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Abstract

This paper presents the experiments which where made
with the Clustering and Coevolution to Construct Neural
Network Ensemble (CONE) approach on four classification
benchmark databases. This approach was used to create a
particular type of Evolving Fuzzy Neural Network (EFuNN)
ensemble and optimize its parameters using a Coevolu-
tionary Multi-objective Genetic Algorithm. The results of
the experiments reinforce some previous results which have
shown that the approach is able to generate EFuNN ensem-
bles with accuracy either better or equal to the accuracy of
single EFuNNs generated without using coevolution. Be-
sides, the execution time of CONE to generate EFuNN en-
sembles is lower than the execution time to produce single
EFuNNs without coevolution.

1. Introduction

Several approaches have been developed to optimize pa-
rameters of Evolving Connectionist Systems (ECoSs) [8].
Among them, [14] describes a try to optimize some ECoSs
parameters in an on-line manner, [15] presents a method to
optimize the parameters and the order of presentation of the
training patterns in an off-line manner, [9] and [10] present
successfully methods to optimize ECoSs parameters in an
on-line manner. All these methods use evolutionary algo-
rithms to make the optimization of the ECoSs parameters.

Nevertheless, ensembles of learning machines have been
formally and empirically shown to generalize better than
single predictors [1]. Instead of utilizing just one neural
network to solve a specific problem, an ensemble of neural
networks combines a set of neural networks. In order to
improve the accuracy of a particular type of ECoSs called
Evolving Fuzzy Neural Network (EFuNN), a multi-module
classifier called multiEFuNN has been proposed in [6].

However, the construction of ensembles of neural net-
works is not an easy task [1]. In particular, it is important
to observe that the components of an ensemble should have

errors at least somewhat not correlated and each component
of an ensemble should have small error rates in order to con-
stitute a successful ensemble [2]. Besides, the choice of the
best EFuNN parameters set is also a difficult task and the
execution time of evolutionary algorithms to optimize the
EFuNN parameters is high.

Therefore, a new approach to construct ensembles of
neural networks has been proposed in [11] and experiments
have been made using a Coevolutionary Genetic Algorithm
to generate a particular type of EFuNN ensembles. These
experiments have shown that CONE is able to generate
EFuNN ensembles with accuracy either better or equal to
the accuracy of single EFuNNs generated using a Genetic
Algorithm (GA). Moreover, the execution time of CONE is
lower than the execution time of GA.

However, the Coevolutionary GA used in [11] demands
the predefinition of some parameters for the fitness func-
tion. These parameters have great influence on the results
of the evolutionary process. Besides, CONE needs to be
evaluated using other coevolutionary algorithms in order to
be validated. Thus, a new coevolutionary multi-objective
GA has been proposed to be used with CONE. This pa-
per presents the experiments which have been made with
CONE on four benchmark databases using this coevolution-
ary multi-objective GA. As in [11], the experiments were
made to continue the validation process of CONE and to
improve the accuracy of systems based on EFuNNs.

This paper is organized as follows: Sect.2 contains an
explanation about ECoSs and EFuNNs. Section 3 presents
CONE and explains a particular instance of it (i.e. a clus-
tering method, a particular type of EFuNN ensemble and
a coevolutionary multi-objective GA which can be used by
the approach). Section 4 presents the results of the experi-
ments made with this instance of CONE. Section 5 presents
the conclusions and future works.

2. ECoS and EFuNNs

The ECOSs presented in [8] are systems constituted by
one or more neural networks. Some of their characteristics



are that their learning is on-line, incremental, fast and local
[9]. EFuNNs [7] are a class of ECOSs which join the neural
networks functional characteristics to the expressive power
of fuzzy logic.

The EFuNN learning has some predefined parameters.
Using different parameters sets, EFuNNs attain different
performances and different weights are learned. The opti-
mal parameters set usually depends on the input and output
data presented. Thus, it is important to correctly choose the
parameters which define the EFuNN learning according to
the data presented.

