
EFuNN Ensembles Construction Using a

Clustering Method and a Coevolutionary

Multi-Objective Genetic Algorithm

L. Minku and T. Ludermir

Federal University of Pernambuco, Informatics Center,
Recife-PE 50732-970, Brazil, P.O.Box 7851,

{flm,tbl}@cin.ufpe.br

Abstract. This paper presents the experiments which where made with
the Clustering and Coevolution to Construct Neural Network Ensemble
(CONE) approach on two classification problems and two time series
prediction problems. This approach was used to create a particular type
of Evolving Fuzzy Neural Network (EFuNN) ensemble and optimize its
parameters using a Coevolutionary Multi-objective Genetic Algorithm.
The results of the experiments reinforce some previous results which have
shown that the approach is able to generate EFuNN ensembles with ac-
curacy either better or equal to the accuracy of single EFuNNs generated
without using coevolution. Besides, the execution time of CONE to gen-
erate EFuNN ensembles is lower than the execution time to produce
single EFuNNs without coevolution.

1 Introduction

Several approaches have been developed to optimize parameters of Evolving
Connectionist Systems (ECoSs) [1] using evolutionary algorithms, e.g. [2], [3],
[4], and [5]. Nevertheless, ensembles of learning machines have been formally
and empirically shown to generalize better than single predictors [6]. Instead
of utilizing just one neural network to solve a specific problem, an ensemble
of neural networks combines a set of neural networks. In order to improve the
accuracy of a particular type of ECoSs called Evolving Fuzzy Neural Network
(EFuNN), a multi-module classifier called multiEFuNN has been proposed in [7].

However, the construction of ensembles of neural networks is not an easy
task [6]. Besides, the choice of the best EFuNN parameters set is also a difficult
task and the execution time of evolutionary algorithms to optimize the EFuNN
parameters is high. Therefore, a new approach to construct ensembles of neu-
ral networks has been proposed in [8] and experiments have been made using a
Coevolutionary Genetic Algorithm to generate a particular type of EFuNN en-
sembles. These experiments have shown that CONE is able to generate EFuNN
ensembles with accuracy either better or equal to the accuracy of single EFuNNs
generated using a Genetic Algorithm (GA). Moreover, the execution time of
CONE to produce EFuNN ensembles is lower than the execution time of the
GA.

However, the Coevolutionary GA used in [8] demands the predefinition of
some parameters for the fitness function. These parameters have great influence
on the results of the evolutionary process. Besides, CONE needs to be evalu-
ated using other coevolutionary algorithms in order to be validated. Thus, a
coevolutionary multi-objective GA has been used with CONE in [9] to perform
experiments on four classification problems. Nevertheless, CONE needs to be
evaluated using not only classification problems, but also time series prediction
problems in order to be validated. Thus, this paper presents experiments which
have been made with CONE and a coevolutionary multi-objective GA on two
classification problems and two time series prediction problems.

This paper is organized as follows: Sect.2 contains an explanation about
ECoSs and EFuNNs. Section 3 presents CONE and explains a particular instance
of it (i.e. a clustering method, a particular type of EFuNN ensemble and a
coevolutionary multi-objective GA which can be used by the approach). Section
4 presents the results of the experiments made with this instance of CONE.
Section 5 presents the conclusions and future works.

2 ECoS and EFuNNs

The ECOSs presented in [1] are systems constituted by one or more neural
networks. Some of their characteristics are that their learning is on-line, incre-
mental, fast and local [4]. EFuNNs [10] are a class of ECOSs which join the
neural networks functional characteristics to the expressive power of fuzzy logic.

The EFuNN learning has some predefined parameters. Using different pa-
rameters sets, EFuNNs attain different performances and different weights are
learned. The optimal parameters set usually depends on the input and output
data presented. Thus, it is important to correctly choose the parameters which
define the EFuNN learning according to the data presented.

