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Abstract— This paper introduces a new approach to construct construction of ensembles of neural networks are: [9],,[10]
neural network ensembles called Clustering and Co-evolubh to [11], [12], [13], [7], [14], [15], [16], [17] and [6].

Construct Neural Network Ensemble (CONE). This approach ; .
was used to create and optimize the parameters of a particuta In order to improve the accuracy of the outputs of a partic

type of Evolving Fuzzy Neural Networks (EFUNNs) Ensemble. Ular type of ECoSs called Evolving Fuzzy Neural Network
Experimental results on four benchmark databases show that (EFUNN), [18] has used a multi-module classifier called
the CONE generates EFUNNs ensembles with accuracy either multiEFUNN. But the construction of EFUNNs ensembles,
better or equal to the accuracy of single EFUNNs generated iy the same way as the construction of other ensembles of

using a genetic algorithm. Besides, the execution time of QTE . . .
to generate EFUNNs ensembles is lower than the execution tém neural networks, is not an easy task. Besides, the choice of

of the genetic algorithm to produce single EFUNNS. the best EFUNN parameters set is also a difficult task and
the execution time of evolutionary algorithms to optimike t
. INTRODUCTION EFuNN parameters is high.

Several approaches have been developed to optimize T) This paper introduces a new approach to construct ensem-
0

. o es of neural networks, called Clustering and Co-evotutio
f Evol E 1], ’ -
rameters of Evolving Connectionist Systems (EC0Ss) | Construct Neural Network Ensemble (CONE). This ap-

Among them, [2], [3], [4] and [5] can be cited. All these :
methods use evolutionary algorithms to make the optimizg-roaCh was used to create a particular type of EFUNNS

tion of ECoSs parameters. [2] describes a try to optimiz%nsemble and, at the same time, to optimize the parameters

some ECoSs parameters in an on-line manner. [3] preser(1)tfsIts EFUNNS.

a method to optimize the parameters and the order OfThe paper is organized as follows: Sectio_n Il cqntains an
presentation of the training patterns in an off-line manne?xplanatlon about ECoSs and EFuNNSs. Section Il introduces

[4] and [5] present successfully methods to optimize ECoé_Qe_ proposed approach and explain_s a particular instance of
parameters in an on-line manner. it (i.e. a clustering method, a particular type of EFUNNs

However, ensembles of learning machines have be IJ?semble and a coevolutionary algorithm which can be used

’ gy the approach). Section IV contains the results of the

formally and empirically shown to generalize better thai ) ) o .
single predictors [6]. Instead of utilizing just one neurafe?(loe”memS made with this instance oi CONE using four
g|fferent benchmark databases.

network to solve a specific problem, an ensemble of neur
networks combines a set of neural networks. There are

many advantages of using ensembles of neural networks II. ECOSAND EFUNNS

instead of single neural networks, e.g. an ensemble can ] )
perform more complex tasks than any of its components 1he ECOSs presented in [1] are systems constituted by
(i.e. individual neural networks in the ensemble), and it ca®n€ ©Or more neural networks. They have the following
make an overall system easier to understand and modify [Fffaracteristics [4]:

Nevertheless, it is important to observe that the compaenent « They facilitate evolving processes modeling task.

of the ensemble should have errors at least somewhat not They facilitate knowledge representation and extraction.
correlated in order to constitute a successful ensemble [8] « They have the following learning characteristics:
Besides, each component of the ensemble should have small  _ Lifelong: they learn from continuously incoming

error rates. data in a changing environment during their entire

Given the advantages of using ensembles of neural net- existence.

works and the complexity of the problems to be solved, it — On-line: they learn each example separately while
is clear that ensembles of neural networks are an important the system operates. Usually, a system which op-
problem solving technique. In spite of the fact that ensesbl erates in an on-line mode is also a systems which
of learning machines perform better than their memberg, the operates in a lifelong mode, and vice-versa.
construction is not an easy task [6]. Because of the difffcult — Incremental: they learn new data without totally
to construct ensembles, it is important to research methods destroying the patterns learned before and without
to automatically construct them. Some papers related to the the need to make a new training on old and new

. . N data together.
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— Local: they locally partition the problem space,
allowing fast adaptation and tracing evolving pro-
cesses over time.