Some of the predefined parameters of the EFuNN lean-
ing algorithm are the number of membership functions; the
initial sensitivity threshold (S) of the nodes (it is also used
to determine the initial radius of the receptive field of a
node); the error threshold (E); the m-of-nvalue (number
of highest activation nodes used in the learning); and the
maximum radius of the receptive field (Mrad). It is rec-
ommended to read [7] to get more details about the EFuNN
learning algorithm and its parameters.

3. CONE

This section describes CONE [11]. The general idea of
this approach is to construct neural network ensembles us-
ing a clustering method to partition the input space in clus-
ters. The training and test patterns are used by the cluster-
ing method to create the clusters. After that, the clusters
are used to separate the training and the test patterns them-
selves in various subsets of training and test patterns with
empty intersection, as Fig.1 shows. Each subset is used to
train/test a different population of neural networks, which
composes a species that is evolved through a cooperative
coevolutionary algorithm. Thus, each cluster is associated
with a training subset, a test subset and a species.

The coevolutionary algorithm can be used to optimize
the architecture of the neural networks or, for example, the
weights of the connections. Thus, it is possible to use the
coevolutionary algorithm both to train and to optimize the
architecture of the neural networks. However, it is also pos-
sible to use the specific learning algorithm of the neural net-
works to train them and the coevolutionary algorithm just to
optimize their architectures.

At the end of the evolutionary process, an ensemble is
created using a representative of each species in the last
generation, as shown by Fig.1. Figure 2 illustrates a neu-
ral network ensemble created using CONE. It is important
to observe that, although each species has just one represen-
tative, a pattern could belong to more than one cluster. In or-
der to use/test the ensemble, the clusters to which the input
test pattern belongs are determined. After that, the outputs
of the EFuNNs correspondent to these clusters are calcu-
lated and combined using a predefined combining method.

Figure 1. CONE

Examples of combining methods can be found in [2].
The patterns used by the approach are divided into 3

types: training patterns (used to create clusters and to train
the neural networks), test patterns (used to create clusters
and to test the neural networks during the evolutionary pro-
cess), and final test patterns (used to test the neural network
ensemble generated at the end of the evolutionary process).

The evolutionary process is cooperative because the
evaluation of an individual of a species is made using a rep-
resentative individual of each one of the other species to
constitute a neural network ensemble. The representative
of a species can be, for example, its best individual. How-
ever, the interaction among individuals of different species
occurs only in their evaluation. So, there is no matching
between individuals of different species.

The following sections explain the instance of CONE
which has been used in the experiments to produce EFuNN
ensembles: Sect.3.1 explains the clustering method used to



Figure 2. Neural network ensemble

partition the input space, Sect.3.2 explains the EFuNN en-
sembles created and Sect.3.3 explains the coevolutionary al-
gorithm used.

3.1 Clustering method

The clustering method used in the experiments is similar
to the Evolving Clustering Method [6]. The following al-
gorithm presents it (NumEx is the number of patterns and
Dthr is a predefined distance threshold):

1. Create the first clusterC0 by simply taking the position
of the first pattern as the first cluster centerCc0 and
setting a value 0 for its cluster radiusRu0.

2. For each input patternxi from i = 1 to NumEx − 1
do:

(a) Determine the distance betweenxi and all N
cluster centersCcj already created:

Dij = ||xi − Ccj ||, j = 0, 1, ..., N − 1

(b) If there is a distance valueDij ≤ Ruj , it means
thatxi belongs to a clusterCm with the minimum
distanceDim = ||xi − Ccm|| = min(||xi −
Ccj ||), subject to the restrictionDij ≤ Ruj, j =
0, 1, ..., N − 1. In this case, neither a new cluster
is created nor an existing cluster is updated.

(c) Else

i. Find the clusterCα with the minimum dis-
tanceDiα = ||xi − Ccα|| = min(||xi −
Ccj ||), j = 0, 1, ..., N − 1.

ii. If Diα > Dthr, create a new cluster, in the
same way as described in the step 1.

iii. Else updateCα: increment the number of
patterns accommodated byCα (NExsα =
NExsα + 1); updateCcα (Ccα = Ccα +
(xi − Ccα)/NExsα) and makeRα be the
maximum between the following values: 1.
the distance between the oldCcα and the
newCcα plus the oldRuα and 2. the dis-
tance betweenxi and the new centerCcα