Some of the predefined parameters of the EFuNN leaning algorithm are the
number of membership functions; the initial sensitivity threshold (S) of the nodes
(it is also used to determine the initial radius of the receptive field of a node);
the error threshold (E); the m-of-n value (number of highest activation nodes
used in the learning); and the maximum radius of the receptive field (Mrad).
It is recommended to read [10] to get more details about the EFuNN learning
algorithm and its parameters.

3 CONE

This section briefly describes CONE [8]. The general idea of this approach is to
construct neural network ensembles using a clustering method to partition the
input space in clusters. The training and test patterns are used by the clustering
method to create the clusters. After that, the clusters are used to separate the
training and the test patterns themselves in various subsets of training and test
patterns with empty intersection.Each subset is used to train/test a different
population of neural networks, which composes a species that is evolved through

a cooperative coevolutionary algorithm. Thus, each cluster is associated with a
training subset, a test subset and a species.

At the end of the evolutionary process, the representatives of each species
in the last generation are used to constitute the ensemble. In order to use/test
the ensemble, the clusters to which the input test pattern belongs are deter-
mined. After that, the outputs of the EFuNNs correspondent to these clusters
are calculated and combined using a predefined combining method. Examples of
combining methods can be found in [11].

The patterns used by the approach are divided into 3 types: training patterns
(used to create clusters and to train the neural networks), test patterns (used to
create clusters and to test the neural networks during the evolutionary process),
and final test patterns (used to test the neural network ensemble generated at
the end of the evolutionary process).

The following sections explain the instance of CONE which has been used in
the experiments to produce EFuNN ensembles: Sect.3.1 explains the clustering
method used to partition the input space, Sect.3.2 explains the EFuNN ensembles
created and Sect.3.3 explains the coevolutionary algorithm used.

3.1 Clustering Method

The clustering method used in the experiments is similar to the Evolving Clus-
tering Method [7]. It is recommended to read [8] to get more details about the
clustering method used. The main information about the clustering method for
this paper is the Dthrs parameter. This is the most important parameter to
determine whether a cluster could be updated to accommodate a particular pat-
tern, or if a new cluster would have to be created to accommodate this pattern.

3.2 Creating EFuNN Ensembles

In the experiments performed with CONE, the coevolutionary algorithm was
used to optimize the predefined parameters of the EFuNN learning which where
cited in Sect.2, and the EFuNN learning algorithm itself was used to train the
EFuNNs. A representative of a species was considered the best fit individual of
the species. Two combining methods were used to combine the outputs of the
EFuNNs that compose the ensemble. One of them is the arithmetic average of
the outputs of the EFuNNs to which the pattern presented belongs. The other
one is the weighted average of the outputs of the EFuNNs to which the pattern
presented belongs. The value used as the weight of a cluster Cj , j = 0, 1, ...N is
1/||xi − Ccj ||), where xi is the pattern presented and Ccj is the cluster center.
If a pattern does not belong to any cluster, the output of the ensemble is the
output of the EFuNN correspondent to the cluster whose center is the nearest
center to the pattern.

3.3 Coevolutionary Algorithm

This section describes the coevolutionary multi-objective GA which was used in
the experiments. It is recommendable to read [9] to get more details about it.

The coevolutionary multi-objective GA used in the experiments has a binary
representation of the EFuNN parameters to be optimized, bitwise bit-flipping
mutation, one-point crossover, generational survivor selection, and the learn-
ing algorithm of the neural networks being optimized is used with the training
patterns right before the calculation of the objective values.

The initial population of each species is composed by individuals created
randomly choosing values for each of the EFuNN parameters to be optimized.
In this population, the objectives vector of an individual i is:

[RMSE Obji = RMSEi, SIZE Obji = sizei] , (1)

where RMSEi is the Root Mean Squared Error (RMSE) obtained testing the
EFuNN correspondent to the individual i using the test subset correspondent to
its species, and sizei is the size of this EFuNN. Thus, the objectives are calculated
without considering the individuals of the other species. The size component of
the objectives vector is used to penalize the size of the EFuNNs and reduce the
execution time of the evolutionary algorithm, as suggested in [5].