« They can learn as both individual systems and as part
of an evolutionary population of such systems.

« They have evolving structures and use constructive
learning.

« They evolve in an open space, not necessarily of fixed
dimensions.

2)

EFuNNSs [19] are a class of ECOSs which join together the 3)

neural networks functional characteristics to the exjvess
power of fuzzy logic. They have a five-layer architecture,
as it is shown by figure 1. The first layer represents the
input vector, the second represents the fuzzy quantificatio
of the input vector, the third represents the associations
between fuzzy input space and fuzzy output space, the fourth
represents the fuzzy quantification of the output vector and
the fifth represents the output vector.

rule

inputs outputs

Fig. 1. EFuNN Architecture

The learning occurs at the rule nodes layer. Each mode
this layer is represented by two vectors of connection wisigh
(W1(rj) and W2(rj)). W1 represents the coordinates of the
nodes in the fuzzy input space and it is adjusted through
unsupervised learninV2 represents the coordinates of the
nodes in the fuzzy output space and it is adjusted through
supervised learning. The learning rules are the following:

Wl(rj(t+1)) W1(r;(t))

+Hirl(r;(t)) * (xp — W1(r;(t)))

WQ(Tj(t + 1)) = WQ(Tj(ﬁ))
+ir2(r(t)) * (yy — A2) * AL(r;(t))

where: z; and y; are the fuzzy input and fuzzy output
vectors;lrl(r;(t)) andir2(r;(t)) are the learning rates for
the W1 and W2 weights of the node; at timet; A2 is the
fuzzy output activation vector and1(r;(t)) is the activation
value of the rule node; at timet.

The EFuNN learning algorithm is briefly described below.
It is recommended to read [19] to get more details.

Algorithm 2.1 (EFuNN Learning Algorithm)

1) Set initial values for the following system parameters:
number of membership functions; initial sensitivity
thresholdS of the nodes (it is also used to determine
the initial radius of the receptive field of a nodeg

OLD and Pr; m-of-nvalue (number of highest acti-
vation nodes used in the learning); maximum radius
of the receptive field/rad; rule extraction thresholds
T1 andT2.
Set the first rule node, to memorize the first example
(z,):

Wl(rg) =xy andW2(ro) = y;
wherex ; andy are the vectors of fuzzy quantification
of the vectorse andy, respectively.
Repeat for each new input-output péir, y) presenta-
tion:

a) Determine the local normalized fuzzy distarige
betweenz; and thel¥1 weights. The distance
D between two fuzzy vectorg:l and 22 is
calculated as following:

D(z1, 22) = subabs(x1, 22)/sumabs(z1, 22)
where subabs(x1, 22) is the sum of all absolute
values of the vector obtained after subtraction of
the fuzzy vectorg:1l andz2 andsumabs(z1, x2)
is the sum of all absolute values of the vector
obtained after sum of the fuzzy vectar$ and
2.

b) Calculate the activationd1 of all rule nodes. An
example of how it can be calculated is:

Al =1—D(W1(r;),xy)

c) Select the rule node, that has the smallest
distanceD(W1(ry),zs) and that has activation
Al(rg) >= S(rg). In the case om-of-nlearning,
selectm nodes instead of just one node.

d) If this node does not exist

i) Create a new rule node fdts,y¢).
e) Else

i) Determine the activationd2 of the output
layer and the normalized output errBirr =
subabs(y,y’)/Nout, wherey is the desired
output,y’ is the obtained output anout is
the number of nodes of the output layer.

i) If Err>FE
A) Create a new rule node fdr ¢, yy).

i) Else
A) Apply the learning rules td¥1(r;) and
W2(ry) (in the case ofm-of-nlearning,
the rules are applied to tha rule nodes).

f) Apply aggregation procedure after the presenta-
tion of Nagg examples.

