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Abstract

This paper introduces an approach called Clustering and Co-evolution to Construct Neural Network Ensembles (CONE). This
approach creates neural network ensembles in an innovative way, by explicitly partitioning the input space through a clustering
method. The clustering method allows a reduction in the number of nodes of the neural networks that compose the ensemble, thus
reducing the execution time of the learning process. This is an important characteristic specially when evolutionary algorithms are
used. The clustering method also ensures that different neural networks specialise in different regions of the input space, working
in a divide-and-conquer way, to maintain and improve the accuracy. Besides, the clustering method facilitates the understanding of
the system and makes a straightforward distributed implementation possible. The experiments performed with seven classification
databases and three different co-evolutionary algorithms show that CONE reduces considerably the execution time without
prejudicing (and even improving) the accuracy, even when a distributed implementation is not used.
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1. Introduction

Many learning problems have large amounts of data
available for the learning process, such as genome and
microarray analysis, geographic information analysis, in-
trusion detection, process control and text categorization.
Ideally, it is desirable to consider all training instances
simultaneously, to get the best possible estimative of class
distribution. However, many times it is not possible to load
the whole training set into memory at one go (Inoue &
Narihisa, 2005). Furthermore, the execution time of learn-
ing algorithms becomes very high when a great amount of
data is used during the learning process. This problem is
even aggravated when evolutionary algorithms are used.
This paper introduces an approach called Clustering

and Co-evolution to Construct Neural Network Ensembles
(CONE). This approach creates neural network ensembles
in an innovative way, by explicitly partitioning the input
space through a clustering method. The clustering method
allows a reduction in the number of nodes of the neural
networks that compose the ensemble, thus reducing the
execution time of the learning process. Besides, it allows a

straightforward distributed implementation, which makes
it possible to divide the memory requirements among dif-
ferent machines and to reduce even more the execution
time. The clustering method also ensures that the neural
networks that compose the ensemble specialize in different
parts of the problem space and work in a divide-an-conquer
manner, preserving and even improving accuracy.
CONE was used to construct Evolving Fuzzy Neural

Network (EFuNN) (Kasabov, 2001b) ensembles 1 . EFuNNs
are a class of Evolving Connectionist Systems (ECoSs)
(Kasabov, 2003, 2007) which join the neural networks func-
tional characteristics to the expressive power of fuzzy logic.
They present the following characteristics (Kasabov, Song,
& Nishikawa, 2003):
– They facilitate evolving processes modeling task.
– They facilitate knowledge representation and extraction.
– Their learning is:

1 It is important to observe that, although CONE was developed

mainly to construct EFuNN ensembles, it can also be used to develop
ensembles of other kinds of predictors.
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· Lifelong: they learn from continuously incoming data in
a changing environment during their entire existence.

· On-line: they learn each example separately while the
system operates. Usually, a system which operates in
an on-line mode is also a systems which operates in a
lifelong mode, and vice-versa.

· Incremental: they learn new data without totally de-
stroying the patterns learned before and without the
need to make a new training on old and new data to-
gether.

· Fast, possibly through just one pass of data propaga-
tion.

· Local: they locally partition the problem space, allow-
ing fast adaptation and tracing evolving processes over
time.

– They can learn both as individual systems and as part
of an evolutionary population of such systems.

– They have evolving structures and use constructive
learning.

– They evolve in an open space, not necessarily of fixed
dimensions.
Although EFuNNs and other ECoSs have some param-

eters that are tunned during learning, they also have pa-
rameters that do not change during the learning, but define
it. The parameters that do not change during the learning
can be called learning parameters. Through the use of dif-
ferent learning parameters, EFuNNs attain different per-
formances and different weights are learned. The optimal
learning parameters set usually depends on the incoming
data and is difficult to be chosen manually, particularly
when large databases or evolving processes are being mod-
elled. So, approaches to automatically tune the learning
parameters are important to get good results when using
EFuNNs.
Several methods have been developed to optimize the

learning parameters of ECoSs. Among them, Watts and
Kasabov (2001, 2002), Kasabov et al. (2003), Chan and
Kasabov (2004), Minku and Ludermir (2005) can be cited.
All these methods use evolutionary algorithms, showing
the importance of evolutionary algorithms when using
EFuNNs. Besides using a clustering method, CONE uses
a co-evolutionary algorithm that allows the optimization
of the architecture of the members of the ensemble (in the
case of EFuNNs, their learning parameters) at the same
time as they learn their respective regions of the input
space. This is very important, for different regions of the
input space may require different topologies.
One of the important characteristics of ECoSs is that

they facilitate knowledge extraction. So, it is important
that an ensemble of ECoSs is able to preserve this feature.
Clustering the problem space makes the system clearly un-
derstandable, instead of being a black box. In this way,

when used to create ensembles of neural networks that al-
ready have clear rule extraction methods, it is easier to cre-
ate rules to explain the system’s behavior. Examples of how
to extract rules from EFuNNs are presented in Kasabov
(2001b). The study of rules extraction from ensembles cre-
ated by CONE is proposed as a future work.
This paper presents experiments which show that CONE

reduces considerably the execution time of the learning pro-
cess even when CONE is not used in a distributed way.
By using CONE in a distributed way, it would be possible
to reduce even more the execution time. The experiments
also show that the accuracy of the ensembles generated by
CONE is similar or higher than the accuracy of a single
EFuNN created using an evolutionary algorithm, i.e., the
techniques used to reduce the execution time do not prej-
udice the accuracy of the system.
The objective of this paper is to introduce CONE and

show that it reduces considerably the execution time to cre-
ate neural networks when evolutionary algorithms are used,
without prejudicing (and even being able to improve) the
accuracy. In order to do that, CONE’s behaviour is anal-
ysed in off-line mode, although CONE can also be applied
to on-line learning if an on-line co-evolutionary algorithm
is adopted. It is beyond the scope of this paper to show
whether EFuNNs ensembles are better than other types of
ensembles. The paper also does not intend to determine
the best evolutionary algorithm to be used with CONE.
Instead, it presents 3 different evolutionary algorithms to
evaluate CONE’s performance with different algorithms. It
can be seen that CONE’s reduction in the execution time
without prejudicing the accuracy occurs with all the co-
evolutionary algorithms used in the experiments.
The paper is organized as follows: Section 2 explains some

works related to the automatic ensemble construction. Sec-
tion 3 presents CONE. Section 4 explains a particular type
of EFuNN ensemble. Section 5 presents three different co-
evolutionary algorithms which can be used with CONE.
Section 6 explains the experiments which have been made
on seven benchmark databases and their results. Section 7
presents the conclusions and future works. The clustering
method used with CONE and the EFuNN learning algo-
rithm are presented in the appendix.

