
EFuNNs Ensembles Construction Using a Clustering Method and a
Coevolutionary Genetic Algorithm

L. Minku and T. Ludermir

Abstract— This paper introduces a new approach to construct
neural network ensembles called Clustering and Co-evolution to
Construct Neural Network Ensemble (CONE). This approach
was used to create and optimize the parameters of a particular
type of Evolving Fuzzy Neural Networks (EFuNNs) Ensemble.
Experimental results on four benchmark databases show that
the CONE generates EFuNNs ensembles with accuracy either
better or equal to the accuracy of single EFuNNs generated
using a genetic algorithm. Besides, the execution time of CONE
to generate EFuNNs ensembles is lower than the execution time
of the genetic algorithm to produce single EFuNNs.

I. I NTRODUCTION

Several approaches have been developed to optimize pa-
rameters of Evolving Connectionist Systems (ECoSs) [1].
Among them, [2], [3], [4] and [5] can be cited. All these
methods use evolutionary algorithms to make the optimiza-
tion of ECoSs parameters. [2] describes a try to optimize
some ECoSs parameters in an on-line manner. [3] presents
a method to optimize the parameters and the order of
presentation of the training patterns in an off-line manner.
[4] and [5] present successfully methods to optimize ECoSs
parameters in an on-line manner.

However, ensembles of learning machines have been
formally and empirically shown to generalize better than
single predictors [6]. Instead of utilizing just one neural
network to solve a specific problem, an ensemble of neural
networks combines a set of neural networks. There are
many advantages of using ensembles of neural networks
instead of single neural networks, e.g. an ensemble can
perform more complex tasks than any of its components
(i.e. individual neural networks in the ensemble), and it can
make an overall system easier to understand and modify [7].
Nevertheless, it is important to observe that the components
of the ensemble should have errors at least somewhat not
correlated in order to constitute a successful ensemble [8].
Besides, each component of the ensemble should have small
error rates.

Given the advantages of using ensembles of neural net-
works and the complexity of the problems to be solved, it
is clear that ensembles of neural networks are an important
problem solving technique. In spite of the fact that ensembles
of learning machines perform better than their members, their
construction is not an easy task [6]. Because of the difficulty
to construct ensembles, it is important to research methods
to automatically construct them. Some papers related to the
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construction of ensembles of neural networks are: [9], [10],
[11], [12], [13], [7], [14], [15], [16], [17] and [6].

In order to improve the accuracy of the outputs of a partic-
ular type of ECoSs called Evolving Fuzzy Neural Network
(EFuNN), [18] has used a multi-module classifier called
multiEFuNN. But the construction of EFuNNs ensembles,
in the same way as the construction of other ensembles of
neural networks, is not an easy task. Besides, the choice of
the best EFuNN parameters set is also a difficult task and
the execution time of evolutionary algorithms to optimize the
EFuNN parameters is high.

This paper introduces a new approach to construct ensem-
bles of neural networks, called Clustering and Co-evolution
to Construct Neural Network Ensemble (CONE). This ap-
proach was used to create a particular type of EFuNNs
ensemble and, at the same time, to optimize the parameters
of its EFuNNs.

The paper is organized as follows: Section II contains an
explanation about ECoSs and EFuNNs. Section III introduces
the proposed approach and explains a particular instance of
it (i.e. a clustering method, a particular type of EFuNNs
ensemble and a coevolutionary algorithm which can be used
by the approach). Section IV contains the results of the
experiments made with this instance of CONE using four
different benchmark databases.

II. ECOS AND EFUNNS

The ECOSs presented in [1] are systems constituted by
one or more neural networks. They have the following
characteristics [4]:

• They facilitate evolving processes modeling task.
• They facilitate knowledge representation and extraction.
• They have the following learning characteristics:

– Lifelong: they learn from continuously incoming
data in a changing environment during their entire
existence.

– On-line: they learn each example separately while
the system operates. Usually, a system which op-
erates in an on-line mode is also a systems which
operates in a lifelong mode, and vice-versa.