0) Update the parameterS(ry), R(rx), Age(ry)
and TA(ry). TA(r,) can be, for example, the
sum of the activationsl1 obtained for all exam-
ples thatr;, accommodates.

h) Prune rule nodes, if necessary, accordin@faD
and Pr.

i) Extract rules, according t@'1 and7'2.

when it is created R(r;) = 1 — S); error threshold According to algorithm 2.1, there are parameters which are
E; aggregation parameté¥agg; pruning parameters adjusted during the learning (rule nodes and their weights)



and parameters which do not change during the learning, Training + Test
but define it (humber of membership functiors, Nagg, Patterns
OLD, Pr, m-of-n value, Mrad, T1 and T2). Through the

use of different parameters set, EFUNNs attain different @

performances and different weights are learned. The optima

parameters set usually depends on the input and outpur | 4 s Cluster N Clusters of the
data presented. Thus, it is important to choose correcdy th @ @ @ Input Space
parameters which define the EFUNN learning according to

the data presented. A A A

1. ANEW APPROACH TOCONSTRUCTNEURAL Training  Test ~Training Test Training  Test

subset1 subset1 subset2 subset2 subsetN subsetN

NETWORK ENSEMBLES @ @ @ @ @ ® Training and Test
Subsets

This section presents a new approach called CONE. The | L L .
general idea of the proposed approach is to construct neura
network ensembles using a clustering method to partition @
the input space in clusters. After that, the clusters are use

&
<

P . . Populations associated with the patterns sets

to separate the training and the test patterns in various _ _ _

L . . . Individual |Ind|\ndual| |Ind|\ndual|
subsets of training and test patterns with empty intersecti 1 1
Each subset is used to train/test a different population of ncidual ndividual Tnelividual
neural networks, which is evolved through a coevolutionary - | : | | 2 | R
algorithm. Thus, each cluster is associated with a training refeecal Tnividual Tnelividual
subset, a test subset and a population of neural networks. Th T- | IP | | F; |
purpose of training the individuals of each population gsin Interaction among populations to
a different subset of the training patterns is to maintam th caleulate fitness
output errors of the neural networks of different populagio ¢ ¢ J,

at least somewhat not correlated. Figure 2 illustrates the - - -
. . . .. Representative Representative ... Representative
creation of clusters of the input space using the trainirgd) an 1 N
eural Networks

test patterns set. Ensemble
Combining Method

Training + Test
Patterns .
Fig. 3. Proposed approach
Clustering
Method

Cluster 1 Cluster 2 Cluster N If there are N clusters, there will be alsdVv popula-
Clﬁ:?(é.?ii';e tions to be evolved through a coevolutionary algorithm.
The individuals of the population are neural networks and
the coevolutionary algorithm can be used to optimize their
Fig. 2. Clustering parameters. These parameters can be both the architecture
of the neural networks and, for example, the weights of the

The patterns data used by the approach are divided incB8nnections. Thus, it is possible to use the coevolutionary
types: algorithm both to train and to optimize the architecture of

. Training patterns: used to create clusters and to train tilee neural networks. However, it is also possible to use

neural networks; the specific learning algorithm of the neural networks to

. Test patterns: used to create clusters and to test tH@in them and the coevolutionary algorithm just to optieniz

neural networks during the evolutionary process; their architectures. It is important to emphasize that each

« Final test patterns: used to test the neural networks effaining/test subset is used to train/test the individudls

semble generated at the end of the evolutionary procespecific population.

The training and test data set is subdivided into subsetsThe evolutionary process is cooperative because the fitness
according to the clusters of the input space, as figure 3 shov@ an individual of a population is calculated using a repre-
In this way, if there areV clusters, there will beV subsets sentative individual of each one of the other populations to
of training patterns with empty intersection aidsubsets of constitute a neural networks ensemble. The representztive
test patterns with empty intersection. If there are not ghou @ population can be, for example, its best individual. There
patterns to compose a test subset correspondent to a sped&igo matching between individuals of different population
cluster of the input space, the same subset used to train tHee interaction among individuals of different populagon
neural networks of the correspondent population can be usegcurs only in the calculation of the fitness value.
to test them during the evolutionary process. At the end of the evolutionary process, the representa-