2. Related Works

The task to construct ensembles of neural networks com-
monly includes some manual design, such as design of in-
dividual neural networks and/or division of training data.
When there are experienced human experts with sufficient
knowledge of the problem to be solved, manual design and
a fixed ensemble may be appropriated.
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An example of ensemble of neural networks manually de-
signed is shown in Ranawana and Palade (2005). This pa-
per proposes a multi-classifier system based on neural net-
works, called MultiNNProm. The system is used to identify
promoters on Escherichia Coli bacterium’s Deoxyribonu-
cleic Acid (DNA) sequences. It is constituted by four neural
networks which receive the same DNA sequence as input.
Each neural network codifies the DNA sequence in a differ-
ent manner. The neural network outputs are passed onto
a probability builder function that assigns probabilities as
to whether the presented sequence is an Escherichia Coli
promoter or not. A result combiner is used to combine the
generated probabilities to produce the final result, which
indicates whether the sequence is an Escherichia Coli pro-
moter or not.
In Kasabov (2001a), a multi-classifier architecture called

multiEFuNN, based on Evolving Fuzzy Neural Networks
(EFuNNs), is presented. MultiEFuNN is partially manu-
ally designed. The number of clusters inside the multi-
modular classifier is determined by the Evolving Cluster-
ing Method (ECM) (Song & Kasabov, 2002) and is used to
seed each EFuNN with the rules derived using this method.
The EFuNN learning parameters are pre-determined by the
user and the output is majority vote.
Nevertheless, when there is little prior knowledge about

the problem to be solved, tedious trial-and-error processes
are often involved in designing ensembles of neural net-
works. One way to avoid such processes is to adopt nature
inspired learning such as evolutionary learning. An exam-
ple of the use of evolutionary learning to create ensembles
of neural networks is given in Yao and Liu (1998). The au-
thors emphasize the difference between a learning system
and an optimization one. The learning system is hoped to
have the best generalization, which is different from mini-
mizing an error function. Thus, the practice of selecting the
best individual of the last generation as the learned system
is not the best choice. As a population contains more in-
formation than the best individual, it could be used as the
final learned system, i.e., it could be used as an ensemble.
This idea inspired various subsequent works, which use the
whole final population (Chen & Yao, 2007; Duell, Fermin,
& Yao, 2006; Liu, Yao, & Higuchi, 2000; Liu & Yao, 1998)
or part of the final population (Chandra & Yao, 2006; Du-
ell et al., 2006; Chen & Yao, 2006; Liu et al., 2000; Liu &
Yao, 1998) as the ensemble.
An approach called Evolutionary Ensemble with Nega-

tive Correlation Learning (EENCL) is proposed by Liu and
Yao (1998), Liu et al. (2000). The learning occurs in two
levels: local learning of individual neural networks based
on negative correlation learning and evolutionary learn-
ing based on Evolutionary Programming (Eiben & Smith,
2003). Negative correlation learning introduces a penalty

term into the error function of individual neural networks,
so that they can be trained cooperatively. Using the penalty
term, the error of an individual neural network is nega-
tively correlated to the errors of the other neural networks
of the ensemble. The ensemble can be constituted by either
all the individual neural networks in the last generation or
selecting one representative from each species in the last
generation. Differently from CONE, the species are deter-
mined by clustering the individuals of the last generation
by using the k-means algorithm (MacQueen, 1967) after
the evolutionary process is finished. CONE uses a cluster-
ing algorithm to divide the input space of the problem to
form species before the evolutionary process starts, reduc-
ing the execution time of the learning process and directly
ensuring that each species will specialise in different regions
of the input space.
Another approach based on clustering is Li, Huang, Ye,

and Cui (2004). Similarly to Liu and Yao (1998), Liu et al.
(2000), this approach also clusters the neural networks only
after the training is done, instead of clustering the input
space of the problem.
A constructive algorithm for training cooperative neu-

ral network ensembles (CNNEs) is presented in Islam, Yao,
and Murase (2003). It emphasizes the accuracy and diver-
sity among individual neural networks in an ensemble by
using negative correlation learning and allowing different
neural networks to be trained using different numbers of
epochs. The number of hidden nodes in individual neural
networks and the number of neural networks in the ensem-
ble is determined in a constructive way. Thus, the approach
is able to automatically determine of the number of nodes
in the individual neural networks and the size of the en-
semble. This approach does not ensure that different neu-
ral networks will specialise in different regions of the input
space, as CONE.
A multi-objective evolutionary algorithm to construct

ensembles of neural networks, called Diverse and Accurate
Ensemble Learning Algorithm (DIVACE), is described in
Chandra and Yao (2006). This method aims to find an
optimal trade-off between diversity and accuracy by us-
ing these objectives explicitly as multi-evolutionary pres-
sures. A multi-objective evolutionary approach yields to a
set of near optimal solutions instead of just a single solu-
tion. Thus, these near optimal solutions (pareto set) can
be used as members of the ensemble. In the same way as
in Islam et al. (2003), this approach does not ensure that
different neural networks will specialise in different regions
of the input space. Besides, the execution time of the evo-
lutionary algorithm is not reduced, as in CONE.
An important framework based on cooperative co-

evolution to evolve neural network ensembles is described
in Garcia-Pedrajas, Hervas-Martinez, and Ortiz-Boyer
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(2005). It maintains two populations: population of net-
works and population of ensembles. The population of
networks consists of a fixed pre-determined number of
independent subpopulations of networks that are evolved
using evolutionary programming. Each member of the
population of ensembles is formed by a network from ev-
ery network subpopulation. One of the problems of this
approach is the use of a pre-determined ensemble size,
instead of automatically determining the best number of
ensembles to the problem.
Interesting parallels can be traced between Mixture-of-

Experts (Jacobs & Jordan, 1991; Jordan & Jacobs, 1992,
1994) and CONE. Mixture-of-expert models also are com-
posed by modules that are experts in different regions of
the problem space. However, the architecture of each mod-
ule is not evolved, the number of ensemble members is pre-
determined and the division of the problem space is not so
direct and intuitive as in CONE. An example of recent work
derived from mixture-of-experts is the work done by Liao,
Li, and Carin (2007), which presents a statistical learning
model formulated to handle incomplete data.
CONE determines the number of neural networks which

compose the ensemble by clustering the input space of the
problem, similarly to Kasabov (2001a). However, CONE
uses co-evolutionary learning, allowing the optimization of
the parameters of the individual neural networks. In this
way, an automatically design of the ensemble of neural net-
work is performed. Section 3 presents CONE.

3. CONE

This section presents CONE. The main idea of CONE is
to construct ensembles of neural networks by using a clus-
tering method to partition the input space in clusters. The
clusters are used to separate the training and test patterns
in various subsets of training and test patterns with empty
intersection. Each subset is used to train/test a different
species of individuals. The species are composed by neural
networks and are evolved through a co-evolutionary algo-
rithm. As in nature, species are genetically isolated, i.e., the
individuals can only match with other individuals of the
same species. Thus, each cluster is associated to a training
subset, a test subset and a species of neural networks. The
purpose of training the individuals of each species using a
different subset of the training patterns is to specialize dif-
ferent species in different regions of the problem space and
create diversity. Besides, as the neural networks of each
species learn a reduced train set, they can be smaller than a
single neural network used to learn the whole training set.
In this way, each training example is presented to a rela-
tively small neural network, reducing the training time.

