over time. However, when old SEE
models are not beneficial, this approach still requires a large number
of recent WC training projects to perform well.

Kocaguneli et al. [23] investigated a tree-based filtering approach
called TEAK [22] to tackle heterogeneity. CC or WC training pro-
jects corresponding to sub-trees of high effort variance are assumed
to be detrimental and filtered out. This approach managed to obtain
similar performance when using only training projects from the
same time period as the project being estimated, and when using
training projects from a mixed time periods. However, it still relies
on the availability of a good number of training projects from the
same time period to generate the SEE model.

The approach Dycom [40] was proposed to deal with the problem
of small WC training sets while still being able to tackle concept
drift. It dynamically maps predictions given by past CC models to
the current WC context, so that CC knowledge can be transferred
even when such models do not match the WC context directly.
Dycom was shown to reduce the number of WC projects required
for training while maintaining or slightly improving predictive
performance compared to WC approaches. Therefore, companies
using it would be able to save the high cost of collecting a large
number of WC training projects. However, Dycom only works for
1The term context is used in this work to refer to the relationship between input
features and required effort in a company.

scenarios where enough CC projects are available beforehand to
train the CC models. It is unable to deal with the dynamism of CC
projects, i.e., with the fact that new CC training projects may arrive
over time and suffer concept drift.

The proposed approach OATES is designed to overcome Dycom
[40]’s limitation of not processing CC data streams, while keeping its
advantage of requiring less WC projects than the other time transfer
approaches and SL approaches. This will enable the investigation
of the potential benefit of learning CC data streams.

3 PROPOSED APPROACH – OATES
This section proposes an extension of Dycom to enable CC pro-
jects to be learned over time. This approach is called Online Multi-
Stream Transfer Effort Estimator (OATES). Different from Dycom,
it considers that not only WC, but also CC training projects arrive
one-by-one in chronological order, i.e., in an online way. In ma-
chine learning, it is said that such projects form data streams. So,
OATES is able to learn multiple (WC and CC) streams. Following
[32], the term CC is used for projects believed to be potentially
heterogeneous with respect to the projects being estimated. For
example, projects from different departments of the same company
could be considered as CC projects if such departments employ
largely different practices.

As with Dycom, OATES contains the following components: a
WC SEE model f̂0 : X → Y, where X represents the space of
input features describing software projects and Y represents the
space of software required efforts;M CC SEE models д̂i : X → Y,
1 ≤ i ≤ M ; M mapping functions f̂i : Y → Y of the format
f̂i (ŷi ) = ŷi · bi , 1 ≤ i ≤ M , bi ∈ R, to map predictions ŷi given
by each CC SEE model д̂i to the WC context; and M + 1 weights
w j , 0 ≤ j ≤ M , to represent how helpful each SEE model f̂j is
likely to be for the WC context. The mapping functions together
with their corresponding CC SEE models form mapped models
f̂i (д̂i ) : X → Y that can give predictions in the WC context. The
M + 1 weights are thus associated to each mapped model and
to the WC model. The effort estimation f̂ (x) given to a project
described by input features x is based on the weighted average of
the predictions given by the WC model and the mapped models:

f̂ (x) =
[∑M

i=1wi · f̂i (д̂i (x))
]
+w0 · f̂0(x),

where wi > 0,∀i ∈ {0, 1, · · ·M} and
∑M
i=0wi = 1. So, similar to

Dycom, OATES uses an ensemble of mapped and WC SEE models.
However, OATES’ procedures for training the CC SEE models,

mapping functions and weights are different from those of Dycom,
so that they can learn CC data streams instead of assuming that all
CC data are available beforehand. To support that, OATESmaintains
an additional component that does not exist in Dycom: a sliding
windowW containing the most recent WC training projects. As
OATES learns / updates its components over time not only based on
WC, but also on CC data streams, this window is necessary to enable
tracking changes that may affect the suitability of CC models to the
WC context, including concept drifts affecting the CC data stream.
By using this sliding window as a means to transfer knowledge
from CC data streams, OATES overcomes both Dycom’s weakness
of requiring all CC data to be pre-available, and SL techniques’
weakness of requiring a large number of WC training projects.
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Algorithm 1: OATES – Main Procedure. Parameters: β
(factor for decreasing model weights); lr (learning rate for
mapping function); M (number of CC models); ML: base
machine learning algorithm
1 Initialise f̂i , д̂j , wi andW , for 0 ≤ i ≤ M and 1 ≤ j ≤ M
2 for each new WC or CC training project (x, y) do
3 if (x, y) is a CC training project then
4 Determine the CC model д̂i to be trained on (x, y)
5 Update д̂i using ML and (x, y)
6 Train mapping function f̂i usingW and lr (Alg. 2)
7 Calculate weights wi , 0 ≤ i ≤ M , usingW and β (Alg. 3)
8 else