tives of each population of the last generation are used B Creating EFUNNs Ensembles

constitute the ensemble, as shown by figure 3. In order 10 as it was explained in section Il, EFUNNs have parameters
use/test the ensemble, the clusters to which the input tghich are adjusted during the learning and parameters which
pattern belongs are determined. After that, the outputs @kfine the learning. In the experiments performed with the
the EFUNNs corrgspondent to thes_e clusters.a_re calcularﬁ,q)posed approach, the coevolutionary algorithm was used
and combined using a pre-determined combining methogh gptimize the parameters which define the EFuNN learning
Examples of combining methods can be found in [8]. and the EFUNN learning algorithm itself is used to train the
The following sections explain the instance of CONE usef@tFNNs.

in the experiments to produce EFUNNs ensembles. Sectionaccording to CONE, after the evolutionary process, the

III-A explains the clustering method used to partition thgepresentatives of each population are used to constrect th
input space, section I1l-B explains the EFUNNSs ensemblgs-,NNs ensemble. In the experiments, the best fit individual

created and section IlI-C explains the coevolutionary algqyt 5 population was considered the representative of this
rithm used. population. Two combining methods were used to combine

A. A Clustering Method the outputs of the EFUNNSs that compose the ensemble. One

of them is the arithmetic average of the outputs of the

The clustering method used in the experiments performg:uNNs to which the pattern presented belongs. The other

with the proposed approach is similar to the Evolving CIUS(')ne is the weighted average of the outputs of the EFUNNSs to
tering Method [18]. The algorithm 3.1 presents it.

hi he di b q which the pattern presented belongs. The value used as the
In this paper, the distance between two vectorand y weight of a clusterC;, j = 0,1,..N is 1/|jz; — C¢;|]),

denotes the General Euclidean Distance, defined as fOIIOVWhere:c- is the pattern presented ar@c; is the cluster
) )

) center. If a pattern does not belong to any cluster, the dutpu
lz =yl = 20 (zi —yi)? of the ensemble is the output of the EFUNN correspondent to
size the cluster whose center is the nearest center to the pattern

Algorithm 3.1 (Clustering Method) Let NumEx be the . Coevolutionary Algorithm

number of patterns anfdthr be a distance threshold. The experiments made with CONE have used a coevo-

lutionary genetic algorithm as the coevolutionary aldorit
It is recommendable to read [20] for an explanation about
evolutionary algorithms and [21] for an example of a coevo-
lutionary approach.

The coevolutionary genetic algorithm used has a binary

1) Create the first clust&r, by simply taking the position
of the first pattern as the first cluster centét, and
setting a value O for its cluster radiugu.

2) For each input patterm; from i =1 to NumFxz — 1

do: _ . representation of the EFUNN parameters to be optimized,

a) Determine the distance between and all N pijtwise bit-flipping mutation, one-point crossover, anchge

cluster centerg’c; already created: erational survivor selection. The parents selection us@dd-
. ortional to the value determined by be following equation:
Dij:||xi_ccj||7 jZO,l,...,N—l p y g q

b) If there is a distance valub;; < Ru;, it means Prob; g = best_fitﬁgsszzi, — fitness;p 4 (1)
thatz; belongs to a clustef,,, with the minimum DA Fitnessjp.g
distance D;,,, = ||lz; — Cenl|l = min(||z; —

where best_fitness, 4 is the fitness of the best individual
of the populationp of the generationg, fitness;,q iS
the fitness of the individual of the populationp of the
generationg, and pop_size, is the size of the population

Cc,l|), subject to the restrictiow;; < Ru;, j =
0,1,..., N — 1. In this case, neither a new cluster
is created nor an existing cluster is updated.

c) Else »
) Find the clusterC, with the minimum dis- ~ The parents selection was made using the roulette wheel
tance Diq = ||lz; — Ccall = min(|lzi —  method and, according to equation 1, the fitness value is min-
_ Cql), 5=0,1,.., N - 1. . imized. [20], a recent book about evolutionary algorithms,
i) If Dio > Dthr, create a new cluster, in the gives examples of applications of Genetic Algorithms (GAs)
__ same way as described in the step 1. in which the fitness function is directly minimized, instead
iii) Else updateC,: increment the number of of change it into a function that has to be maximized.
patterns accommodated Wy, (NErs, = Each initial population is composed by individuals created