Fig. 1. Clustering

Figure 1 illustrates the creation of clusters of the input
space using the training and test patterns set. It is impor-
tant to notice that, although the clusters of the input space
are used to create training and test subsets with empty in-
tersection, the clusters of the input space themselves do
not need to have empty intersection. Thus, a pattern could
belong to more than one cluster of the input space, but it
could not belong to more than one training or testing sub-
sets.
The patterns used by the approach are divided in 3 types:

– Training patterns: used to create clusters and to train
the neural networks;

– Test patterns: used to create clusters and to test the
neural networks during the evolutionary process;

– Final test patterns: used to test the ensemble of neural
networks generated at the end of the evolutionary pro-
cess.
The training+test data set is subdivided into subsets

according to the clusters of the input space, as figure 2
shows. In this way, if there are N clusters, there will be N
subsets of training patterns with empty intersection and N
subsets of test patterns with empty intersection. If there are
not enough patterns to compose a test subset corresponding
to a specific cluster of the input space, the same subset used
to train the neural networks of the corresponding species
can be used to test them during the evolutionary process.
If there are N clusters, there will be also N species to

be evolved through a co-evolutionary algorithm. The in-
dividuals of the species are neural networks and the co-
evolutionary algorithm can be used to optimize their pa-
rameters. These parameters can be both the architecture
of the neural networks and, for example, the weights of the
connections. Thus, it is possible to use the co-evolutionary
algorithm both to train and to optimize the architecture
of the neural networks. However, it is also possible to use
the specific learning algorithm of the neural networks to
train them and the co-evolutionary algorithm just to opti-
mize their architectures, as it is done to create EFuNN en-
sembles (section 4). It is important to emphasize that each
training/test subset is used to train/test the individuals of
a specific species.
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Fig. 2. CONE
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Fig. 3. Neural network ensemble utilization

The evolutionary process is cooperative because the fit-
ness of an individual of a species population is calculated
using a representative individual of each one of the other
species populations to constitute an ensemble of neural net-
works. The representative of a population could be, for ex-
ample, its best individual. There is no matching between
individuals of different species. The interaction among in-
dividuals of different species only occurs in the calculation
of the fitness value.
At the end of the evolutionary process, the representa-

tives of each species population of the last generation are
used to constitute the ensemble, as shown by figure 2. Fig-
ure 3 illustrates an ensemble of neural networks created af-
ter the evolutionary process and the way it is used/tested.
In order to use/test the ensemble, the clusters to which the
input test pattern belongs are determined. After that, the
outputs of the EFuNNs corresponding to these clusters are
calculated and combined using a pre-determined combin-
ing method. Examples of combining methods can be found
in Dietterich (1998).
When an on-line clustering method and an on-line co-

evolutionary algorithm are used, it is possible to apply
CONE to perform on-line learning. On-line co-evolutionary
algorithms can be created based on algorithms such as the
proposed by Chan and Kasabov (2004) and Minku and Lu-
dermir (2005). In on-line learning mode, the system learns
data which arrive in batches and the species are created
when new clusters are generated. After the learning of each
new batch of data, the representatives of each population
are used to compose the ensemble. When a new batch of
data is received, the neural networks that compose the ex-
istent species can be initialized with the weights learnt by
the representatives generated through the previous batch
of data.

3.1. A Distributed Implementation

CONE allows a straightforward distributed implementa-
tion. In this way, the memory requirements can be divided
among different machines and the execution time can be
reduced even more than when CONE is not executed in a
distributed way. After the clustering of the training+test
patterns set is made, each subset of patterns can be sent
to a different machine, which evolves a different species.
Communication among the machines is necessary only to
calculate the fitness of the individuals. Besides, only values
corresponding to the representative of the last generation
which finished being executed have to be sent from one
species to the others (e.g., error and size of the represen-
tative), not overloading the network traffic. Each machine
starts executing a new generation only after it received the
representatives’ information of all the other species. In this
way, it is ensured that it is possible to calculate the fitness
values when a new generation starts. The execution time is
lower bounded by the sum of the highest execution time of
each generation and the communication time. The execu-
tion of CONE in a distributed way is proposed as a future
work.

4. An Example of EFuNN Ensemble

This section presents an example of EFuNN ensemble
which can be created by CONE. As it was explained in sec-
tion 1, EFuNNs have parameters which are adjusted dur-
ing the learning and learning parameters. In order to create
EFuNN ensembles using CONE, the co-evolutionary algo-
rithm can be used to optimise the learning parameters and
the EFuNN learning algorithm itself can be used to train
the EFuNNs.
According to CONE, the representatives of the last pop-

ulation of each species are used to construct the EFuNN
ensemble after the evolutionary process. The best fit indi-
vidual of a population can be considered the representative
of this population. Examples of combining methods which
can be used to combine the outputs of the EFuNNs which
compose the ensemble are:
– Arithmetic average of the outputs of the EFuNNs corre-
sponding to the cluster to which the presented pattern
belongs.

– Weighted average of the outputs of the EFuNNs corre-
sponding to the cluster to which the presented pattern
belongs. The value to be used as the weight of the clus-
ter Cj , j = 0, 1, ...N is 1/||xi − Ccj ||, where xi is the
presented pattern and Ccj is the cluster center.
If a pattern does not belong to any cluster, the output of

the ensemble is the output of the EFuNN corresponding to
the cluster whose center is the nearest center to the pattern.
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5. Co-evolutionary Algorithms

This section presents 3 different co-evolutionary algo-
rithms that can be used with CONE: a co-evolutionary ge-
netic algorithm, a multi-objective co-evolutionary genetic
algorithm and a multi-objective co-evolutionary strategy.

5.1. Co-evolutionary Genetic Algorithm

This section presents a co-evolutionary genetic algorithm
(co-evolutionary GA) inspired on Potter and De Jong
(2000) to be used with CONE. The co-evolutionary GA
has a binary representation of the EFuNN parameters
to be optimized, bitwise bit-flipping mutation, one-point
crossover, and generational survivor selection. The parents
selection is proportional to the value determined by be
following equation:

Probi,p,g =
max fitnessp,g − fitnessi,p,g

∑pop sizep−1

j=0
fitnessj,p,g

, (1)

where max fitnessp,g is the greatest fitness of the popula-
tion p of the generation g, fitnessi,p,g is the fitness of the
individual i of the population p of the generation g, and
pop sizep is the size of the population p.
The parents selection uses the roulette wheel method

and, according to equation 1, the fitness value is minimized.
Eiben and Smith (2003), a recent book about evolutionary
algorithms, gives examples of applications of GAs in which
the fitness function is directly minimized, instead of change
it into a function that has to be maximized.
Each initial population is composed by individuals cre-

ated randomly choosing values for each of the EFuNN pa-
rameters to be optimized. A population is created for each
cluster of the input space, i.e., for each species, according
to CONE.
In the initial population, the fitness of the individuals is

calculated in an isolated manner, i.e., to determine the fit-
ness of an individual, the individuals of the other species
are not considered. The function used to calculate the fit-
ness in this generation is:

fitnessi = Wrmse RMSEi +Wsize sizei , (2)

where Wrmse and Wsize are pre-defined weights, RMSEi

is the Root Mean Squared Error (RMSE) obtained testing
the EFuNN corresponding to the individual i with the test
subset corresponding to its species, and sizei is the size of
this EFuNN.
The size component of the fitness function is used to

penalize the size of the EFuNNs generated, as suggested
by Minku and Ludermir (2005). In this way, the execution
time of the evolutionary algorithm is not so high.