// (x, y) is a WC training project

9 Insert (x, y) into the end of the sliding windowW
10 Remove the first project fromW if size(W ) > 10
11 Calculate weights wi , 0 ≤ i ≤ M ,usingW and β (Alg. 3)
12 Train mapping functions f̂i , 1 ≤ i ≤ M , usingW and lr

(Alg. 2)
13 Update f̂0 using ML and (x, y)

Algorithm 2: OATES – Learning Algorithm For Mapping
Function f̂i . Parameters: lr (learning rate);W (sliding win-
dow of WC training projects); д̂i : CC model to be mapped
1 if д̂i ’s learning has already started then
2 bi ← 1.0
3 for each project (x, y) ∈W do
4 if (x, y) is the first project in W then
5 bi ← y/f̂i (x)

6 else
7 bi ← (1 − lr ) · bi + lr · y/f̂i (x)

OATES’ pseudocode is shown in Algorithms 1, 2 and 3. Lines in
blue highlight steps that are different w.r.t. Dycom. The training
procedure starts with initialisation (Algorithm 1, Line 1). The WC
and CC models are initialised using the base machine learning
algorithm to be adopted with OATES. This could be any existing
supervised learning algorithm. Themapping functions associated to
the CC models are initialised so that they perform a direct mapping
between the CC SEE models and the WC context, i.e., f̂i (д̂i (x)) =
д̂i (x). The weights are initialised to zero. After that, the following
components of OATES are trained:

WC SEE model: similar to previous work [40, 41], whenever a
newWC training project arrives, it is used to update a WCmodel f̂0
(Algorithm 1, Line 13), using a pre-defined (base) machine learning
algorithm. Heterogeneity in the WC input features can be dealt
with by using local base learning approaches [6, 30, 39].

CC SEE models: CC training projects are used to increase the
number of training examples and potentially reduce overfitting.
Whenever a new CC training project is received, OATES determines
which CC SEE model should be trained with this project based on
a clustering algorithm (Algorithm 1, Line 4) before performing
such training (Algorithm 1, Line 5). Clustering injects extra locality
in the learning procedure to help tackling the potentially higher
heterogeneity of CC projects. The clustering algorithm should be

Algorithm 3: OATES – Weight Update Method. Parame-
ters: β (factor for decreasing model weights); M (number
of CC learners);W (window of WC training projects); f̂i ,
0 ≤ i ≤ M : SEE models
1 Set to 1.0 all weights wi associated to models f̂i , 0 ≤ i ≤ M , whose
training has already started

2 errors ← {}
3 for each project (x, y) ∈W do
4 for each f̂i , 0 ≤ i ≤ M , whose training has started do
5 errors ← errors ∪ |y − f̂i (x) |

6 Determine the winner model f̂w , which corresponds to the
smallest error in errors

7 for each f̂i , 0 ≤ i ≤ M ∧ i , w do
8 wi ← wi · β

9 for each f̂i , 0 ≤ i ≤ M , whose training has started do
10 wi ← normalise(wi )

able to operate in an online way and yet avoid past CC projects to
switch between clusters, which would cause instability. Therefore,
OATES uses a simple yet effective clustering strategy [36, 40]. It
separates CC training projects based on productivity thresholds.
For instance, if M = 3, M − 1 = 2 thresholds th1 and th2 are
used. Projects with productivity pr ≤ th1, th1 < pr ≤ th2 and
pr > th2 are associated to the first, second and third cluster and
its corresponding CC model, respectively. Different from previous
work [36, 40], training projects in OATES are clustered on the
fly, as they arrive. Therefore, CC clusters can be associated to an
increasing number of CC projects over time without causing past
projects to switch between clusters.

Mapping functions:WC training projects are used to learn the
mapping functions. However, as the CCmodels will be updated over
time with the CC data stream, OATES’ mapping function learn-
ing algorithm should consider not only potential concept drifts
affecting the WC, but also the CC context. Therefore, OATES can-
not use the same learning algorithm used by previous work [40].
Instead, OATES uses a sliding windowW containing 10 WC train-
ing projects to learn the mapping function’s internal parameter bi
from scratch whenever a new WC or CC training project is made
available (Algorithm 1, Lines 6 and 12). The window is updated
whenever a newWC training project is received (Algorithm 1, Lines
9 and 10). The reason for the window size of 10 is linked to the
algorithm used to learn bi , and will be explained below.