In this paper, the distance between two vectorsx andy
denotes the General Euclidean Distance, defined as follows:

||x− y|| =

√

∑size−1

0
(xi − yi)2

size

3.2. Creating EFuNN ensembles

In the experiments performed with CONE, the coevo-
lutionary algorithm was used to optimize the predefined
parameters of the EFuNN learning which where cited in
Sect.2, and the EFuNN learning algorithm itself was used
to train the EFuNNs. A representative of a species was
considered the best fit individual of the species. Two com-
bining methods were used to combine the outputs of the
EFuNNs that compose the ensemble. One of them is the
arithmetic average of the outputs of the EFuNNs to which
the pattern presented belongs. The other one is the weighted
average of the outputs of the EFuNNs to which the pattern
presented belongs. The value used as the weight of a cluster
Cj , j = 0, 1, ...N is 1/||xi−Ccj ||), wherexi is the pattern
presented andCcj is the cluster center. If a pattern does not
belong to any cluster, the output of the ensemble is the out-
put of the EFuNN correspondent to the cluster whose center
is the nearest center to the pattern.

3.3. Coevolutionary algorithm

The experiments made with CONE have used a coevolu-
tionary multi-objective GA. It is recommendable to read [4]
for an explanation about evolutionary algorithms and [12]
for an example of a coevolutionary approach.

The coevolutionary multi-objective GA used has a bi-
nary representation of the EFuNN parameters to be opti-
mized, bitwise bit-flipping mutation, one-point crossover,
and generational survivor selection.

The initial population of each species is composed by
individuals created randomly choosing values for each of
the EFuNN parameters to be optimized. In this population,
the objectives vector of an individuali is:

[RMSE Obji = RMSEi, SIZE Obji = sizei] , (1)

whereRMSEi is the Root Mean Squared Error (RMSE)
obtained testing the EFuNN correspondent to the individ-
ual i using the test subset correspondent to its species, and
sizei is the size of this EFuNN. Thus, the objectives are
calculated without considering the individuals of the other
species. The size component of the objectives vector is used
to penalize the size of the EFuNNs and reduce the execution
time of the evolutionary algorithm, as suggested in [10].

In all generations after the initial one, the objectives of
an individuali are calculated using not only the output error



and the size of the EFuNN correspondent to this individual,
but also the output error and size of the EFuNNs correspon-
dent to the representatives of the other species in the previ-
ous generation. Thus, the objectives vector of an individual
i is [RMSE Obji, SIZE Obji], where:

RMSE Obji =

√

SSEi + repr sse

total test patterns number
and

(2)
SIZE Obji = sizei + repr size . (3)

In these equations,SSEi is the Sum of Squared Error (SSE)
obtained testing the EFuNN correspondent to the individual
i with the test subset correspondent to its species;sizei is
the size of this EFuNN;repr sse is the sum of the SSEs
andrepr size is the sum of the sizes of the EFuNNs corre-
spondent to the representatives of all other species in the
previous generation; andtotal test patterns number is
the total number of test patterns, including the patterns of
all species.

An individuali dominates an individualj if (RMSEi ≤
RMSEj) and (SIZEi ≤ SIZEj) and (RMSEi <
RMSEj or SIZEi < SIZEj).

After the calculation of the objective values, the rank of
each individual is calculated. As it is done in [5], the rank
of an individuali of the populationp in the generationg is
the number of individualsj 6= i, j ∈ p which dominate
the individuali in the generationg. In this way, a pareto
optimal individual (an individual which is not dominated
by any other individual of the population) has always rank
equal to 0.

The best individual of a population is the individual
which has the lowest rank. When more than 1 individual
has the same rank, the best between them is the one which
has the lowest SSE obtained testing the EFuNN correspon-
dent to it with the test subset correspondent to its species.

The parents selection is made using the roulette wheel
method and is proportional to the value determined by be
following equation:

Probi,p,g =
max rankp,g − ranki,p,g

∑pop sizep−1

j=0
(max rankp,g − rankj,p,g)

,

(4)
wheremax rankp,g is highest rank of the populationp in
the generationg, ranki,p,g is the rank of the individuali of
the populationp in the generationg, andpop sizep is the
size of the populationp.