In all generations after the initial one, the objectives of an individual i are
calculated using not only the output error and the size of the EFuNN corre-
spondent to i, but also the output error and size of the EFuNNs correspondent
to the representatives of the other species in the previous generation. Thus, the
objectives vector of an individual i is [RMSE Obji, SIZE Obji], where:

RMSE Obji =

√

SSEi + repr sse

total test patterns number
and (2)

SIZE Obji = sizei + repr size . (3)

In these equations, SSEi is the Sum of Squared Error (SSE) obtained test-
ing the EFuNN correspondent to the individual i with the test subset corre-
spondent to its species; sizei is the size of this EFuNN; repr sse is the sum
of the SSEs and repr size is the sum of the sizes of the EFuNNs correspon-
dent to the representatives of all other species in the previous generation; and
total test patterns number is the total number of test patterns, including the
patterns of all species.

An individual i dominates an individual j if (RMSEi ≤ RMSEj) and
(SIZEi ≤ SIZEj) and (RMSEi < RMSEj or SIZEi < SIZEj).

After the calculation of the objective values, the rank of each individual is
calculated. As it is done in [12], the rank of an individual i of the population p
in the generation g is the number of individuals j 6= i, j ∈ p which dominate
the individual i in the generation g. In this way, a pareto optimal individual (an
individual which is not dominated by any other individual of the population)
has always rank equal to 0.

The best individual of a population is the individual which has the lowest
rank. When more than 1 individual has the same rank, the best between them
is the one which has the lowest SSE obtained testing the EFuNN correspondent
to it with the test subset correspondent to its species.

The parents selection is made using the roulette wheel method and is pro-
portional to the value determined by be following equation:

Probi,p,g =
max rankp,g − ranki,p,g

∑pop sizep−1

j=0
(max rankp,g − rankj,p,g)

, (4)

where max rankp,g is highest rank of the population p in the generation g,
ranki,p,g is the rank of the individual i of the population p in the generation g,
and pop sizep is the size of the population p.

4 Experiments

This section explains the experiments which have been made with the instance
of CONE described in Sects.3.1, 3.2 and 3.3. The experiments have utilized two
classification databases (Card and Diabetes) [13] and two time series prediction
problems (Mackey-Glass (MG) [14] and Gas Furnace (GF) [15]).

Section 4.1 shows the parameters which were used in the experiments and
Sect.4.2 presents the results of the experiments.

4.1 Parameters and Executions

The parameters utilized in the experiments were the same as the parameters
used in [9], except the Dthrs. The Dthrs was empirically determined for each
database and it was 0.40 for Card database, 0.25 for Diabetes database, 0.20
for Mackey-Glass time series and 3.00 for Gas Furnace time series. The EFuNN
parameters optimized during the coevolutionary process were also the same as
the optimized in [9]: m-of-n, E, Mrad, S and membership functions number.

Three different partitions of the training+test and final test data sets of the
classification problems were used and three different time series were used to
compose 3 partitions of the training+test and final test data sets for the time
series problems:

– Mackey-Glass:
w(1) = [x(t− 12)x(t− 8)x(t− 4)x(t); y(t+ 4)]
w(2) = [x(t− 18)x(t− 12)x(t− 6)x(t); y(t+ 6)]
w(3) = [x(t− 24)x(t− 16)x(t− 8)x(t); y(t+ 8)]

– Gas Furnace:
w(1) = [y(t− 1)y(t− 2)x(t− 1)x(t− 2); y(t)]
w(2) = [y(t− 1)y(t− 3)x(t− 1)x(t− 3); y(t)]
w(3) = [y(t− 2)y(t− 3)x(t− 2)x(t− 3); y(t)]

Ten executions with different random seeds were performed for each partition,
thus totalizing 30 executions for each database. Executions with the above com-
binations of parameters were also made using a multi-objective GA to generate
single EFuNNs. The multi-objective GA utilized was the same as the algorithm
presented in Sect.3.3, but using the objectives (1) for all generations and just

one species. In this way, 30 executions of the multi-objective GA were made for
each database.

