
Multi-stream Online Transfer Learning for Software Effort
Estimation: Supplementary Material

Leandro L. Minku
l.l.minku@cs.bham.ac.uk

School of Computer Science, The University of Birmingham
Birmingham, UK

1 SUPPLEMENTARY MATERIAL CONTENT
This file provide larger versions of some figures from the paper
[11], and additional information on statistical tests, effect sizes and
parameter choices. Specifically, Table 1 presents the effect sizes of
the differences in predictive performance of each approach with
respect to OATES. Figures 1 and 2 correspond to Figures 1 and 2
from the paper, but with larger size. Figure 3 shows the visualisation
of the results of the statistical tests performed to answer RQ3 and
relates to Section 6.4 of the paper. The figures are provided from
the next page of this report onwards, to enable a higher resolution.
Additional information about parameter choices to complement the
information provided in Sections 5 and 7 of the paper is given in
Section 2. A brief summary of existing work on machine learning
for Software Effort Estimation (SEE) is also provided in Section 3
to complement the related work discussed in Section 2 of the paper.
OATES’ code is available at [10].

2 ADDITIONAL INFORMATION PARAMETER
CHOICE

The parameter values listed below were investigated for each base
learning algorithm, leading to 20 different combinations:

• Regression tree: minimum number of examples in a leaf node
∈ {1, 2, 3, 4, 5}, minimum proportion of the data variance at
a node for splitting to be performed {10−4, 10−3, 10−2, 10−1}.

• k-Nearest Neighbour: k ∈ {1, · · · , 20}.
• Linear Regression, including in the log scale: ridдe ∈ {1, 0.5,
10−1, 10−2, 10−3, · · · , 10−18}.

For each dataset, the parameter combination that led to the best
median of the n MAEt measurements for WC P = 1 was selected
to be used with all approaches.

The following values were investigated for OATES and Dycom’s
parameters: lr ∈ {0.01, 0.05, 0.1, 0.15} and β ∈ {0.3, 0.5, 0.7, 0.9, 1.0}.
This also leads to 4×5 = 20 combinations. For SL P = 1, 20 different
window sizes starting from 10 were investigated. Increments of
1, 2 and 4 were used for the smallest (ISBSG2001 and ISBSGLess),
medium (ISBSG2000) and large (ISBSG) datasets. These increments
mean that the maximum window size is restricted to ⌊n/2⌋. Larger
window sizes would mean that the SL approach is behaving as WC
P = 1 more than half of the time. For SL P = ⌊n/6⌋, all possible
window sizes were used, i.e., {1, · · · , 5}. Larger window sizes are
not applicable because the number of WC training projects for
this approach is 6. For each dataset, the parameters and base learn-
ers leading to the best median of the n MAEt measurements were
chosen for the analysis.

MAEt =
1

min(n′, t)

t∑
i=max (t−n′+1,1)

|ŷi − yi |;

MLoдAEt =
1

min(n′, t)

t∑
i=max (t−n′+1,1)

|loд(ŷi) − loд(yi)|,

where ŷi is the estimation given to the WC project requested to be
estimated at time step i , whose true effort is yi ; and t is the current
time step.

3 RELATEDWORK ON MACHINE LEARNING
FOR SOFTWARE EFFORT ESTIMATION

Machine learning for SEE has been studied for many years [2, 4–
6, 13, 14, 17]. Existing work has investigated a variety of machine
learning algorithms, including linear regression, neural networks,
regression trees, k-nearest neighbours, linear programming, etc.
As the size of the SEE training sets is typically relatively small,
SEE models with too many internal parameters are less likely to
performwell [8]. Moreover, the fact that the training sets are hetero-
geneous makes local learning algorithms such as regression trees,
k-nearest neighbours and some cluster-based approaches competi-
tive [1, 7, 9, 12, 14]. Linear regression (potentially applied after log
transformations) can also obtain competitive results when the SEE
datasets are relatively linear [2, 18]. Ensembles were found to boost
the predictive performance of single SEE models [7, 12]. Recently,
linear programming has been proposed as a baseline for SEE due to
its competitive predictive performance and robustness to different
data splits [13]. Some existing work also investigated SEE in the
Agile context [3, 15, 16].

Leandro L. Minku

Table 1: Effect Size A12 With Respect To OATES’ MAE and MLogAE Across Time Steps

Approach ISBSG2000 ISBSG2001 ISBSG ISBSGLess
A12-MAE A12-MLogAE A12-MAE A12-MLogAE A12-MAE A12-MLogAE A12-MAE A12-MLogAE

Dycom 0.52 *0.62 0.55 *0.57 0.51 0.53 *0.56 **0.67
SL P=1 *0.56 ***0.8 *0.6 **0.69 *0.56 ***0.71 -0.52 0.51
WC P=1 0.53 ***0.78 ***0.73 ***0.73 0.54 0.53 *-0.61 0.54
SL P/6 **0.66 ***0.81 ***0.78 ***0.78 **0.64 ***0.77 *0.58 ***0.75
WC P/6 **0.65 ***0.81 ***0.91 ***0.87 **0.64 ***0.77 *0.59 ***0.76
Median **0.66 ***0.81 ***0.95 ***0.93 **0.65 ***0.78 *0.6 ***0.84
Cells with *, ** and *** indicate small, medium and large effect size, respectively. Cells in orange (dark grey) indicate statistically significant
difference w.r.t. OATES according to the Nemenyi tests shown in Fig. 1. Positive A12 indicates values in favour of OATES.