NEzs, + 1); updateCea (Cca = Cca +  randomly choosing values for each of the EFUNN parameters
(z; — Ccq)/NExsq) and makeR, be the 5 pe optimized and one population is created for each cluste
maximum between the following values: 1., the input space, according to CONE.

the distance between the ditt, and the new | the initial population, the fitness of the individuals is
Ccq plus the old Ru, and 2. the distance cajcylated in an isolated mannée. to determine the fitness
betweenz; and the new centef'c, of an individual, the individuals of other populations at n



considered. The function used to calculate the fitness # thi d) Determine the fithess value of each individual of

generation is: the population.
e) Make parent selection using roulette wheel
fitness; = Wimse RMSE; + Wy;,e size; (2) method and probabilities determined through the

equation 1.

f) Apply crossover and mutation with probabilities
PcandPm respectively, to generate new individ-
uals.

0) Apply generational survivor selection.

where W,.,,,s. and W;,. are pre-defined weight® M SE;

is the Root Mean Squared Error (RMSE) obtained testing
the EFUNN correspondent to the individualvith the test
subset correspondent to its population, ange; is the size

of this EFUNN.

The size component of the fithess function is used to
penalize the size of the EFUNNs generated, as suggested
by [5]. In this way, the execution time of the evolutionary This section explains the experiments made with the
algorithm is not so high. instance of CONE presented in sections IlI-A, 11I-B and IlI-

In all generations after the initial one, the fitness of al€. Section IV-A explains the databases and the creation of
individual i is calculated using not only the output error andhe data sets used in the experiments, section IV-B shows
the size of this individual, but also the output error anasizthe parameters used and IV-C contains the results of the
of the representatives of the other populations of the ptesi experiments.
generation. The functions used to calculate the fitnesslin al

IV. EXPERIMENTS

generations except the initial generation are: A. Data Sets
The experiments have utilized four benchmark databases:
. SSE; + repr_sse Iris Plant, Wine, Glass and Cancer. These databases were
RMSE = i ; . :
total _test_patterns_number obtained from the UCI Machine Learning Repository [22]

and from Probenl [23].
The Iris Plant database contains 3 classes of 50 patterns
fitness; = Wimse RMSE + Wze size each, where each class refers to a type of iris plant (Iris

where W,.,,.. and W... are pre-defined weightsiSE,; is Setosa, Versicolour ar_1d Virginica). Its input attribute_re a
the Sum of Squared Error (SSE) obtained testing the EFuI\I"?\‘?p"’IIIE Ierr:gth, separl] W'ith' petal Iedn%th and petoal W'dlth n
correspondent to the individualwith the test subset corre- Fm' lac pattebrln fas anuti an2 ogtpﬁtsi ne class IS
spondent to its populatios;ze; is the size of this EFUNN, l!nearly separablefrom t ehotﬂ(]—:‘r » and the latter are not
repr_sse is the sum of the SSEs andpr_size is the sum mear:ry Separable rom each o ?r.h | ¢ hemical
of the sizes of the representatives of all other populationsT e_Wme d_atabase COOS'St of the resu _ts of a chemica
in the previous generation, andtal_test_patterns_number ana_IyS|s of wines grown in the_ Same region m_ltaly, but
is the total number of test patterns, including the patterrfl€rived from three different cultivars. The analysis has de
correspondent to all populations. termined the quantities of 13 constituents found in each of

Each population is evolved in a separate manner and théf§ three types of wines. There are 59 patterns of class 1, 71
is an interaction among the populations only to calculatB2t€rns of class 2 and 48 patterns of class 3. Each pattern
the fitness value, according to CONE. The algorithm 3.2 igas 13 inputs and 3 outputs. _A” Inputs are continuous.
the algorithm used to evolve a specific population. The stop 1€ Glass database classify glass types. The results of

criterium used for the evolutionary process is the number & chemical analysis of glass splinters (percent content of
generations. 8 different elements) plus the refractive index are used to

classify the sample to be either float processed or non float
processed building windows, vehicle windows, containers,
tableware, or head lamps. The database contains 214 gattern