– Incremental: they learn new data without totally
destroying the patterns learned before and without
the need to make a new training on old and new
data together.

– Fast, possibly through just one pass of data propa-
gation.



– Local: they locally partition the problem space,
allowing fast adaptation and tracing evolving pro-
cesses over time.

• They can learn as both individual systems and as part
of an evolutionary population of such systems.

• They have evolving structures and use constructive
learning.

• They evolve in an open space, not necessarily of fixed
dimensions.

EFuNNs [19] are a class of ECOSs which join together the
neural networks functional characteristics to the expressive
power of fuzzy logic. They have a five-layer architecture,
as it is shown by figure 1. The first layer represents the
input vector, the second represents the fuzzy quantification
of the input vector, the third represents the associations
between fuzzy input space and fuzzy output space, the fourth
represents the fuzzy quantification of the output vector and
the fifth represents the output vector.

Fig. 1. EFuNN Architecture

The learning occurs at the rule nodes layer. Each noderj of
this layer is represented by two vectors of connection weights
(W1(rj) and W2(rj)). W1 represents the coordinates of the
nodes in the fuzzy input space and it is adjusted through
unsupervised learning.W2 represents the coordinates of the
nodes in the fuzzy output space and it is adjusted through
supervised learning. The learning rules are the following:

W1(rj(t+ 1)) = W1(rj(t))
+lr1(rj(t)) ∗ (xf −W1(rj(t)))

W2(rj(t+ 1)) = W2(rj(t))
+lr2(rj(t)) ∗ (yf −A2) ∗A1(rj(t))

where: xf and yf are the fuzzy input and fuzzy output
vectors;lr1(rj(t)) and lr2(rj(t)) are the learning rates for
theW1 andW2 weights of the noderj at timet; A2 is the
fuzzy output activation vector andA1(rj(t)) is the activation
value of the rule noderj at time t.

The EFuNN learning algorithm is briefly described below.
It is recommended to read [19] to get more details.

Algorithm 2.1 (EFuNN Learning Algorithm)
1) Set initial values for the following system parameters:

number of membership functions; initial sensitivity
thresholdS of the nodes (it is also used to determine
the initial radius of the receptive field of a noderj ,
when it is created (R(rj) = 1 − S); error threshold
E; aggregation parameterNagg; pruning parameters

OLD andPr; m-of-n value (number of highest acti-
vation nodes used in the learning); maximum radius
of the receptive fieldMrad; rule extraction thresholds
T 1 andT 2.

2) Set the first rule noder0 to memorize the first example
(x, y):

W1(r0) = xf andW2(r0) = yf

wherexf andyf are the vectors of fuzzy quantification
of the vectorsx andy, respectively.

3) Repeat for each new input-output pair(x, y) presenta-
tion:

a) Determine the local normalized fuzzy distanceD
betweenxf and theW1 weights. The distance
D between two fuzzy vectorsx1 and x2 is
calculated as following:

D(x1, x2) = subabs(x1, x2)/sumabs(x1, x2)

wheresubabs(x1, x2) is the sum of all absolute
values of the vector obtained after subtraction of
the fuzzy vectorsx1 andx2 andsumabs(x1, x2)
is the sum of all absolute values of the vector
obtained after sum of the fuzzy vectorsx1 and
x2.

b) Calculate the activationsA1 of all rule nodes. An
example of how it can be calculated is:

A1 = 1−D(W1(rj), xf )

c) Select the rule noderk that has the smallest
distanceD(W1(rk), xf ) and that has activation
A1(rk) >= S(rk). In the case ofm-of-nlearning,
selectm nodes instead of just one node.

d) If this node does not exist

i) Create a new rule node for(xf , yf ).

e) Else

i) Determine the activationA2 of the output
layer and the normalized output errorErr =
subabs(y, y′)/Nout, where y is the desired
output,y′ is the obtained output andNout is
the number of nodes of the output layer.

ii) If Err > E

A) Create a new rule node for(xf , yf ).