In all generations after the initial one, the fitness of an
individual i is calculated in an innovative way. Instead of
playing the individual against the individuals of the other
species to form an ensemble and use the individual’s contri-
bution to the ensemble as a fitness measure (as it is usually
done in the literature), the fitness of an individual is the
combination of the output error and the size of this individ-
ual with the output error and size of the representatives of
the other species’ populations of the previous generation,
saving time during the fitness calculation. The functions
used to calculate the fitness in all generations except the
initial generation are:

RMSE =

√

SSEi + repr sse

total test patterns number
(3)

size = sizei + repr size (4)

fitnessi = Wrmse RMSE +Wsize size (5)

where Wrmse and Wsize are pre-defined weights, SSEi

is the Sum of Squared Error (SSE) obtained testing the
EFuNN corresponding to the individual i with the test
subset corresponding to its species, sizei is the size of this
EFuNN, repr sse is the sum of the SSEs and repr size
is the sum of the sizes of the representatives of all other
species’ populations in the previous generation, and
total test patterns number is the total number of test pat-
terns, including the patterns corresponding to all species.
Each species is evolved in a separate manner and there

is an interaction among the species only to calculate the
fitness value, according to CONE. The fitness value of an
individual of a species’ population depends on the repre-
sentative individuals of the other species’ populations. Fig-
ure 4 shows the calculation of the fitness of an individual
of the population of the species K of the generation G, in
a co-evolutionary GA with N species.
The algorithm 5.1 is the algorithm used to evolve a spe-

cific species. The stop criterion used for the evolutionary
process is the number of generations.

Algorithm 5.1 (Evolutionary process of a species)

(i) Create the initial population.
(ii) Repeat until a maximum number of generations is

attained:
(a) If the EFuNNs corresponding to the individuals

of the population have any rule nodes, delete
them.

(b) Apply the EFuNN learning algorithm to each
EFuNN of the population using the training sub-
set corresponding to the species and the param-
eters codified by the genotype of the individual.
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Fig. 4. Fitness calculation of an individual of the population of the species K, in a co-evolutionary GA with N species

(c) Test the EFuNNs corresponding to all individu-
als of the population using the test subset.

(d) Determine the fitness value of each individual of
the population.

(e) Make parents selection using roulette wheel
method and probabilities determined through
the equation 1.

(f) Apply crossover and mutation with probabilities
Pc and Pm, respectively, to generate new indi-
viduals.

(g) Apply generational survivor selection.

5.2. Multi-Objective Co-evolutionary Genetic Algorithm

The algorithm described in the section 5.1 needs the pre-
definition of the fitness parameters Wrmse and Wsize. The
choice of the best parameters to be used is difficult and
influences the ensemble of neural networks generated after
the evolutionary process. So, this section presents a multi-
objective co-evolutionary GA to be used with CONE. The
difference between this algorithm and the one described in
section 5.1 is that the parents selection is based on the rank
of the individual in its population, instead of being based
on the fitness value.
The rank of each individual is based on the objective

functions, which are similar to the components of the fitness
functions described in section 5.1. The objectives vector of
an individual i of the initial population is:

[RMSE Obji = RMSEi, SIZE Obji = sizei] , (6)

The objectives vector of an individual i in all other gen-
erations is [RMSE Obji, SIZE Obji], where:

RMSE Obji =

√

SSEi + repr sse

total test patterns number
and (7)

SIZE Obji = sizei + repr size . (8)

The rank of an individual i of the population p in the
generation g is the number of individuals j 6= i, j ∈ pwhich
dominate the individual i in the generation g, as it is done
in Fonseca and Fleming (1998). An individual i dominates
an individual j if (RMSEi ≤ RMSEj) and (SIZEi ≤
SIZEj) and (RMSEi < RMSEj or SIZEi < SIZEj). In
this way, a pareto optimal individual (an individual which
is not dominated by any other individual of the population)
has always rank equal to 0.
The best individual of a population is the individual with

the lowest rank. When more than 1 individual has the same
rank, the best between them is the one which has the lowest
SSE, obtained testing the EFuNN corresponding to it with
the test subset corresponding to its species.

5.3. Multi-objective Co-evolutionary Strategy

This section explains a multi-objective co-evolutionary
strategy to be used with CONE.
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Besides the features of a co-evolutionary algorithm to
be used with CONE, the multi-objective co-evolutionary
strategy has the following features:
– Representation by real values, with two genes for each
EFuNN parameter to be optimized. The first of these
genes represents the parameter itself and the second rep-
resents the corresponding self-adapting standard devia-
tion.

– Gaussian perturbation mutation with self-adaptation of
the standard deviations and one standard deviation for
each variable representing an EFuNN parameter to be
optimized. This kind of mutation is adequate for ordinal
numeric parameters optimization.

– Local discrete crossover for the variables representing
the parameters to be adjusted and local intermediary
crossover for the variables representing the self-adapting
standard deviations, as suggested in Eiben and Smith
(2003).

– Random parents selection with equal probabilities for all
population members.
The algorithm works in a similar way to the algorithm

presented in section 5.2, but in a evolutionary strategy way.
So, the initial population of each species is composed by in-
dividuals created randomly choosing values for each of the
EFuNN parameters to be optimized. N parents are ran-
domly chosen to generate the individuals of the next popu-
lation. N must be chosen in such a way that the number of
children individuals is greater than the population size. Af-
ter parents selection, the crossover operator is applied with
probability Pc to each pair of parents. The result of the ap-
plication of the crossover operation to a pair of parents is
only one child individual. After crossover, gaussian pertur-
bation mutation is applied to the resultant individual, us-
ing the standard deviation corresponding to each EFuNN
parameter. If the crossover operator was not applied to a
pair of parents, mutation is applied to the first of the par-
ents, resulting in a child individual.
The survival selection is similar to (µ, λ)-survival selec-

tion. The µ best rank individuals are selected among the λ
children. µ is also the size of the population. The number
of children is λ = N/2 and λ > µ. This kind of survival
selection was chosen because it is better than (µ + λ) to
follow moving optimal points on the search space, to scape
from local optima and to be used with self-adaptation of
the mutation parameters (Eiben & Smith, 2003).
The rank of an individual is determined in a very similar

way to section 5.2. However, it is calculated using the chil-
dren individuals, before the survival selection. Thus, the
rank of a child i is the number of children j 6= i which dom-
inate i. In this way, a pareto-optimal individual (an indi-
vidual that is not dominated by any other individual) has
also always rank 0.

6. Experiments

This section presents the experiments and analyses made
with CONE to create EFuNN ensembles (section 4) using
the algorithms presented in 5 and appendix A. Seven dif-
ferent classification databases from UCI Machine Learning
Repository (Newman, Hettich, Blake, & Merz, 1998) and
Proben1 (Prechelt, 1994) were used: Cancer, Glass, Iris,
Wine, Heart, Pima and Vehicle. Heart is considered a dif-
ficult database, for it has many missing values. Pima and
Vehicle are considered some of the most difficult databases
of the repository. Some preliminary experiments were made
with Iris, Wine, Glass, Cancer (Minku & Ludermir, 2006b,
2006a). The preliminary experiments used a reduced num-
ber of executions and only co-evolutionary GA and multi-
objective co-evolutionary GA.
As the co-evolutionary GA has the problem of being too

much influenced by the tunning of the fitness function, this
paper presents experiments only with Iris, Wine, Glass and
Cancer using this co-evolutionary algorithm.
The results obtained with CONE were compared with

evolutionary algorithms to generate and optimize EFuNNs.
Evolutionary algorithms are techniques suggested by
Kasabov (2003) to optimize EFuNNs parameters and since
then they have inspired the works done by Kasabov et al.
(2003), Chan and Kasabov (2004) and Minku and Luder-
mir (2005).
The rest of this section is organized as follows: section

6.1 presents the objectives of the experiments, section 6.2
shows the experimental setup, section 6.3 presents an anal-
ysis of the execution time and the relation between the
nodes number and the execution time, section 6.4 presents
an analysis of the accuracy and section 6.5 presents a com-
parison between the use of multi-objective co-evolutionary
GA and the multi-objective co-evolutionary strategy with
CONE. The analyses show that it is possible to use CONE
to reduce considerably the execution time without preju-
dicing (and even improving) the accuracy. This behaviour
occurs even when different co-evolutionary algorithms are
used. However, it is important to notice that different co-
evolutionary algorithms should be used to different pur-
poses, as it is shown in section 6.5.