The factor bi is initialised to 1.0, leading to a direct mapping
between f̂i and the WC context (Algorithm 2, Line 2). The window
W is then used to learn bi based on an exponential decay function.
In particular, the first WC training project inW is used to create
a perfect mapping between the prediction given by a CC model
and the true effort of this WC project (Algorithm 2, Line 5) [40].
For all other WC training projects in W , an exponential decay
function with smoothing factor lr is used to set bi (Algorithm
2, Line 7). This is the weighted average of the value that would
provide a perfect mapping for the current WC training project and
the previous value of bi , calculated based on the previous projects
inW . A high smoothing factor lr puts more emphasis on the most
recent WC training projects and achieves higher adaptability to
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concept drift, whereas a low lr leads to a more stable mapping
function. Exponential decay means that older WC training projects
become exponentially less important in comparison to the most
recent WC training project. Therefore, window sizes larger than
10 would not have a significant impact on OATES’ performance.
Preliminary experiments with other window sizes confirmed that.
In summary, the exponential decay function allows us to obtain
good mapping functions based on previous WC training projects,
while enabling adaptability to both WC and CC concept drifts.

Weights: OATES’ weights are also calculated based on the slid-
ing windowW (Algorithm 1, Lines 7 and 11). The procedure starts
with setting the initial weights (Algorithm 3, Line 1). After that, for
each WC training project inW , the WC or mapped model which
provided the lowest absolute error is considered to be the winner
(Algorithm 3, Lines 3 to 6). All models except the winner have their
weights multiplied by a pre-defined parameter β (0 < β ≤ 1), and
then all weights are normalised in order to sum to one (Algorithm
3, Lines 8 to 10). This is done by dividing the weights by the sum of
the weights of all models f̂i that have already started being trained.

4 DATASETS
Obtaining SEE datasets for CC data stream studies is challenging.
To enable a proper analysis, datasets need to have: (1) projects from
multiple companies, (2) use of the same input features for all pro-
jects, (3) information on which projects belong to a given single
company, (4) chronology information. A dataset that satisfies all
these requirements is ISBSG [17] Release 10, where information
on (3) was provided upon request. Moreover, the singled out com-
pany from this dataset has a relatively large number of projects
(187 in total; 184 after preprocessing) in comparison with some
other SEE datasets [31]. By training OATES with a small portion
of such WC projects and comparing its performance against WC
approaches trained on the full WC training set, we can investigate
how successful OATES is in tackling small WC training sets.

The projects were described by four input features: development
type (enhancement, new development, re-development); language
type (2GL, 3GL, 4GL, ApG), development platform (multi-platform,
mainframe, PC, mid-range); and functional size (numeric). These
input features are the ones suggested by ISBSG’s guidelines as the
most important criteria for estimation purposes [17], and were the
same as those adopted in previous work [40]. The output feature is
the software development effort in person-hours. The dataset was
pre-processed as described in previous work [41].

Four datasets representing different scenarios were derived:

• ISBSG2000 – 168 CC projects implemented in the year interval
[1993–2000], and 119 WC projects implemented in [2001–2003].
• ISBSG2001 – 224 CC projects implemented in [1993–2001], and
69 WC projects implemented in [2002–2003].
• ISBSG – 415 CC projects implemented in [1993–2003], and 184
WC projects implemented in [1996–2003]. This is the full WC
ISBSG dataset containing all CC projects until the end of the
period covered by the WC projects.
• ISBSGLess – 226 CC implemented in [1993–1994;2001–2003], and
90 WC projects implemented in [2001–2003].

ISBSG2000 and ISBSG2001 have all their CC projects implemented
before WC estimations start being required. They were adopted in

[40] to evaluate Dycom, and are used here to investigate whether
OATES maintains the strengths of that approach. ISBSG and IS-
BSGLess were created for this study to evaluate OATES in two
different scenarios where additional CC projects are available over
time after WC estimations start being required. ISBSG contains a
considerable number of CC projects (94) prior to the WC projects,
whereas ISBSGLess contains much less (only 10).