Size = size; + repr_size

Algorithm 3.2 (Evolutionary process of a population) The sizes of the 6 classes are 70, 76, 17, 13, 9, and
1) Create the initial population. 29 patterns, respectively. Each pattern has 9 inputs and 6
2) Repeat until a maximum number of generations igutputs. All inputs are continuous and two of them have

attained: hardly any correlation with the result. As the number of

a) If the EFUNNSs correspondent to the individuals opatterns is quite small, the problem is sensitive to alpord
the population have any rule nodes, delete thenthat waste information.

b) Apply the EFuUNN learning algorithm to each The Cancer database consist of diagnosis of breast cancer.
EFuUNN of the population using the traininglts patterns try to classify a tumor as either benign or
subset correspondent to this population and theaalignant based on cell descriptions gathered by micrascop
parameters codified by the genotype of the indiexamination. Input attributes are for instance the clump
viduals. thickness, the uniformity of cell size and cell shape, the

c) Test the EFUNNSs correspondent to all individualemount of marginal adhesion, and the frequency of bare
of the population using the test subset. nuclei. There are 699 patterns, and 458 of the patterns are



benign and 241 are malign. Each pattern has 9 inputs andMine database, 0.20 for Glass database and 0.37 for Cancer
outputs. All inputs are continuous. database.

The training, test and findkst data sets utilized by the The parameters of the coevolutionary genetic algorithm
experiments were created as follows: were: population size = 12, mutation rate = 2%, crossover

1) Two data sets (training+test data set and fteat data rate = 70%,W,,,. = 0.1, and stop criterium = 50 gen-
set) were created: erations. Four different values fo¥;.. were used: 0.005,

o The Probenl databases (Glass and Cancer) £:£005, 0.00005, and 0.000005. i i i
already separated in training (50% of the patterns), Hence the CQNE was executed with 4 different combi-
validation (25% of the patterns) and test data se%@tlons of e\{qlutlonary pargmeters for eac_h database eThre
(25% of the patterns). There are also 3 differen ifferent partitions of the trglr_nng+test and_ flttglst data set_s

partitions of the patterns which compose each opere also used, thus_totaI|Z|_ng 1_2 combinations of configu-
these sets. For each partition, the Proben1 trainidgtions. Three executions yv|th. dlfferent_ rf’mdom seeds were
and validation sets were used to compose a erformed for each combination, totalizing 36 exec_utlons

CONE training-+test data set and the Proben1 te Qr each database. The same 3 seeds were used in the 3

set was used to compose an CONE fiteait data executions of each combination for all databases.
set Executions with the above combinations of parameters

« The other databases (Iris and Wine) were obtaine®® also.r_nade using a GA to generate a smgle EFUNN'
directly from the UCI Machine Learning Reposi_The GA utilized was the same as the coevolutionary genetic

tory. These sets were processed in order to Crea?égorithm presented in section IlI-C, but using the fitness
3 different partitions of training+test and finest unction 2 for all generations and just one species. In this

data sets. Each training+test data set contains 7508 36 executions of the GA were mgde for ef’i.Ch databa_se.
of the patterns of each class and each fteat data The above parameters were determined empirically. Partic-

set contains 25% of the patterns of each class. ularly, the population size was 12 because some executions

2) Each f the 3 . £ th S, were made with bigger populations and did not cause im-
) -ach one o the partltlons_o t e training test_ an TJ'ovements in the generalization of the generated ensemble
final_test data sets was used in a different execution