6.1. Objectives

The main objective of the experiments is to show that
CONE reduces considerably the execution time of the learn-
ing process even when it is not used in a distribute way,
for the clustering method makes the ensemble members
have a reduced number of nodes. The execution time re-
duction is attained without prejudicing the accuracy and
even improving it in comparison to single EFuNNs gener-
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ated using evolutionary algorithms corresponding to the
co-evolutionary algorithm used by CONE. It is important
to notice that the single EFuNNs are strong classifiers with
optimized learning parameters.
The experiments also aim at determining which combi-

nation method (weighted or arithmetic) is better to be used
by an ensemble generated by CONE and at analysing the
influence of the choice of the co-evolutionary algorithm.
With these objectives in mind, EFuNN ensembles

generated using CONE with each of the presented co-
evolutionary methods were compared with single EFuNNs
generated using corresponding evolutionary algorithms.
The characteristics compared were the execution times
and the classification errors. The classification errors were
those obtained using the final test patterns set to test the
single EFuNNs and the EFuNN ensembles generated after
the evolutionary processes. CONE using multi-objective
co-evolutionary GAwas compared with CONE usingmulti-
objective co-evolutionary strategy to analyse the influence
of the co-evolutionary algorithm in the learning process.

6.2. Experimental Setup

The training, test and final test data sets utilized by the
experiments were created as follows:
(i) Two data sets (training+test data set and final test

data set) were created:
– Proben1 databases (Glass and Cancer) are already
separated in training (50% of the patterns), valida-
tion (25% of the patterns) and test data sets (25%
of the patterns). There are also 3 different parti-
tions of the patterns which compose each of these
sets. For each partition, the supplied training and
validation sets were used to compose CONE’s train-
ing+test data sets and the supplied test set was
used to compose CONE’s final test data set.

– The other databases were obtained directly from
the UCI Machine Learning Repository. These
databases were processed in order to create 3 differ-
ent partitions of training+test and final test data
sets. Each training+test data set contains 75% of
the patterns of each class and each final test data
set contains 25% of the patterns of each class.

(ii) The 3 partitions of the training+test and final test
data sets were used in different executions. For each
execution:
(a) The training+test patterns set was used to cre-

ate the clusters of the input space.
(b) After that, the training+test patterns set was

separated according to the clusters into subsets
of training+test patterns. Each pattern belongs
to the subset corresponding to the cluster which

has the nearest center to this pattern.
(c) Each training+test subset was then divided into

2 subsets. One of them is a training subset, with
66% of its patterns, and the other one is a test
subset, with 34% of its patterns. In this way, the
total number of training patterns is always 50%,
the total number of test patterns is 25% and the
total number of final test patterns is 25% of the
patterns of the database.

The EFuNNparameters which were optimized during the
co-evolutionary process and their intervals of allowed val-
ues are: m-of-n ([1, 15] ∈ Z), error threshold ([0.01, 0.6] ∈
R), maximum radius ([0.01, 0.8] ∈ R), initial sensitivity
threshold ([0.4, 0.99] ∈ R) and membership functions num-
ber ([2, 8] ∈ Z).
The Dthrs parameter of the clustering method was em-

pirically determined and it is 0.37 for Cancer, 0.20 for Glass,
0.40 for Iris, 50 for Wine, 45 for Heart, 0.26 for Vehicle and
50 for Pima. Table 1 shows the number of clusters created
using the clustering method presented in appendix A, for
each of the partitions.
The parameters of the co-evolutionary GA are: popula-

tion size = 12, Pm = 2%, Pc = 70%, Wrmse = 0.1, and
stop criterium = 50 generations. Four different values for
Wsize were used: 0.005, 0.0005, 0.00005 and 0.000005.
The parameters of the multi-objective co-evolutionary

GA are: population size = 12, Pm = 2%, Pc = 70%, and
stop criterium = 50 generations.
The parameters of the multi-objective co-evolutionary

strategy are: population size = 12, Pc = 70%, number of
children = 48, and stop criterium = 50 generations.
The genotypes of the co-evolutionary GA and of the

multi-objective co-evolutionary GA were composed by 4
bits for m-of-n, 9 for error threshold, 10 for maximum ra-
dius, 6 for initial sensitivity threshold and 3 for the mem-
bership functions number of each input/output attribute.
The genotypes of the multi-objective co-evolutionary

strategy were composed by 8 real type variables to repre-
sent m-of-n, E, Mrad and S and their corresponding self-
adapting standard deviations, plus 2 real type variables to
represent each of the number of membership functions and
their corresponding self-adapting parameters.
Hence, for the co-evolutionary GA, CONE was executed

with 4 different combinations of evolutionary parameters
for each database. For the multi-objective algorithms,
CONE was executed with 1 combination of evolutionary
parameters. Three different partitions of the training+test
and final test data sets were also used, thus totalizing 12
combinations of configurations for the co-evolutionary GA,
and 3 combinations of configurations for each of the multi-
objective algorithms. Thirty executions with different
random seeds were performed for each combination, total-

10



Table 1
Number of clusters

Cancer Glass Iris Wine Heart Vehicle Pima

Partition 1 7 13 13 7 6 4 4

Partition 2 7 17 15 6 5 4 5

Partition 3 6 15 13 7 5 4 5

Average 6.6667 15 13.6667 6.6667 5.3333 4 4.6667

izing 360 executions per database for the co-evolutionary
GA and 90 executions per database for each of the multi-
objective algorithms.
Executions with the above combinations of parameters

were also made using a genetic algorithm (GA), a multi-
objective GA and a multi-objective evolutionary strategy
to generate a single EFuNN. These algorithms were the
same as the co-evolutionary algorithms presented in sec-
tions 5.1, 5.2 and 5.3, respectively, but using the initial
population fitness/objective functions for all generations
and only one species. In this way, 360 GA executions were
made for each database and 90 executions of each of the
multi-objective algorithms were made for each database.
The above parameters were determined empirically and

they aim at not having a too high execution time, as the ob-
jective of the paper is not finding the best co-evolutionary
algorithm to be used with CONE.