The objective of the executions explained above was to compare:

– EFuNN ensembles generated using CONE with weighted average combining
method (weighted EFuNN ensembles – WEns);

– EFuNN ensembles generated using CONE with arithmetic average combining
method (arithmetic EFuNN ensembles – AEns);

– Single EFuNNs generated using multi-objective GA (Sing).

The characteristics compared were the execution times of the evolutionary
approaches, and the output classification errors/sum of squared errors(SSEs) of
the EFuNN ensembles and of the single EFuNNs generated.

4.2 Results

In this section, the classification errors and the SSEs are those obtained using
the final test patterns set to test the single EFuNNs or the EFuNN ensembles
generated after the evolutionary processes. The classification errors are used for
the classification problems and the SSEs are used for the time series problems.

Table 1 shows the classification error/SSE and execution time averages, stan-
dard deviations, minimal and maximum values, considering the 30 executions for
each database. Table 2 shows the statistics of the T student tests [16] performed
to compare the classification errors/SSEs and the execution times. As it can
be seen, the classification error/SSE averages of the ensembles created for all
databases were considered statistically equal to the classification error/SSE av-
erages of the single EFuNNs. The classification error averages of the weighted
EFuNN ensembles were also considered statistically equal to the classification
error averages of the arithmetic EFuNN ensembles, for the classification prob-
lems. However, for the time series problems, the SSE averages of the weighted
EFuNN ensembles were statistically lower than the SSE averages of the arith-
metic EFuNN ensembles.

For all databases, the execution time average among all 30 executions of
CONE to generate EFuNN ensembles was statistically lower than the execution
time average among all 30 executions of the multi-objective GA to generate single
EFuNNs. Table 2 shows the statistics of the T student tests made to prove this
analysis.

The execution time of the CONE to generate EFuNN ensembles was lower
than the multi-objective GA execution time to generate single EFuNNs prob-
ably because in the optimization process of a single EFuNN, for each pattern
presented to train/test the EFuNN, the activation levels of all rule nodes of
the EFuNN have to be calculated. When an EFuNN ensemble is being created,
just the activation levels of the rule nodes of the correspondent EFuNNs have
to be calculated. A single EFuNN is usually higher than each EFuNN which
compose an ensemble because a single EFuNN has to accommodate all training
patterns and a component of an ensemble has to accommodate only the patterns
correspondent to a particular cluster of the input space.

Table 1. Measures related to the class error/SSEs and execution times

Class errors SSEs Execution times

Card Diabetes MG GF Card Diabetes MG GF

WEns Av 0.1611 0.2717 0.0621 182.2633 3122.5333s 804.6s 155s 70.8333s
SD 0.0276 0.0304 0.0188 118.8774 652.2496s 174.3222s 45.8333s 16.7396s
Min 0.1214 0.2083 0.0323 79.9432 2063s 500s 76s 49s
Max 0.2370 0.3281 0.1262 429.2530 4228s 1174s 232s 106s

AEns Av 0.1611 0.2744 0.0645 184.3665
SD 0.0281 0.0363 0.0184 119.1835 Equal to WEns
Min 0.1214 0.1875 0.0357 81.7392
Max 0.2370 0.3594 0.1274 432.929

Sing Av 0.1694 0.2722 0.0536 171.2507 6717.9333s 2200.8333s 746.8333s 184.8s
SD 0.0294 0.0289 0.0270 124.6976 1285.7797s 467.8189s 208.9156s 55.9411s
Min 0.1272 0.2187 0.0194 70.7992 4274s 1172s 297s 101s
Max 0.2312 0.3333 0.1028 391.727 9536s 3396s 1112s 275s

Table 2. T Student test statistics comparing the class error/SSE averages and the
execution time averages, using level of significance equal to 0.05

Card Diabetes MG GF

Class error/SSE WEns x AEns -0.0001 -1.0523 -7.8697 -5.3195
averages comparisons WEns x Sing -1.5590 -0.0893 1.4294 1.3073

AEns x Sing -1.5548 0.3334 1.8200 1.5590

Execution time WEns x Sing -13.2646 -15.5206 -15.1242 -12.4373
averages comparisons AEns x Sing Equal to WEns x Sing

5 Conclusions

This paper presents experiments which have been made with CONE using a
coevolutionary multi-objective GA. The experiments have used two classification
problems and two time series prediction problems.