5 EXPERIMENTAL SETUP
To answer the RQs, the following approaches are compared:

• OATES: this approach was given access to only one in every
P = ⌊n/6⌋WC projects for training, where n is the size of theWC
dataset. This value was chosen so that the number ofWC projects
used for training is equal to the smallest number of WC training
projects used in previous work with Dycom [40]. It means that
only 6 WC projects are available for training, independent of the
dataset. This value is used in all experiments to answer RQ1 and
RQ2. Other values (P ∈ {⌊n/12⌋, ⌊n/30⌋, ⌊n/60⌋}) will be used to
analyse the impact of the number of WC training projects (RQ3).
• Dycom [40]: this is the state-of-the-art time transfer approach
(Section 2.3). As with OATES, it has access to only one in ev-
ery P = ⌊n/6⌋ WC projects for training. A comparison against
Dycom enables us to check how helpful it is to learn incom-
ing CC training projects over time, rather than only allowing
pre-existing CC training projects (RQ2).
• SL P = 1 [26]: this is a typical SL approach (Section 2.2) where all
(i.e., one in every P = 1) WC projects received so far are available
for training. It uses a sliding window with a fixed number of
WC projects. It enables us to check how successful OATES is in
reducing the number of WC projects required for training (RQ1).
• WC P = 1: this is a WC model trained on all available WC
projects so far (P = 1) using a given machine learning algorithm.
Comparison against it complements the answer to RQ1.
• SL P/6: this is the same as SL P = 1, but using P = ⌊n/6⌋.
Comparison against it enables us to check OATES’ performance
against other approaches using the same limited number of WC
training projects (RQ1).
• WC P/6: this is the same as WC P = 1, but using P = ⌊n/6⌋.
Comparing it complements the answer to RQ1.
• Median: this is a baseline that predicts the median of the efforts
of all previously seen WC training projects. Similar to OATES, it
uses P = ⌊n/6⌋. Reasonable SEE approaches should perform bet-
ter thanMedian. Medianwas selected rather thanmean because it
can frequently provide better estimates [37], as its estimations are
not affected by outlier projects. More complex baselines such as
[43, 51] were not adopted because they are not prepared for pro-
cessing data streams, which is required for this study. Moreover,
they were implemented in R and thus cannot be integrated with
the MOA [7] framework adopted in this study to enable them to
process data streams. Linear regression and linear regression in
the log scale asWP P/6models will be used as alternatives to [51],
which is also a linear regression model with transformations.

The following machine learning algorithms were used to train
OATES’, Dycom’s and SL’s base models, as well as the WC ap-
proaches: k-Nearest Neighbours, Regression Trees, Linear Regres-
sion and Linear Regression in the log scale. Euclidean distance over
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normalised input features was adopted by k-Nearest Neighbours.
For categorical features, the difference between two values was
set to 1 for different values, and 0 otherwise. The base learning
algorithms were chosen for being competitive for SEE [12, 39, 51].
In particular, k-Nearest Neighbours and Regression Trees are local
learning approaches, which try to cope with heterogeneity based
on input features [30, 39, 46]. Linear Regression (including in the
log scale) is expected to be competitive [12] due to the relative
linearity of several SEE datasets. All algorithms are implemented in
WEKA [16] and MOA [7], which is an open source framework for
running and evaluating data stream learning algorithms. OATES’
source code is available at [34].

All approaches are requested to estimate all WC projects for
testing. Each WC project is required to be estimated once, at a
given time step, in chronological order. This reflects a real world
scenario where a company would wish to provide an estimation for
each of its projects. Similar to other machine learning data stream
studies [14], after a givenWC project is estimated, SL P = 1 andWC
P = 1 assume that the true effort for this project will become known.
This project can then be used for training. However, approaches
with P > 1 assume that only one in every P > 1 WC projects have
their true efforts revealed, being trained on less WC projects. No
WC project is used for training before being used for testing.

The testing performance measures used in this work were the
Mean Absolute Error (MAE) and the Mean Absolute Error in the
log scale (MLogAE), calculated at each time step t over a sliding
window containing n′ past errors obtained when estimating WC
projects over time:

MAEt =
1

min(n′,t )
∑t
i=max (t−n′+1,1) |ŷi − yi |;

MLoдAEt =
1

min(n′,t )
∑t
i=max (t−n′+1,1) |loд(ŷi ) − loд(yi )|,

where ŷi is the estimation given to the WC project requested to
be estimated at time step i , whose true effort is yi . Measures based
on the AE are unbiased towards under or overestimations, which
is a desirable characteristic for evaluating SEE approaches [45].
MLogAE was used in addition to MAE because it is not biased
towards large projects. The use of sliding windows for evaluation
is recommended and widely used when data streams do not require
memoriless and very fast evaluation [14]. It means that n measure-
ments (MAEt ,MLoдAEt , 1 ≤ t ≤ n) are taken for each performance
measure for a WC dataset of size n. Each measurement reflects the
recent predictive performance obtained by an approach, enabling
us to track how this predictive performance changes over time. The
window size was n′ = 10, following previous work [40, 41].

To give an indication of the relative magnitude of the differences
in performance, Standardised Accuracy (SA) was used:

SA = Round
( [
1 − AддMAE(App)

AддMAE(Median)

]
∗ 100

)
,

whereAддMAE(App) andAддMAE(Median) are the aggregation of
the n MAEt measurements taken for a given approach App and for
the Median approach, respectively. The aggregation function Aдд
is the mean. This is the same as the SA measure recommended by
Shepperd andMcDonell [45] for SEE studies, but gives an indication
of how much better an approach does in comparison to the Median
baseline rather than random guessing. Median was favoured over
random guessing because the latter converges to the Mean, which
typically performs worse than Median for SEE [37]. Therefore,

determining how much an approach outperforms Median is more
informative for the purpose of this study.