he CONE. F h o hich have compensated the increase on the execution time.
the : .o_r each execution: The stop criterion was 50 generations because in most
a) The training+test patterns set was used 10 creagecutions of the GA, 50 generations have already caused
the clusters of the input space. a certain convergency.
b) After that, the training+test patterns set was sep- The objective of the executions explained above was to
arated according to the clusters into subsets qfompare:
training+test patterns. Each pattern belongs to the , EFuNNs  ensembles generated using CONE with
subset correspondent to the cluster which has the weighted average combining method (weighted
nearest center to this pattern. EFUNNs ensembles):
¢) Each training+test subset was then divided into , gryNNs ensembles generated using CONE with arith-
2 subsets. One of them is a training subset, with  metic average combining method (arithmetic EFUNNs
66% of its patterns, and the other one is a test ensembles):
subset, with 34% of its patterns. « Single EFUNNs generated using GA.
In this way, the total number of training patterns is always The characteristics compared were the execution times
50% of the patterns of the database, the total number of tesitthe evolutionary approaches and the output classificatio

patterns is 25% of the patterns of the database, and the tofglors of the EFUNNs ensembles and of the single EFUNNs
number of final test patterns is 25% of the patterns of thgenerated.

database.
C. Results
In this section, the classification errors are those obthine
The EFuNN parameters optimized during the coevolwising the finaltest patterns set to test the single EFUNNs
tionary process and their intervals of allowed values werer the EFUNNs ensembles generated after the evolutionary
m-of-n ([1,15] € Z), error threshold [0.01,0.6] € R), processes.

B. Parameters and Executions

maximum radius [(0.01, 0.8] € R), initial sensitivity thresh- Figure 4 shows the classification errors averages of the
old ([0.4,0.99] € R) and membership functions numberEFUNNs ensembles generated after the evolutionary pro-
([2,8] € 2). cesses of all 36 executions of the CONE using weighted

The genotype was composed by 4 bits for the m-of-average combining method and arithmetic average combining
value, 9 for the error threshold, 10 for the maximum radius, fethod, for each database. The classification errors aa®rag
for the initial sensitivity threshold, and 3 for the membeps of the single EFUNNs generated after the 36 executions of
functions number of each input/output attribute. the GA, for each database, are also shown. Observe that the

The Dthrs parameter of the clustering method was emelassification errors average of the Glass database is-multi
pirically determined and it is 0.40 for Iris database, 50 foplied by 0.1 in this figure. Table | shows the classification



TABLE I

errors averages, standard deviations, minimal and maximum
T STUDENT TEST STATISTICS COMPARING THE CLASSIFICATION

values, considering the 36 executions of each database. In
ERRORS AVERAGES AND USING LEVEL OF SIGNIFICANCE EQUAL T@.05

this table and in the other tables of this paper, “W Ens” means

Weighted EFuNNs Ensemble, “A Ens” means Arithmetic |~ Iris Wine Sf‘g‘;S Cza;;g
EFuUNNs Ensembll‘e, ”Slng means Single EFqNN, ) Ay ] W Ens x Sing | -2.3052 | 12076 | -4.3775 | -1.3435
means Average, “SD” means Standard Deviation, “Min AEns x Sing | -2.3052 | -1.2076 | -4.0719 | -0.1565

means Minimal Value, and “Max” means Maximum Value.

Classification Error Figure 5 shows the execution times averages of the 36

executions of CONE to generate EFUNNs ensembles and of

0.07
0.06 +

the 36 executions of GA to generate single EFUNNSs, for
each database. Observe that the execution times averages of
Glass and Cancer databases are multiplied by 0.1 in this
figure. Table Il shows the execution times averages, standa

deviations, minimal and maximum values, considering the
36 executions of each database. It is interesting to see that
the standard deviations of the execution times of the CONE
to produce EFUNNs ensembles were lower than the standard
deviations of the execution times of the GA to produce single
EFuNNSs for all databases.