iii) Else

A) Apply the learning rules toW1(rk) and
W2(rk) (in the case ofm-of-n learning,
the rules are applied to them rule nodes).

f) Apply aggregation procedure after the presenta-
tion of Nagg examples.

g) Update the parametersS(rk), R(rk), Age(rk)
and TA(rk). TA(rk) can be, for example, the
sum of the activationsA1 obtained for all exam-
ples thatrk accommodates.

h) Prune rule nodes, if necessary, according toOLD
andPr.

i) Extract rules, according toT 1 andT 2.
According to algorithm 2.1, there are parameters which are

adjusted during the learning (rule nodes and their weights)



and parameters which do not change during the learning,
but define it (number of membership functions,E, Nagg,
OLD, Pr, m-of-n value, Mrad, T1 and T2). Through the
use of different parameters set, EFuNNs attain different
performances and different weights are learned. The optimal
parameters set usually depends on the input and output
data presented. Thus, it is important to choose correctly the
parameters which define the EFuNN learning according to
the data presented.

III. A N EW APPROACH TOCONSTRUCTNEURAL

NETWORK ENSEMBLES

This section presents a new approach called CONE. The
general idea of the proposed approach is to construct neural
network ensembles using a clustering method to partition
the input space in clusters. After that, the clusters are used
to separate the training and the test patterns in various
subsets of training and test patterns with empty intersection.
Each subset is used to train/test a different population of
neural networks, which is evolved through a coevolutionary
algorithm. Thus, each cluster is associated with a training
subset, a test subset and a population of neural networks. The
purpose of training the individuals of each population using
a different subset of the training patterns is to maintain the
output errors of the neural networks of different populations
at least somewhat not correlated. Figure 2 illustrates the
creation of clusters of the input space using the training and
test patterns set.

Fig. 2. Clustering

The patterns data used by the approach are divided in 3
types:

• Training patterns: used to create clusters and to train the
neural networks;

• Test patterns: used to create clusters and to test the
neural networks during the evolutionary process;

• Final test patterns: used to test the neural networks en-
semble generated at the end of the evolutionary process.

The training and test data set is subdivided into subsets
according to the clusters of the input space, as figure 3 shows.
In this way, if there areN clusters, there will beN subsets
of training patterns with empty intersection andN subsets of
test patterns with empty intersection. If there are not enough
patterns to compose a test subset correspondent to a specific
cluster of the input space, the same subset used to train the
neural networks of the correspondent population can be used
to test them during the evolutionary process.

Fig. 3. Proposed approach

If there areN clusters, there will be alsoN popula-
tions to be evolved through a coevolutionary algorithm.
The individuals of the population are neural networks and
the coevolutionary algorithm can be used to optimize their
parameters. These parameters can be both the architecture
of the neural networks and, for example, the weights of the
connections. Thus, it is possible to use the coevolutionary
algorithm both to train and to optimize the architecture of
the neural networks. However, it is also possible to use
the specific learning algorithm of the neural networks to
train them and the coevolutionary algorithm just to optimize
their architectures. It is important to emphasize that each
training/test subset is used to train/test the individualsof a
specific population.

The evolutionary process is cooperative because the fitness
of an individual of a population is calculated using a repre-
sentative individual of each one of the other populations to
constitute a neural networks ensemble. The representativeof
a population can be, for example, its best individual. There
is no matching between individuals of different populations.
The interaction among individuals of different populations
occurs only in the calculation of the fitness value.

At the end of the evolutionary process, the representa-



tives of each population of the last generation are used to
constitute the ensemble, as shown by figure 3. In order to
use/test the ensemble, the clusters to which the input test
pattern belongs are determined. After that, the outputs of
the EFuNNs correspondent to these clusters are calculated
and combined using a pre-determined combining method.
Examples of combining methods can be found in [8].

The following sections explain the instance of CONE used
in the experiments to produce EFuNNs ensembles. Section
III-A explains the clustering method used to partition the
input space, section III-B explains the EFuNNs ensembles
created and section III-C explains the coevolutionary algo-
rithm used.