Friedman tests, Nemenyi post-hoc tests and A12 effect sizes [5]
were used to support the analyses. They were chosen for being
non-parametric and appropriate for comparing multiple groups.
Friedman’s null hypothesis is that all compared approaches perform
similar in terms of a given performance measure across time steps
on a given dataset. The alternative hypothesis is that at least one
pair of approaches perform different from each other. Nemenyi tests
were used to identify which pairs of approaches perform different.
As suggested in [50], absolute values of A12 ≥ 0.56, 0.64 and 0.71
indicate small, medium and large effect size, respectively.

Base learning algorithms were investigated with 20 different
parameter combinations each. For each dataset, the parameter com-
bination that led to the best median of the n MAEt measurements
for WC P = 1 was selected to be used with all approaches. The
same number of 20 parameter combinations was investigated with
OATES, Dycom and SL P = 1. For SL P/6, the maximum possible
number of parameter choices is 5. So, all possible parameter val-
ues were investigated for this approach. WC P/6 has no additional
parameters besides those of the base learning algorithm. So, no
further tuning was applied. For each dataset and approach, the
parameters and base learners leading to the best median of the n
MAEt measurements were chosen for the analysis. The parameter
combinations are available in the supplementary material [35].

OATES and Dycom were assigned the same productivity thresh-
olds for clustering CC projets. As in previous work [40], these
thresholds were chosen so as to divide the CC training projects
available prior to estimations into three similar size chunks contain-
ing CC projects of low, medium and high productivity. Productivity
was measured based on the CC projects’ normalised level 1 produc-
tivity rate in hours per functional size unit, provided by ISBSG. The
thresholds were: 5.60 and 13.00 for ISBSG2000, 6.00 and 14.00 for
ISBSG2001, 4.5 and 10.5 for ISBSG and 3.0 and 8.0 for ISBSGLess.

6 EXPERIMENTAL RESULTS
Table 1 and Figs. 1 and 2 show the overall results of the experiments.
Larger versions of the figures and additional information about
effect sizes are in the supplementary material [35].

6.1 Preliminary Analysis
As explained by Shepperd and McDonell [45], new approaches
performing similar to simple baselines can be deemed unsuccessful,
given that the baseline could be easily adopted instead. OATES was
always significantly better than the Median baseline, both in terms
of MAE and MLogAE (Fig. 1). The effect sizes of the differences
were large most of the time (last row of Table 1). Overall, OATES
performed from 15% to 59% better than the Median baseline (SAs
in Table 1). Therefore, it is worth investigating OATES further.

6.2 RQ1: OATES Validation
RQ1 asks whether and to what extent OATES can reduce the num-
ber of required WC training projects without hindering predictive
performance, validating OATES as an approach able to preserve Dy-
com’s core advantages. Fig. 1 shows that OATES performed always
at least as well as SL P = 1 and WC P = 1. Therefore, OATES can
drastically reduce the number of WC projects needed for training
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Table 1: Overall Performance Across Time Steps
Approach ISBSG2000 ISBSG2001 ISBSG ISBSGLess

AggMAE AggMLogAE SA AggMAEAggMLogAE SA AggMAEAggMLogAE SA AggMAEAggMLogAE SA
OATES 2308.45 0.3284 21% 2439.18 0.3768 59 % 2550.02 0.3134 26 % 2385.71 0.3999 15%
Dycom 2357.76 *0.3625 19% 2568.90 *0.4032 57 % 2705.56 0.3219 22 % *2655.37 **0.4800 6%
SL P = 1 *2494.59 ***0.5608 15 % *2942.41 **0.6051 51 % *2610.17 ***0.4870 25% 2389.83 0.4550 15%
WC P = 1 2385.61 ***0.5491 18 % ***3057.94 ***0.5902 49 % 2741.54 0.3738 21 % *2000.31 0.4823 29%
SL P/6 **2922.67 ***0.5111 0% ***4064.76 ***0.6718 32 % **3420.80 ***0.4535 1% *2682.08 ***0.5677 5%
WC P/6 **2914.94 ***0.5100 0% ***5159.18 ***0.7312 14 % **3444.57 ***0.4580 0% *2689.17 ***0.5691 4%
Median **2923.18 ***0.5118 N/A ***5984.91 ***0.7911 N/A **3461.36 ***0.4604 N/A *2815.31 ***0.6204 N/A
Cells in lime (light grey) correspond to the top ranked approach and to approaches whose performance was not significantly different from the top ranked
approach according to the Nemenyi tests shown in Fig. 1. Cells with *, ** and *** indicate small, medium and large effect size w.r.t. OATES, respectively.

without hindering MAE and MLogAE. This is a very positive result,
as companies using OATES could potentially drastically reduce the
cost of collecting WC training projects.