6.3. Execution Time

The experiments show that the execution time of CONE
to generate EFuNN ensembles is always considerably lower
than the execution time of the corresponding evolutionary
algorithms to generate single EFuNNs.
Figure 5 shows the execution time averages for CONE

with the co-evolutionary strategy and the corresponding
evolutionary strategy. Cancer execution time average is
multiplied by 0.1 in this figure. Table 2 shows the execution
time averages, standard deviations, minimal and maximum
values.
For all databases, the execution time average of CONE

to generate EFuNN ensembles was statistically lower than
the execution time average of the multi-objective evolution-
ary strategy to generate a single EFuNN. Paired T student
statistic tests (Witten & Frank, 2000) were performed to
prove this analysis. For a level of significance of 0.05, the
p-values of the statistic test that are less than 0.05 indicate
that there is difference between the compared algorithms.
The lower the p-value, the higher the confidence of the dif-
ference. This is valid for all T Student tests presented in
this paper. All the p-values of the tests related to the execu-
tion time averages were 0.0000, indicating that there is sig-
nificant difference between the compared algorithms. No-
tice that these p-values are very small. Figure 6 shows the

(a)

(b)

Fig. 5. Execution time average (in seconds) per database for multi-
-objective co-evolutionary strategy

division of the evolutionary algorithm’s execution time by
CONE’s execution time. The higher this value, the higher
the reduction in the execution time when CONE is used. It
is possible to observe that, for all databases but Glass, the
execution time of CONEwas at least 2 times faster than the
corresponding multi-objective evolutionary strategy, which
can be considered a high reduction in the execution time.
The execution time of CONE with the other co-

evolutionary algorithms was also always considerably lower
than their corresponding evolutionary algorithms. Figures
7 and 8 show the execution time averages for the other
co-evolutionary algorithms. Tables 3 and 4 show the ex-
ecution time averages, standard deviations, minimal and
maximum values for these algorithms. The p-values of the
T Student tests performed were all 0.0000.
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Table 2
Measures related to the execution times (s) for multi-objective co-evolutionary strategy

Cancer Glass Iris Wine Heart Pima Vehicle

Ens Av 345.4333 66.9333 10.6 29.1667 4018.2556 1628.5222 3401.9556

SD 37.0105 1.7340 0.7313 1.0626 19.1073 26.3477 103.6192

Min 287 65 3 27 3674 1276 1995

Max 391 81 9 31 4443 1919 4167

Sing Av 836.6111 109.1667 37.8667 95.4111 8406.4444 3465.2444 8343.3444

SD 72.6796 1.3841 2.3900 1.9308 27.8621 3.3603 6.1166

Min 748 106 34 92 8005 3398 8209

Max 985 112 43 99 8917 3538.0000 8481

Fig. 6. Execution Time Reduction

Table 4

Measures related to the execution times (s) for multi-objective co-evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

Ens Av 101.7556 22.2667 2.5444 10.2111 4018.2556 1628.5222 3401.9556

SD 27.6626 4.2075 0.5228 1.1167 19.1073 26.3477 103.6192

Min 55 12 2 8 3674 1276 1995

Max 203 33 4 13 4443 1919 4167

Sing Av 286.8889 37.1778 7.8778 29.0111 8406.4444 3465.2444 8343.3444

SD 54.4691 7.5633 1.9707 4.9865 27.8621 3.3603 6.1166

Min 186 20 5 20 8005 3398 8209

Max 416 54 13 44 8917 3538 8481

Fig. 7. Execution time average (in seconds) per database for co-evo-
lutionary GA

6.3.1. Relation Between Execution Time and Rule Nodes
Number

Table 3
Measures related to the execution times (s) for co-evolutionary GA

Cancer Glass Iris Wine

Ens Av 104.5056 22.8528 2.6222 11.4722

SD 60.1617 9.4891 0.4912 1.9970

Min 38 9 2 7

Max 320 39 4 16

Sing Av 271 38.9361 10.3306 33.9139

SD 150.4960 21.8213 4.9402 11.7227

Min 105 11 4 15

Max 724 71 20 54

As it was explained in section 3, the neural networks of
each species learn a reduced train set. In this way, they have
less nodes than a single neural network used to learn the
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(a)

(b)

Fig. 8. Execution time average (in seconds) per database for multi-

-objective co-evolutionary GA

whole training set. So, each training example is presented
to a relatively small neural network, reducing the train-
ing time. This section presents an analysis which shows
the strong relation between the reduction in the number of
nodes and the reduction in the execution time.
Two measures will be used. One of them is the percent-

age of execution time, which is the average execution time
of CONE divided by the average execution time of the cor-
responding evolutionary algorithm. As the execution time
of CONE in the experiments is always lower than the exe-
cution time of the corresponding evolutionary algorithms,
this measure will always be between 0 and 1. The lower its
value, the higher the reduction in the execution time when
CONE is used.
The other measure is the percentage of nodes number,

which is the average weighted nodes number of the ensem-
bles divided by the average nodes number of the single
EFuNNs. The weighted nodes number of an ensemble is:

WRN =

∑i<EN−1

i=0
(Ti RNi)

∑i<EN−1

i=0
Ti

, (9)

where RNi is the number of rule nodes of EFuNN i of the
ensemble, Ti is the number of training instances associated
to the EFuNN i and EN is the ensemble size.

The experiments show that the weighted nodes number

of an ensemble generated by CONE is always lower than
the nodes number of a single EFuNN generated by a corre-
sponding evolutionary algorithm, as expected. In this way,
the percentage of nodes number is always between 0 and
1. As the percentage of execution time, the lower its value,
the higher the reduction in the weighted rule nodes number
when CONE is used.
Figure 9 shows the percentage of execution time and the

percentage of nodes number for each of the 3 different par-
titions of training data used in the experiments. It is nec-
essary to calculate the measures for each one of the differ-
ent partitions because they produce a different number of
clusters of the input space and, consequently, a different
ensemble size. It can be observed that a reduction/increase
in the execution time is related to a reduction/increase in
the percentage of nodes number, showing the strong rela-
tion between them.

6.4. Accuracy

The experiments show that the accuracy of the ensem-
bles created by using CONE is statistically equal or better
than the accuracy of single EFuNNs created using a evo-
lutionary algorithm corresponding to the co-evolutionary
algorithm used with CONE. Besides, the weighted average
combination method is always either statistically more ac-
curate or equal to the arithmetic average.
Figure 10 shows the classification error averages for the

ensembles generated by CONE with the co-evolutionary
strategy and the single EFuNNs generated by the corre-
sponding evolutionary strategy. Observe that the classifi-
cation error average of Glass database is multiplied by 0.1
in this figure. Table 5 shows the classification error aver-
ages, standard deviations, minimal and maximum values.
In this table and in the other tables of this paper, “W Ens”
means Weighted EFuNN ensemble (which uses weighted
combination method), “A Ens” means Arithmetic EFuNN
ensemble (which uses arithmetic combination method) and
“Sing” means Single EFuNN. Table 6 shows the p-values
of the paired T Student tests performed to prove the anal-
yses made with the classification errors. The signals “=”
indicate that the classification errors of all the paired ex-
ecutions were equal and it is not possible to calculate the
p-value. The p-values that are less than 0.05 are empha-
sized in bold and indicate that there is difference between
the compared algorithms.
Table 5 in combination with table 6 shows that the clas-

sification error averages of the weighted ensembles were
considered statistically lower than the classification error
averages of the single EFuNNs for all databases but Pima.
For Pima, the average of the ensembles and single EFuNNs
was considered statistically equal. The classification error
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Fig. 9. Percentages of Execution Time and Rule Nodes
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Table 5
Measures related to the classification errors for multi-objective co-evolutionary strategy

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens Av 0.0332 0.2673 0.0490 0.0133 0.4722 0.2394 0.2661

SD 0.0104 0.0340 0.0339 0.0182 0.0034 0.0021 0.0016

Min 0.0172 0.1698 0.0256 0 0.4190 0.2031 0.2347

Max 0.0632 0.3774 0.1026 0.0667 0.5333 0.3021 0.3052

A Ens Av 0.0386 0.2736 0.0490 0.0133 0.4722 0.2389 0.2673

SD 0.0138 0.0414 0.0339 0.0182 0.0034 0.0021 0.0016

Min 0.0172 0.1698 0.0256 0 0.4190 0.2031 0.2394

Max 0.0805 0.3962 0.1026 0.0667 0.5333 0.3021 0.3052

Sing Av 0.0414 0.2845 0.0712 0.0333 0.4815 0.2399 0.2776

SD 0.0127 0.0415 0.0330 0.0214 0.0028 0.0024 0.0016

Min 0.0172 0.2075 0 0 0.4333 0.1771 0.2394

Max 0.0862 0.3962 0.1282 0.0889 0.5523 0.2969 0.3099

Table 6

P-Value of T Student Test comparing the classification error averages for multi-objective co-evolutionary strategy