A. A Clustering Method

The clustering method used in the experiments performed
with the proposed approach is similar to the Evolving Clus-
tering Method [18]. The algorithm 3.1 presents it.

In this paper, the distance between two vectorsx and y
denotes the General Euclidean Distance, defined as follows:

||x− y|| =

√

∑size−1

0
(xi − yi)2

size

Algorithm 3.1 (Clustering Method) Let NumEx be the
number of patterns andDthr be a distance threshold.

1) Create the first clusterC0 by simply taking the position
of the first pattern as the first cluster centerCc0 and
setting a value 0 for its cluster radiusRu0.

2) For each input patternxi from i = 1 to NumEx− 1
do:

a) Determine the distance betweenxi and all N
cluster centersCcj already created:

Dij = ||xi − Ccj ||, j = 0, 1, ..., N − 1

b) If there is a distance valueDij ≤ Ruj , it means
thatxi belongs to a clusterCm with the minimum
distanceDim = ||xi − Ccm|| = min(||xi −
Ccj ||), subject to the restrictionDij ≤ Ruj, j =
0, 1, ..., N − 1. In this case, neither a new cluster
is created nor an existing cluster is updated.

c) Else

i) Find the clusterCα with the minimum dis-
tance Diα = ||xi − Ccα|| = min(||xi −
Ccj ||), j = 0, 1, ..., N − 1.

ii) If Diα > Dthr, create a new cluster, in the
same way as described in the step 1.

iii) Else updateCα: increment the number of
patterns accommodated byCα (NExsα =
NExsα + 1); updateCcα (Ccα = Ccα +
(xi − Ccα)/NExsα) and makeRα be the
maximum between the following values: 1.
the distance between the oldCcα and the new
Ccα plus the oldRuα and 2. the distance
betweenxi and the new centerCcα

B. Creating EFuNNs Ensembles

As it was explained in section II, EFuNNs have parameters
which are adjusted during the learning and parameters which
define the learning. In the experiments performed with the
proposed approach, the coevolutionary algorithm was used
to optimize the parameters which define the EFuNN learning
and the EFuNN learning algorithm itself is used to train the
EFuNNs.

According to CONE, after the evolutionary process, the
representatives of each population are used to construct the
EFuNNs ensemble. In the experiments, the best fit individual
of a population was considered the representative of this
population. Two combining methods were used to combine
the outputs of the EFuNNs that compose the ensemble. One
of them is the arithmetic average of the outputs of the
EFuNNs to which the pattern presented belongs. The other
one is the weighted average of the outputs of the EFuNNs to
which the pattern presented belongs. The value used as the
weight of a clusterCj , j = 0, 1, ...N is 1/||xi − Ccj ||),
where xi is the pattern presented andCcj is the cluster
center. If a pattern does not belong to any cluster, the output
of the ensemble is the output of the EFuNN correspondent to
the cluster whose center is the nearest center to the pattern.

C. Coevolutionary Algorithm

The experiments made with CONE have used a coevo-
lutionary genetic algorithm as the coevolutionary algorithm.
It is recommendable to read [20] for an explanation about
evolutionary algorithms and [21] for an example of a coevo-
lutionary approach.

The coevolutionary genetic algorithm used has a binary
representation of the EFuNN parameters to be optimized,
bitwise bit-flipping mutation, one-point crossover, and gen-
erational survivor selection. The parents selection used is pro-
portional to the value determined by be following equation:

Probi,p,g =
best fitnessp,g − fitnessi,p,g

∑pop sizep−1

j=0
fitnessj,p,g

(1)

where best fitnessp,g is the fitness of the best individual
of the populationp of the generationg, fitnessi,p,g is
the fitness of the individuali of the populationp of the
generationg, and pop sizep is the size of the population
p.

The parents selection was made using the roulette wheel
method and, according to equation 1, the fitness value is min-
imized. [20], a recent book about evolutionary algorithms,
gives examples of applications of Genetic Algorithms (GAs)
in which the fitness function is directly minimized, instead
of change it into a function that has to be maximized.