In addition, OATES’ performance was sometimes significantly
better than that of SL P = 1 and WC P = 1. Its MAE was signifi-
cantly better than that of SL P = 1 for ISBSG2000, ISBSG2001 and
ISBSG, and than that of WC P = 1 for ISBSG2000 and ISBSG2001.
Differences in SA, which is a measure derived from MAE, varied
from 1% to 10% when there was significant difference in MAE (Table
1). OATES’ MLogAE was significantly better than that of WC P = 1
for ISBSG2000, ISBSG2001 and ISBSG, and than that of WC P = 1
for ISBSG2000, ISBSG2001 and ISBSGLess. OATES’ MLogAE was
from 17% to 41% smaller in these cases. Several of the effect sizes for
the differences were large (Table 1). Therefore, OATES can not only
save the cost of collecting a large number of WC training projects,
but also sometimes considerably improve predictive performance.

When analysing online learning approaches, it is also important
to check the performance over time. This is because, even though
the overall performance for a given approach may be similar or
better, there could be periods of time when its performance was
worse. From Fig. 2, we can see that OATES’ performance was quite
consistently similar to or better than that of SL P = 1 and WC
P = 1, except for ISBSGLess in terms of MAE, where OATES was a
bit worse than these approaches during a considerable period of
time. There were some periods of time when OATES performed
worse than these approaches in terms of MLogAE for ISBSGLess
as well, but this is justified by the higher stability that OATES
presented for this dataset. This demonstrates that OATES behaves
well overall, even though there is still some room for improvement.
In particular, OATES behaved better in terms of MLogAE than MAE
for ISBSGLess. This is corroborated by the different ranks in Fig. 1. It
indicates that the WC approaches tended to do better for unusually
large WC projects in the beginning of this dataset, whereas OATES
tended to do better for a larger number of more typical WC projects
during this period. The better behaviour achieved by SL P = 1 and
WC P = 1 for larger projects may be due to the larger number of
such unusual projects that they had access to for training.

SL P/6 and WC P/6 typically obtained much worse results than
OATES (Table 1). The differences in MAE andMLogAE were always
significant (Fig. 1). The differences in SA varied from 10 to 45%, and
OATES’ MLogAE was from 30% to 48% smaller (Table 1). The effect
sizes were frequently large (Table 1). This demonstrates a consid-
erably large improvement in predictive performance achieved by
OATES. It confirms that SL and WC are not well prepared to deal
with small WC training sets as explained in Section 2, and that
approaches such as OATES can help to overcome this issue.

RQ1: OATES managed to use CC projects to drastically reduce the
number of WC training examples used by SL P = 1 and WC P = 1,
while maintaining or improving predictive performance (differences
in SA of up to 10% and MLogAEs up to 41% smaller). The results
suggest that OATES performed particularly well on more typical
projects, but sometimes struggled on unusually large ones.

6.3 RQ2: The Benefit of Incoming CC Projects
RQ2 asks whether and to what extent CC training projects that
arrive over time can help or hinder predictive performance. For
that, we compare OATES against Dycom, which is able to use CC
training projects, but only those available before WC estimations
are required. From Fig. 1, we first observe that OATES performed
similar to Dycom on ISBSG2000 and ISBSG2001. These datasets
did not provide additional CC training projects over time. This
further confirms that OATES was successful in maintaining Dy-
com’s strength of benefiting from CC training projects to reduce
the number of required WC training projects.

OATES and Dycom also achieved similar predictive performance
for ISBSG (Fig. 1). This was the dataset where the number of CC
training projects available beforehand was already large, despite
additional CC training projects becoming available over time. There-
fore, in this scenario, learning additional CC training projects was
not beneficial, but did not hinder predictive performance either. It
is likely that the large number of pre-existing CC projects were
enough for achieving good improvements in predictive perfor-
mance for the whole period analysed. It means that old training
projects can potentially be useful for prolonged periods of time.

For ISBSGLess, OATES performed similar to Dycom in terms
of MAE, but better in terms of MLogAE, with medium effect size
(Fig. 1 and Table 1). OATES’ MLogAE was 17% smaller than that
of Dycom (Table 1), representing a considerable difference. These
results indicate that OATES’ mechanisms can help to make use
of the incoming CC training projects to make up for the lack of
CC projects available prior to the WC estimates in this dataset.
The differences of results in terms of MAE and MLogAE suggest
that there is a large number of more typical projects for which
OATES performed better than Dycom, even though there is a small
number of unusually large projects which cause these approaches
to perform similarly in terms of MAE.