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens x A Ens 0.0000 0.0000 = = = 0.1172 0.0010

W Ens x Sing 0.0000 0.0027 0.0000 0.0000 0.0003 0.8414 0.0000

A Ens x Sing 0.0000 0.0726 0.0000 0.0000 0.0003 0.7066 0.0000

(a)

(b)

Fig. 10. Classification error average per database for multi-objective
co-evolutionary strategy

averages of the arithmetic ensembles were considered sta-
tistically lower than the classification error averages of the
single EFuNNs for all databases but Glass and Pima. For
Glass and Pima, the average of the ensembles and single
EFuNNs was considered statistically equal. Notice that the
p-values are very low to almost all databases.

For Cancer, Glass and Vehicle databases, the classifica-
tion error averages of the weighted EFuNN ensembles were
considered statistically lower than the classification error
averages of the arithmetic EFuNN ensembles. For Wine,
Iris, Heart and Pima, the averages were considered statis-
tically equal.
For the executions with the other co-evolutionary al-

gorithms, the accuracy of ensembles generated by using
CONE was also always either equal or better than the
accuracy of single EFuNNs generated by the correspond-
ing evolutionary algorithms. The only exception was when
the multi-objective co-evolutionary genetic algorithm was
used with Cancer database and arithmetic average of the
EFuNNs’ outputs. Although, this is a database in which
usually a good accuracy is attained by learning methods
and it is known that ensembles are more helpful when used
to solve difficult problems.
Figures 11 and 12 show the classification error averages

for the other co-evolutionary algorithms. Tables 7 and 8
show the classification error averages, standard deviations,
minimal and maximum values for these algorithms and ta-
bles 9 and 10 show the p-values of the T Student tests.

6.5. Multi-Objective Co-evolutionary GA versus
Multi-Objective Co-evolutionary Strategy

All the results presented in this section are corresponding
to executions which have used either CONE with the multi-
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Table 8
Measures related to the classification errors for multi-objective co-evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens Av 0.0398 0.3096 0.0530 0.0254 0.4727 0.2614 0.2917

SD 0.0132 0.0611 0.0397 0.0239 0.0031 0.0029 0.0027

Min 0.0172 0.1698 0.0256 0.0000 0.4190 0.1771 0.2441

Max 0.0805 0.4340 0.1282 0.0889 0.5381 0.3438 0.3897

A Ens Av 0.0424 0.3122 0.0536 0.0254 0.4726 0.2608 0.2947

SD 0.0151 0.0647 0.0395 0.0239 0.0031 0.0029 0.0026

Min 0.0172 0.1698 0.0256 0.0000 0.4190 0.1823 0.2441

Max 0.0862 0.4340 0.1282 0.0889 0.5381 0.3438 0.3803

Sing Av 0.0375 0.3157 0.0612 0.0311 0.4744 0.2577 0.2907

SD 0.0130 0.0740 0.0337 0.0213 0.0027 0.0027 0.0024

Min 0.0057 0.1132 0.0000 0.0000 0.4238 0.1927 0.2441

Max 0.0632 0.5660 0.1795 0.1333 0.5333 0.3177 0.3615

Table 10

P-Value of T Student Test comparing the classification error averages for multi-objective co-evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens x A Ens 0.0076 0.0331 0.1585 = 0.3200 0.1051 0.0000

W Ens x Sing 0.2415 0.4948 0.0495 0.1276 0.4751 0.3120 0.8078

A Ens x Sing 0.0182 0.6984 0.0627 0.1276 0.4627 0.3933 0.2887

Fig. 11. Classification error average per database for co-evolutionary
GA

Table 7
Measures related to the classification errors for co-evolutionary GA

Cancer Glass Iris Wine

W Ens Av 0.0492 0.3495 0.0512 0.0267

SD 0.0196 0.1101 0.0370 0.0275

Min 0.0115 0.1698 0.0256 0.0000

Max 0.1207 0.6604 0.1282 0.1333

A Ens Av 0.0531 0.3507 0.0515 0.0267

SD 0.0244 0.1094 0.0371 0.0276

Min 0.0057 0.1509 0.0256 0.0000

Max 0.1379 0.6604 0.1282 0.1333

Sing Av 0.0512 0.4340 0.0698 0.0316

SD 0.0240 0.1648 0.0377 0.0209

Min 0.0057 0.1698 0.0000 0.0000

Max 0.1379 0.8868 0.2051 0.1111

(a)

(b)

Fig. 12. Classification error average per database for multi-objective

co-evolutionary GA

Table 9
P-Value of T Student Test comparing the classification error averages
for co-evolutionary GA

Cancer Glass Iris Wine

W Ens x A Ens 0.0000 0.0283 0.0453 0.3180

W Ens x Sing 0.1176 0.0000 0.0000 0.0048

A Ens x Sing 0.1629 0.0000 0.0000 0.0054
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objective co-evolutionary GA presented in the section 5.2
or CONE with the multi-objective co-evolutionary strat-
egy presented in the section 5.3. The comparisons made in
this section show that by changing the co-evolutionary al-
gorithm used with CONE it is possible to attain different
classification rates and execution times, although the main
properties of CONE are the same (sections 6.3 and 6.4). In
this way, it is important to choose the co-evolutionary al-
gorithm according to the requirements of the problem. For
instance, the multi-objective co-evolutionary GA could be
used when the emphasis is the reduction in the execution
time. When the accuracy is more important, the multi-
objective co-evolutionary strategy presented in the section
5.3 could be used.
Figure 13 shows the classification error averages of the

EFuNN ensembles using multi-objective co-evolutionary
GA and multi-objective co-evolutionary strategy. Table 11
shows the p-values of the not-paired T student tests made
to prove the analyses made in this section.

(a)

(b)

Fig. 13. Classification error average per database for multi-objective
co-evolutionary GA and multi-objective co-evolutionary strategy

It can be observed that the classification error aver-
age of the ensembles created using multi-objective co-
evolutionary strategy are statistically equal or lower than
the averages of the ensembles created using multi-objective

co-evolutionary GA. However, as shown by figure 14 and
the p-values of the statistic tests made to compare the
execution time averages (which were all 0.0000), the exe-
cution time using multi-objective co-evolutionary strategy
is always statistically higher than the one using multi-
objective co-evolutionary GA. In this way, it is important
to choose the co-evolutionary algorithm according to the
requirements of the problem.