The experimental results have shown that the EFuNN ensembles construction
using CONE has a lower execution time than the single EFuNNs construction
using a multi-objective GA. The standard deviations of the execution times are
also lower for CONE. Even so, the EFuNN ensembles generalization abilities are
statistically equal to the single EFuNNs ones. These results contribute to the
validation of CONE, reinforcing the results presented in [8] and [9], which have
shown that CONE is able to produce EFuNN ensembles with either equal or bet-
ter generalization using a lower execution time than similar non-coevolutionary
algorithms to produce single EFuNNs.

Future works include the use of other clustering methods and coevolutionary
algorithms to create neural network ensembles using CONE.

Acknowledgment

This work was supported by CNPq – Brazil.

References

1. Kasabov, N.: Evolving Connectionist Systems. Springer, Great Britain (2003)
2. Watts, M., Kasabov, N.: Dynamic optimisation of evolving connectionist system

training parameters by pseudo-evolution strategy. In: CEC’2001. Volume 2., Seoul
(2001) 1335–1342

3. Watts, M., Kasabov, N.: Evolutionary optimisation of evolving connectionist sys-
tems. In: CEC’2002. Volume 1., Honolulu, Hawaii, IEEE Press (2002) 606–610

4. Kasabov, N., Song, Q., Nishikawa, I.: Evolutionary computation for dynamic pa-
rameter optimization of evolving connectionist systems for on-line prediction of
time series with changing dynamics. In: IJCNN’2003. Volume 1., Oregon (2003)
438–443

5. Minku, F.L., Ludermir, T.B.: Evolutionary strategies and genetic algorithms for
dynamic parameter optimization of evolving fuzzy neural networks. In: CEC’2005.
Volume 3., Edinburgh, Scotland (2005) 1951–1958

6. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algo-
rithms. Journal of Mathematical Modelling and Algorithms (1) (2006)

7. Kasabov, N.: Ensembles of efunns: An architecture for a multimodule classifier.
In: Proceedings of the International Conference on Fuzzy Systems. Volume 3.,
Australia (2001) 1573–1576

8. Minku, F.L., Ludermir, T.B.: EFuNNs ensembles construction using a cluster-
ing method and a coevolutionary genetic algorithm (to appear). In: CEC’2006,
Vancoucer, Canada (2006)

9. Minku, F.L., Ludermir, T.B.: EFuNN ensembles construction using CONE with
multi-objective GA (to appear). In: SBRN’2006, Ribeirao Preto, Brazil (2006)

10. Kasabov, N.: Evolving fuzzy neural networks for supervised/unsupervised on-line,
knowledge-based learning. IEEE Transactions on Systems, Man and Cybernetics
31(6) (2001) 902–918

11. Dietterich, T.G.: Machine-learning research: Four current directions. The AI Mag-
azine 18(4) (1998) 97–136

12. Fonseca, C.M., Fleming, P.J.: Multi-objective optimization and multiple constraint
handling with evolutionary algorithms - part I: A unified formulation. IEEE Trans-
actions on Systems, Man and Cybernetics - Part A 28(1) (1998) 26–37

13. Prechelt, L.: PROBEN1 - a set of neural network benchmark problems and bench-
marking rules. Technical Report 21/94, Fakultt fr Informatik, Universitt Karlsruhe,
Karlsruhe, Germany (1994)

14. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197 (1977) 287–289

15. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden
Day, San Francisco (1970)

16. Witten, I.H., Frank, E.: Data Mining - Pratical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann Publishers, San Francisco
(2000)