Fig. 2 shows that OATES’ performance is indeed similar to Dy-
com’s most of the time, except ISBSGLess in terms of MLogAE,
where OATES considerably outperforms Dycom for extended peri-
ods of time. This corroborates the analyses above.

It is worth noting that, when no CC projects are available before-
hand, Dycom is equivalent to WC P/6. From Section 6.2, we can see
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(a) ISBSG2000 – MAE (b) ISBSG2000 – MLogAE

(c) ISBSG2001 – MAE (d) ISBSG2001 – MLogAE

(e) ISBSG – MAE (f) ISBSG – MLogAE

(g) ISBSGLess – MAE (h) ISBSGLess – MLogAE

The top ranked approach is shown in red. The dotted horizontal line represents
Nemenyi’s critical distance with respect to the mean rank of the top ranked ap-
proach. Approaches whose mean rank is above this line are significantly different
from the top ranked approach.

Figure 1: Friedman andNemenyi Tests Comparing Different
Approaches in Terms of MAE and MLogAE Across Time.

that Dycom (which would be equivalent to WC P/6 in Table 1 and
Figs. 1 and 2) always performed very poorly when no CC projects
were available beforehand. Therefore, the ability to learn CC data
streams is essential when there are no pre-existing CC projects.

It is rather surprising that processing CC projects as data streams
was only helpful when the number of pre-existing CC projects was
limited. This suggests that it might not be necessary to cope with
concept drifts that may affect the CC models. Instead, these models
may be used to represent a diversity of software projects that may
be useful for dealing with concept drift in the WC data. Therefore,
dealing with concept drift in the WC data may be enough.

(a) ISBSG2000 – MAE (b) ISBSG2000 – MLogAE

(c) ISBSG2001 – MAE (d) ISBSG2001 – MLogAE

(e) ISBSG – MAE (f) ISBSG – MLogAE

(g) ISBSGLess – MAE (h) ISBSGLess – MLogAE

Figure 2: MAE and MLogAE Across Time.

RQ2: Learning additional CC projects that arrive over time helped to
improve MLogAE by 17% when the number of CC projects available
beforehand was small. For scenarios where additional CC projects
were not helpful, they were not detrimental either.

6.4 RQ3: Impact of the Number of WC Projects
RQ3 investigates how predictive performance is affected by the
number of WC projects available for training when using CC data
streams. To answer RQ3, Friedman and Nemenyi tests were per-
formed to compare OATES’ MAE and MLogAE when varying the
number of WC training projects from smaller (P = ⌊n/6⌋, denoted
by P/6) to higher (P = ⌊n/60⌋, denoted by P/60). Plots with graph-
ical representations of the results were omitted due to space con-
straints, but are available in the supplementary material [35].
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Increasing the number of WC training projects did not always
lead to improvements in predictive performance. For ISBSG2000 and
ISBSG2001 in terms of MAE, Friedman tests found no significant
difference among the different numbers of WC training projects
(p-values of 0.268 and 0.374, respectively). For ISBSGLess, there was
no significant difference in terms of MLogAE (p-value of 0.053).

For ISBSG2000’s MLogAE, ISBSG2001’s MLogAE, ISBSG’s MAE
and MLogAE and ISBSGLess MAE, Friedman found significant
differences (p-values of 0.038 for ISBSG2000 and <0.001 for the
others). However, the Nemenyi tests reveal that these differences
are either in favour of adopting P/6 (for ISBSG’s MLogAE) or there
were no significant differences between P/6 and the best P value
(all other cases except for ISBSGLess’ MAE). The only case where
P/6 led to worse predictive performance than higher numbers of
WC training projects was ISBSGLess in terms of MAE, but the effect
size was basely small (0.56).

It is worth noting in particular that increasing P from P/6 to
P/60 was not helpful. Either there were no significant differences
between these values of P (for ISBSG2000 and ISBSG2001 in terms
of MLogAE and ISBSG and ISBSGLess in terms of MAE) or there
were differences in favour of P/6 (ISBSG in terms of MLogAE). This
is different from the behaviour of SL and WC, where using the full
dataset often led to better results than P/6 (Fig. 1). A possible reason
for that is that OATES’ mechanisms have been designed to reduce
the number of requiredWC training projects. Using a larger number
of WC training projects may cause OATES to concentrate too much
on too recent projects, without taking enough history into account.
This is because the methods for updating the mapping function and
the weights of the base learners are based on exponential decay. So,
if the WC training projects added to the end of the window are all
very recent, only the very recent period of time will be considered.