0.05 OWeighted EFulNs
Ensemble
004 1 @ Arithmetic EFulNs
0.03 Ensemble
0.02 m Single EFuNN
0.01
1] . ; .

0.1 Glass

Iris Wine Cancer

Fig. 4. Classification errors

Execution Time

TABLE | 50
MEASURESRELATED TO THE CLASSIFICATION ERRORS 160 4
Iris Wine Glass | Cancer 140 4
W Ens | Av 0.0513 | 0.0272 | 0.3543| 0.0484 120 -
SD | 0.0397| 0.0301 | 0.0991 | 0.0152 100 + B EFuNNs Ensemble
Min 0 0 0.1698 | 0.0230 80 ~ W Single EFulN
Max | 0.1282 | 0.0889 | 0.5849 | 0.0920 ig 1
AEns | Av 0.0513 | 0.0272| 0.3585| 0.0528 zu:
SD | 0.0397 | 0.0301| 0.0974 | 0.0211 0 y—.
Min 0 0 0.1698 | 0.0172 Iris Wine 0.1 Glass 0.1 Cancer
Max | 0.1282 | 0.0889 | 0.5849 | 0.0920
Sing AV 0.0670 | 0.0346 | 0.4350 | 0.0535 , o )
sSD 0.0384 | 0.0234| 0.1680 | 0.0252 Fig. 5. Execution times in seconds
Min 0 0 0.1887 | 0.0172
Max | 0.2051 | 0.1111| 0.6792| 0.1207
TABLE IlI
MEASURESRELATED TO THE EXECUTION TIMES
It can be observed that for all databases the classification Iris Wine Glass Cancer
errors averages of ensembles was lower than the classificati | E"S | AV | 32:3333s | 31.8333s 142.5556s| 277.1944s
¢ single EFUNNS. N hel . h SD 2.5185s | 6.4209s | 64.6478s | 160.3850s
errors averages of single EFUNNSs. e\_/ert eless, just the av Min 205 21s 56s 6495
erages of the ensembles created for Iris and Glass databases Max 38s 425 281s 109s
were considered statistically lower than the classificatio | Sing | Av | 163.8611s| 95.3611s| 264.1111s| 996.4444s
errors averages Of Sing'e EFUNNS SD 89.2397s | 44.0488s| 150.7067s| 621.8672s
. . . . Min 54s 144s 72s 403s
In the executions made with Iris and Wine databases, Max 297s 1675 4665 27685

the classification errors averages of the weighted EFUNN
ensembles were considered statistically equal to theifilass
cation errors averages of the arithmetic EFUNNs ensembles For all databases, the execution times average among all
However, in the executions made with Glass and Cancg6 executions of the GA to generate a single EFUNN was
databases, the classification errors averages of the welighstatistically greater than the execution times averagengmo
EFuNNs ensembles were considered statistically lower tha 36 executions of the CONE to generate an EFuNNs
the classification errors averages of the arithmetic EFUNNshsemble. Table IV shows the statistics of the paired T
ensembles. student tests made to prove this analysis.

Table 1l shows the statistics of the paired T student tests The execution time of the CONE to generate EFUNNs
[24] performed to prove the analysis made with the classifensembles was lower than the GA execution time to generate
cation errors. The signals “=" indicate that the classifarat single EFUNNSs possibly because in the optimization process
errors of all 36 executions of the compared approaches weré a single EFUNN, for each pattern presented to train/test
equal. the EFUNN, the activation levels of all rule nodes of the



TABLE IV

T STUDENT TEST STATISTICS COMPARING THE EXECUTION TIMES
AVERAGES AND USING LEVEL OF SIGNIFICANCE EQUAL T00.05
Wine

-9.5510

Cancer
-8.8763

Glass
-7.8229

Iris
-8.8184

Ens x Sing

(2]

(3]

(4

EFuUNN have to be calculated. When an EFUNNs ensemblg]
is being created, just the activation levels of the rule sode
of the correspondent EFUNN (or the correspondent EFUNNS
in the case of test) have to be calculated. The single EFuN
is usually bigger than each EFUNN which compose ar{ ]

ensemble because the single EFUNN has to accommodate

all training patterns and a component of an ensemble has 13!
accommodate only the patterns correspondent to a particula

cluster of the input space.

Table V shows the number of clusters created for th
executions of CONE with each partition of the data set

(8]
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instance of CONE. The execution times of the instance of
CONE to produce EFuNNs ensembles are lower than th&l]
execution times of GA to produce single EFuNNs. The
standard deviations of the execution times are also lower fg2

CONE.

Future works include the use of other clustering metho $3]
and coevolutionary algorithms to create neural network en-

sembles using CONE.
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