Each species is evolved in a separate manner and there is
an interaction among the species only to calculate the objec-
tive values, according to CONE. The following algorithm is
the algorithm used to evolve a specific species:

1. Create the initial population.

2. Repeat until a maximum number of generations is at-
tained:

(a) Apply the EFuNN learning to each EFuNN of the
population using the training subset correspon-
dent to this species and the parameters codified
by the genotype of the individuals, and test them
using the test subset.

(b) Determine the objective values and the rank of
the individuals.

(c) Make parent selection according to (4).

(d) Apply crossover and mutation with probabilities
PcandPm, respectively, to generate new individ-
uals. The new individuals do not inherit the rule
nodes of their parents.

(e) Apply generational survivor selection.

4. Experiments

This section explains the experiments which have been
made with the instance of CONE presented in Sects.3.1,
3.2 and 3.3. The experiments have utilized four bench-
mark databases: Iris Plant, Wine, Glass and Cancer. These
databases were obtained from the UCI Machine Learning
Repository [3] and from Proben1 [13]. Section 4.1 shows
the parameters used and Sect.4.2 presents the results of the
experiments.

4.1. Parameters and executions

The parameters utilized in the experiments were cho-
sen according to the experiments made in [11]. The
EFuNN parameters optimized during the coevolutionary
process and their intervals of allowed values were: m-of-n
([1, 15] ∈ Z), E ([0.01, 0.6] ∈ R), Mrad ([0.01, 0.8] ∈ R),
S ([0.4, 0.99] ∈ R) and membership functions number
([2, 8] ∈ Z). TheDthrs parameter of the clustering method
was empirically determined and it is 0.40 for Iris database,
50 for Wine database, 0.20 for Glass database and 0.37 for
Cancer database. It is important to observe that the coice of
theDthrs parameter depends on the database and it usu-
ally is greater if the attributes of the database can assume
greater values. The parameters of the coevolutionary algo-
rithm were: population size = 12,Pm = 2%, Pc = 70%,
Wrmse = 0.1, and stop criterium = 50 generations.

Three different partitions of the training+test and fi-
nal test data sets were also used, thus totalizing 3 combi-
nations of configurations. All training+test partitions were
composed by 75% of the patterns, all finaltest partitions
were composed by 25% of the patterns of the database, 66%
of the training+test patterns were used to train the EFuNNs,



and 33% were used to test them during the evolutionary pro-
cess. Ten executions with different random seeds were per-
formed for each combination, totalizing 30 executions for
each database.

Executions with the above combinations of parameters
were also made using a multi-objective GA to generate sin-
gle EFuNNs. The multi-objective GA utilized was the same
as the algorithm presented in Sect.3.3, but using the objec-
tives (1) for all generations and just one species. In this way,
30 executions of the multi-objective GA were made for each
database.

The objective of the executions explained above was to
compare:

• EFuNN ensembles generated using CONE with
weighted average combining method (weighted
EFuNN ensembles – WEns);

• EFuNN ensembles generated using CONE with arith-
metic average combining method (arithmetic EFuNN
ensembles – AEns);

• Single EFuNNs generated using multi-objective GA
(Sing).

The characteristics compared were the execution times
of the evolutionary approaches, and the output classification
errors of the EFuNN ensembles and of the single EFuNNs
generated.

4.2. Results

In this section, the classification errors are those obtained
using the finaltest patterns set to test the single EFuNNs or
the EFuNN ensembles generated after the evolutionary pro-
cesses. Table 1 shows the classification error averages, stan-
dard deviations, minimal and maximum values, considering
the 30 executions for each database.

It can be observed that for the Iris, Wine and Glass
databases the classification error averages of the ensembles
were lower than the classification error averages of the sin-
gle EFuNNs. For the Cancer database, the classification
error averages of the ensembles were greater than the clas-
sification error average of the single EFuNNs. Nevertheless,
the classification error averages of the ensembles created for
all databases were considered statistically equal to the clas-
sification error averages of the single EFuNNs. The classi-
fication error averages of the weighted EFuNN ensembles
were also always considered statistically equal to the classi-
fication error averages of the arithmetic EFuNN ensembles.