RQ3: Larger numbers of WC training projects did not lead to reason-
able improvements in predictive performance when using CC data
streams through OATES. This indicates that it is not worth collecting
a large number of WC training projects for use with OATES.

7 THREATS TO VALIDITY
Internal validity: poor parameter choices can highly influence ma-
chine learning results. All approaches (including existing ones from
the literature) except for SL P/6 and WC P/6 were tuned by inves-
tigating 20 parameter configurations each as explained in Section 5.
This prevents approaches with more parameters from inappropri-
ately receiving a higher level of parameter tuning attention. SL P/6
and WC P/6 are exceptions to this rule for the following reason. SL
P/6’s possible parameter choices are very limited – just 5 possible
choices. WC P/6 has no further parameters to be tuned besides
those of the base learning algorithm. Whilst a smaller number of
parameter configurations might be seen as a potential advantage
for some approaches, it does not translate into an advantage for SL
P/6 and WC P/6. This is due to their inability to perform well with
a limited number of WC training examples. In practice, choosing
parameters for any approach operating in online learning scenarios
is not straightforward, because no WC data is available beforehand
to create separate validation sets. Even though some research effort
exists in this area [33], more efficient approaches to automatically
tune parameters over time are still desirable.

Construct and statistical conclusion validity: the analyses were
mainly based on MAE, MLogAE and SA. As explained in Section
5, they have been chosen following advice from the literature on
the use of unbiased performance measures [45] and on data stream
performance evaluation [14]. They include a measure that is influ-
enced by project size, a measure that is not influenced by project
size, and a derived measure that allows for better interpretation
of the magnitudes of the differences in performance. WC projects
were never used for training before having been used for testing.
Non-parametric Friedman and Nemenyi tests, as well as A12 effect
size, were used to further address conclusion validity.

External validity: this study is based on ISBSG datasets, which
have the characteristics necessary to conduct the analyses, as ex-
plained in Section 4. Even though they have data overlaps, these
datasets represent different scenarios. In particular, online learning
can behave very differently based on which examples are avail-
able before a given time step [38, 40, 41]. This was also observed
in Sections 6.2 and 6.3, i.e., results differed for different scenarios.
Therefore, using different scenarios contributes towards general-
isability when a single repository is available for the experiments,
even when there are data overlaps. However, results may not gen-
eralise to other datasets. Future investigation with other datasets
will be valuable once appropriate datasets become available.

8 IMPLICATIONS TO PRACTICE
The results obtained by SEE models have been considerably im-
proving over the years [44]. However, due to the difficulty of this
task, both machine learning models and human experts still make
mistakes in their estimations. They could thus be used to comple-
ment each other. For instance, if their estimations are similar, we
have an increased confidence on the estimate. If their estimations
differ considerably, the expert may wish to analyse the project fur-
ther to gain more insights into what effort best reflects the project.
As OATES can learn over time and can adapt to concept drifts, it
could potentially help to overcome difficulties that humans have in
adapting and improving their estimations over time [15].

By enabling CC training projects to be learnt over time, OATES
has the potential to save the cost of companies collecting large num-
bers ofWC training projects for creating SEEmodels while enabling
models to be updated to consider potentially new technologies and
software development processes. Organisations worldwide provide
increasing numbers of CC projects through repositories such as IS-
BSG [17] which could be used for that. A company adopting OATES
would need to ensure that the input features used to describe their
WC projects are the same as those used by the CC projects, and put
procedures in place to acquire CC training projects in addition to a
small number of WP training projects.

OATES could also be potentially used to provide a better un-
derstanding of the relationship between the context of different
companies over time by visualising the mapping function. This
could inform strategies to improve a company’s productivity, or
to track improvements over time once a company adopts a given
strategy. This will be investigated as future work.

9 CONCLUSIONS
This paper provided the first investigation of whether and under
what circumstances it is worth adopting CC multi-stream transfer
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learning for SEE. For that, an approach called OATES was proposed.
A case study with the ISBSG Repository shows that OATES was able
to drastically reduce the number of WC projects required for train-
ing, while maintaining and sometimes even considerably improving
predictive performance, being a valid CC learning approach (RQ1).
Learning CC data streams through OATES led to improvements in
MLogAE when the number of CC training projects available before
the WC projects was small. When this number was large, additional
CC training projects did not help, but were not detrimental either
(RQ2). Finally, no evidence has been found in favour of collecting
larger numbers of WC training projects when CC training projects
are learned over time through OATES (RQ3).

Future work includes investigating OATES with other datasets
(when these become available) and clustering algorithms; inves-
tigating how OATES could provide insights into the relationship
between the context of different companies over time; analysing
its computational time; and proposing novel online approaches for
automatically tuning parameters.
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