(a)

(b)

Fig. 14. Execution time average (in seconds) per database for mul-
ti-objective co-evolutionary GA and multi-objective co-evolutionary
strategy

7. Conclusion

This paper introduces CONE, which is an approach to
create neural network ensembles. It creates the ensembles
in an innovative way, by explicitly partitioning the input
space through a clustering method. In this way, the neural
networks that compose the ensemble specialize in different
parts of the problem space and work in a divide-an-conquer
manner. The clustering of the input space also allows a
reduction in the number of nodes of the neural networks
that compose the ensemble, thus reducing the execution
time of the learning process. By using the approach in a
distributed way, it would be possible to reduce even more
the execution time. A co-evolutionary algorithm can be
used to optimize the architecture of the neural networks
that compose the ensemble.
The experiments show that CONE indeed reduces con-

siderably the execution time of the learning process even
when a distributed implementation is not used. Besides,
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Table 11
P-Value of T Student Test comparing the classification error averages for multi-objective co-evolutionary strategy and multi-objective co-
evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

Weig Ens Multi-obj 0.0002 0.0000 0.4695 0.0002 0.9271 0.0000 0.0000

ES x GA

Arit Ens Multi-obj 0.0773 0.0000 0.4071 0.0002 0.9362 0.0000 0.0000

ES x GA

the accuracy of the ensembles generated by CONE is simi-
lar or higher than the accuracy of a single EFuNN created
using an evolutionary algorithm. The experiments used 3
different co-evolutionary algorithms, showing that these re-
sults are obtained even using different co-evolutionary al-
gorithms. However, it is important to notice that different
co-evolutionary algorithms are more appropriate to differ-
ent problem purposes. For example, when accuracy is more
important, a multi-objective co-evolutionary strategy (sec-
tion 5.2) could be used. When the execution time is more
important, a multi-objective co-evolutionary genetic algo-
rithm (section 5.3) could be used. The experiments also
reveal that the weighted average combination method has
always higher or equal accuracy to the arithmetic average.
Future works include the analysis of the effect of other co-

evolutionary algorithms with CONE, the use of more than
one representative of each species to compose the ensemble
of neural networks, the execution of CONE in a distributed
way, the extraction of rules explaining the ensemble’s work-
ing and the analysis of CONE’s behaviour in on-line mode.
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Appendix A. Clustering Method

The clustering algorithm used with CONE in this pa-
per was the Evolving Clustering Method (ECM) (Kasabov,
2001a). The algorithm A.1 presents it.
In this paper, the distance between two vectors x and y

denotes the General Euclidean Distance, defined as follows:

||x− y|| =

√

∑size−1

0
(xi − yi)2

size
(A.1)

Algorithm A.1 (Clustering Method) Let NumEx be
the number of patterns and Dthr be a distance threshold.

(i) Create the first cluster C0 by simply taking the posi-
tion of the first pattern as the first cluster center Cc0
and setting a value 0 for its cluster radius Ru0.

(ii) For each input pattern xi from i = 1 to NumEx− 1
do:
(a) Determine the distance between xi and all N

cluster centers Ccj already created:

Dij = ||xi − Ccj ||, j = 0, 1, ..., N − 1

(b) If there is a distance value Dij ≤ Ruj , it means
that xi belongs this cluster. In this case, neither
a new cluster is created nor an existing cluster
is updated.

(c) Else
(i) Find the clusterCα with the minimum dis-

tance Diα = ||xi − Ccα|| = min(||xi −
Ccj ||), j = 0, 1, ..., N − 1.

(ii) IfDiα > Dthr, create a new cluster, in the
same way as described in the step i.

(iii) Else update Cα: increment the number of
patterns accommodated byCα (NExsα =
NExsα + 1); update Ccα (Ccα = Ccα +
(xi − Ccα)/NExsα) and make Rα be the
maximum between the following values: 1.
the distance between the old Ccα and the
new Ccα plus the old Ruα and 2. the dis-
tance between xi and the new center Ccα

Appendix B. EFuNNs

This section describes the EFuNN learning procedure.
It is recommended to read Kasabov (2001b) for further
details.
EFuNNs are a class of ECoSs which join the neural net-

works functional characteristics to the expressive power of
fuzzy logic. They have a five-layer architecture. The first
layer represents the input vector, the second represents the
fuzzy quantification of the input vector, the third repre-
sents the associations between fuzzy input space and fuzzy
output space, the fourth represents the fuzzy quantifica-
tion of the output vector and the fifth represents the output
vector.
Learning occurs at the rule nodes layer. Each node rj

of this layer is represented by two vectors of connection
weights (W1(rj) and W2(rj)). W1 represents the coordi-
nates of the nodes in the fuzzy input space and it is ad-
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justed through unsupervised learning. W2 represents the
coordinates of the nodes in the fuzzy output space and it
is adjusted through supervised learning. The learning rules
are the following:

W1(rj(t+ 1)) = W1(rj(t))

+lr1(rj(t)) ∗ (xf −W1(rj(t)))
(B.1)

W2(rj(t+ 1)) = W2(rj(t))

+lr2(rj(t)) ∗ (yf −A2) ∗A1(rj(t))
(B.2)

where: xf and yf are the fuzzy input and fuzzy output vec-
tors; lr1(rj(t)) and lr2(rj(t)) are the learning rates for the
W1 and W2 weights of the node rj at time t; A2 is the
fuzzy output activation vector and A1(rj(t)) is the activa-
tion value of the rule node rj at time t.
The EFuNN learning algorithm is briefly described be-

low.
Algorithm B.1 (EFuNN Learning Algorithm)
(i) Set initial values for the following system parameters:

number of membership functions; initial sensitivity
threshold S of the nodes (it is also used to determine
the initial radius of the receptive field of a node rj ,
when it is created (R(rj) = 1 − S); error threshold
E; aggregation parameterNagg; pruning parameters
OLD and Pr; m-of-n value (number of highest acti-
vation nodes used in the learning); maximum radius
of the receptive field Mrad; rule extraction thresh-
olds T1 and T2.

(ii) Set the first rule node r0 to memorize the first exam-
ple (x, y):

W1(r0) = xf and W2(r0) = yf
where xf and yf are the vectors of fuzzy quantifi-

cation of the vectors x and y, respectively.
(iii) Repeat for each new input-output pair (x, y) presen-

tation:
(a) Determine the local normalized fuzzy distance

D between xf and theW1 weights. The distance
D between two fuzzy vectors x1 and x2 is calcu-
lated as following:
D(x1, x2) = subabs(x1, x2)/sumabs(x1, x2)

where subabs(x1, x2) is the sum of all absolute
values of the vector obtained after subtraction of
the fuzzy vectors x1 and x2 and sumabs(x1, x2)
is the sum of all absolute values of the vector
obtained after sum of the fuzzy vectors x1 and
x2.

(b) Calculate the activations A1 of all rule nodes.
An example of how it can be calculated is:

A1 = 1−D(W1(rj), xf )
(c) Select the rule node rk that has the smallest

distance D(W1(rk), xf ) and that has activation

A1(rk) >= S(rk). In the case ofm-of-n learning,
select m nodes instead of just one node.

(d) If this node does not exist
(i) Create a new rule node for (xf , yf ).

(e) Else
(i) Determine the activation A2 of the out-

put layer and the normalized output error
Err = subabs(y, y′)/Nout, where y is the
desired output, y′ is the obtained output
and Nout is the number of nodes of the
output layer.

(ii) If Err > E, create a new rule node for
(xf , yf ).

(iii) Else, apply the learning rules to W1(rk)
and W2(rk) (in the case of m-of-n learn-
ing, the rules are applied to the m rule
nodes).

(f) Apply aggregation procedure after the presen-
tation of Nagg examples.

(g) Update the parameters S(rk), R(rk), Age(rk)
and TA(rk). TA(rk) can be, for example, the
sum of the activations A1 obtained for all exam-
ples that rk accommodates.

(h) Prune rule nodes, if necessary, according to
OLD and Pr.

(i) Extract rules, according to T1 and T2.
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