ACKNOWLEDGMENTS
This work was supported by EPSRC Grant No. EP/R006660/2.

REFERENCES
[1] N. Bettenburg, M. Nagappan, and A. E. Hassan. 2012. Think Locally, Act Globally:

Improving defect and effort prediction models.. In MSR. Zurich, 60–69.
[2] B. Boehm. 1981. Software Engineering Economics. Prentice-Hall, NJ.
[3] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya

Ghose, and Tim Menzies. 2019. A Deep Learning Model for Estimating Story
Points. IEEE Transactions on Software Engineering 45, 7 (2019), 637–656.

[4] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. 2012. Data Mining Tech-
niques for Software Effort Estimation: A comparative study. IEEE TSE 38, 2 (2012),
375–397.

[5] M. Jørgensen and M. Shepperd. 2007. A Systematic Review of Software Develop-
ment Cost Estimation Studies. IEEE TSE 33, 1 (2007), 33–53.

[6] B.A. Kitchenham, E. Mendes, and G.H. Travassos. 2007. Cross versus Within-
Company Cost Estimation Studies: A Systematic Review. IEEE TSE 33, 5 (2007),
316–329.

[7] E. Kocaguneli, T. Menzies, and J. Keung. 2012. On the Value of Ensemble Effort
Estimation. IEEE TSE 38, 6 (2012), 1403–1416.

[8] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy. 2013. Active learning
and effort estimation: Finding the essential content of software effort estimation
data. IEEE TSE 39, 8 (2013), 1040–1053.

[9] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, and T.
Zimmermann. 2013. Local vs. Global Lessons for Defect Prediction and Effort
Estimation. IEEE TSE 39, 6 (2013), 822–834.

[10] L. Minku. 2021. minkull/OATES: (Version v1.0). Zenodo. http://doi.org/10.5281/
zenodo.5068001

[11] L.L. Minku. 2021. Multi-Stream Online Transfer Learning For Software Effort
Estimation – Is It Necessary?. In Proceedings of the 17th International Conference
on Predictive Models in Software Engineering (PROMISE).

[12] L.L. Minku and X. Yao. 2013. Ensembles and Locality: Insight on Improving
Software Effort Estimation. IST 55, 8 (2013), 1512–1528.

[13] F. Sarro and A. Petrozziello. 2018. Linear Programming as a Baseline for Software
Effort Estimation. ACM TOSEM 27, 3 (2018), 12.1–12.28.

[14] M. Shepperd and C. Schofield. 1997. Estimating Software Project Effort Using
Analogies. IEEE TSE 23, 12 (1997), 736–743.

[15] Rodrigo G. F. Soares. 2018. Effort Estimation via Text Classification and Autoen-
coders. In International Joint Conference on Neural Networks. 1–8.

[16] M. Usman, E. Mendes, F. Weidt, and R. Britto. 2014. Effort Estimation in Agile
Software Development: A Systematic Literature Review. In International Confer-
ence on Predictive Models and Data Analysis in Software Engineering (PROMISE).
82–91.

[17] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang. 2012. Systematic Literature Review of
Machine Learning Based Software Development Effort Estimation Models. IST
54 (2012), 41–59.

[18] P.A. Whigham, C. A. Owen, and S. G. MacDonell. 2015. A Baseline Model for
Software Effort Estimation. ACM TOSEM 24, 3 (2015), 20.1–20.11.

http://doi.org/10.5281/zenodo.5068001
http://doi.org/10.5281/zenodo.5068001

Supplementary Material

(a) ISBSG2000 – MAE (b) ISBSG2000 – MLogAE

(c) ISBSG2001 – MAE (d) ISBSG2001 – MLogAE

(e) ISBSG – MAE (f) ISBSG – MLogAE

(g) ISBSGLess – MAE (h) ISBSGLess – MLogAE

Figure 1: Friedman and Nemenyi Tests to Compare Different Approaches in Terms of MAE and MLogAE across time steps.
The top ranked approach is shown in red. The dotted horizontal line represents Nemenyi’s critical distance with respect to
the mean rank of the top ranked approach. Approaches whose mean rank is above this line are significantly different from
the top ranked approach.

Leandro L. Minku

(a) ISBSG2000 – MAE (b) ISBSG2000 – MLogAE

(c) ISBSG2001 – MAE (d) ISBSG2001 – MLogAE

(e) ISBSG – MAE (f) ISBSG – MLogAE

(g) ISBSGLess – MAE (h) ISBSGLess – MLogAE

Figure 2: MAE and MLogAE Across Time Steps.

Supplementary Material

(a) ISBSG2000 – MAE (b) ISBSG2000 – MLogAE

(c) ISBSG2001 – MAE (d) ISBSG2001 – MLogAE

(e) ISBSG – MAE (f) ISBSG – MLogAE

(g) ISBSGLess – MAE (h) ISBSGLess – MLogAE

Figure 3: Friedman and Nemenyi Tests to Compare OATES with Different Values for P in Terms of MAE and MLogAE across
time steps. The top ranked approach is shown in red. The dotted horizontal line represents Nemenyi’s critical distance with
respect to the average rank of the top ranked approach. Approaches whose mean rank is above this line are significantly
different from the top ranked approach.

	1 Supplementary Material Content
	2 Additional Information Parameter Choice
	3 Related Work on Machine Learning for Software Effort Estimation
	Acknowledgments
	References