Table 2 shows the statistics of the T student tests [16]
performed to prove the analysis made with the classification
errors. The signals “=” indicate that the classification errors
of all 30 executions of the compared approaches were equal.

Table 1. Measures related to the classification
errors

Iris Wine Glass Cancer

WEns Av 0.0521 0.0259 0.3107 0.0402
SD 0.0378 0.0292 0.0547 0.0134
Min 0.0256 0 0.2264 0.0172
Max 0.1282 0.1111 0.4151 0.0805

AEns Av 0.0521 0.0259 0.3132 0.0439
SD 0.0378 0.0292 0.0562 0.0156
Min 0.0256 0 0.2075 0.0115
Max 0.1282 0.1111 0.4151 0.0805

Sing Av 0.0598 0.0274 0.3302 0.0379
SD 0.0304 0.0162 0.0924 0.0107
Min 0 0 0.1509 0.0172
Max 0.1282 0.0444 0.5471 0.0575

Table 2. T Student test statistics comparing
the classification error averages using level
of significance equal to 0.05

Iris Wine Glass Cancer

WEns x AEns = = -1.2782 -2.0266
WEns x Sing -1.2477 -0.2352 -1.1802 0.7793
AEns x Sing -1.2477 -0.2352 -1.0471 1.9800

Table 3 shows the execution time averages, standard de-
viations, minimal and maximum values, considering the 30
executions for each database. For all databases, the execu-
tion time average among all 30 executions of CONE to gen-
erate EFuNN ensembles was statistically lower than the ex-
ecution time average among all 30 executions of the multi-
objective GA to generate single EFuNNs. Table 4 shows the
statistics of the T student tests made to prove this analysis.

The execution time of the CONE to generate EFuNN
ensembles was lower than the multi-objective GA execu-
tion time to generate single EFuNNs probably because in
the optimization process of a single EFuNN, for each pat-
tern presented to train/test the EFuNN, the activation lev-
els of all rule nodes of the EFuNN have to be calculated.
When an EFuNN ensemble is being created, just the activa-
tion levels of the rule nodes of the correspondent EFuNNs
have to be calculated. A single EFuNN is usually higher
than each EFuNN which compose an ensemble because a
single EFuNN has to accommodate all training patterns and
a component of an ensemble has to accommodate only the
patterns correspondent to a particular cluster.

It is also interesting to observe that the standard de-



Table 3. Measures related to the execution
times in seconds

Iris Wine Glass Cancer

Ens Av 34.033 30.433 59.067 421.733
SD 2.684 3.126 11.965 170.659
Min 29 25 38 196
Max 43 36 77 884

Sing Av 134.267 99.467 101.733 984.033
SD 39.505 23.263 24.189 248.590
Min 87 66 60 527
Max 226 146 154 1701

Table 4. T Student test statistics comparing
the execution time averages using level of
significance equal to 0.05

Iris Wine Glass Cancer

Ens x Sing -13.6713 -15.8802 -11.1407 -10.2514

viations of the execution times of the CONE to produce
EFuNN ensembles were lower than the standard deviations
of the execution times of the multi-objective GA to produce
single EFuNNs for all databases, as table 3 shows.

5. Conclusions

This paper proposes a coevolutionary multi-objective
GA which can be used with CONE to create EFuNN ensem-
bles and it presents experiments on four benchmark prob-
lems using a particular instance of CONE that uses this co-
evolutionary multi-objective GA.

The experimental results have shown that the EFuNN en-
sembles construction using the proposed instance of CONE
has a lower execution time than the single EFuNNs con-
struction using a multi-objective GA. The standard devia-
tions of the execution times are also lower for CONE. Even
so, the EFuNN ensembles generalization abilities are equal
to the single EFuNNs ones. These results contribute to
the validation of CONE, reinforcing the results presented
in [11], which have shown that CONE is able to pro-
duce EFuNN ensembles with either equal or better gen-
eralization using a lower execution time than similar non-
coevolutionary algorithms to produce single EFuNNs.

Future works include the use of other clustering meth-
ods and coevolutionary algorithms to create neural network
ensembles using CONE and the comparison of CONE with
other approaches.
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