Each initial population is composed by individuals created
randomly choosing values for each of the EFuNN parameters
to be optimized and one population is created for each cluster
of the input space, according to CONE.

In the initial population, the fitness of the individuals is
calculated in an isolated manner,i.e. to determine the fitness
of an individual, the individuals of other populations are not



considered. The function used to calculate the fitness in this
generation is:

fitnessi = Wrmse RMSEi +Wsize sizei (2)

whereWrmse andWsize are pre-defined weights,RMSEi

is the Root Mean Squared Error (RMSE) obtained testing
the EFuNN correspondent to the individuali with the test
subset correspondent to its population, andsizei is the size
of this EFuNN.

The size component of the fitness function is used to
penalize the size of the EFuNNs generated, as suggested
by [5]. In this way, the execution time of the evolutionary
algorithm is not so high.

In all generations after the initial one, the fitness of an
individual i is calculated using not only the output error and
the size of this individual, but also the output error and size
of the representatives of the other populations of the previous
generation. The functions used to calculate the fitness in all
generations except the initial generation are:

RMSE =

√

SSEi + repr sse

total test patterns number

size = sizei + repr size

fitnessi = Wrmse RMSE +Wsize size

whereWrmse andWsize are pre-defined weights,SSEi is
the Sum of Squared Error (SSE) obtained testing the EFuNN
correspondent to the individuali with the test subset corre-
spondent to its population,sizei is the size of this EFuNN,
repr sse is the sum of the SSEs andrepr size is the sum
of the sizes of the representatives of all other populations
in the previous generation, andtotal test patterns number
is the total number of test patterns, including the patterns
correspondent to all populations.

Each population is evolved in a separate manner and there
is an interaction among the populations only to calculate
the fitness value, according to CONE. The algorithm 3.2 is
the algorithm used to evolve a specific population. The stop
criterium used for the evolutionary process is the number of
generations.

Algorithm 3.2 (Evolutionary process of a population)
1) Create the initial population.
2) Repeat until a maximum number of generations is

attained:
a) If the EFuNNs correspondent to the individuals of

the population have any rule nodes, delete them.
b) Apply the EFuNN learning algorithm to each

EFuNN of the population using the training
subset correspondent to this population and the
parameters codified by the genotype of the indi-
viduals.

c) Test the EFuNNs correspondent to all individuals
of the population using the test subset.

d) Determine the fitness value of each individual of
the population.

e) Make parent selection using roulette wheel
method and probabilities determined through the
equation 1.

f) Apply crossover and mutation with probabilities
Pc andPm, respectively, to generate new individ-
uals.

g) Apply generational survivor selection.

IV. EXPERIMENTS

This section explains the experiments made with the
instance of CONE presented in sections III-A, III-B and III-
C. Section IV-A explains the databases and the creation of
the data sets used in the experiments, section IV-B shows
the parameters used and IV-C contains the results of the
experiments.

A. Data Sets

The experiments have utilized four benchmark databases:
Iris Plant, Wine, Glass and Cancer. These databases were
obtained from the UCI Machine Learning Repository [22]
and from Proben1 [23].

The Iris Plant database contains 3 classes of 50 patterns
each, where each class refers to a type of iris plant (Iris
Setosa, Versicolour and Virginica). Its input attributes are
sepal length, sepal width, petal length and petal width in
cm. Each pattern has 4 inputs and 3 outputs. One class is
linearly separable from the other 2, and the latter are not
linearly separable from each other.

The Wine database consist of the results of a chemical
analysis of wines grown in the same region in Italy, but
derived from three different cultivars. The analysis has de-
termined the quantities of 13 constituents found in each of
the three types of wines. There are 59 patterns of class 1, 71
patterns of class 2 and 48 patterns of class 3. Each pattern
has 13 inputs and 3 outputs. All inputs are continuous.

The Glass database classify glass types. The results of
a chemical analysis of glass splinters (percent content of
8 different elements) plus the refractive index are used to
classify the sample to be either float processed or non float
processed building windows, vehicle windows, containers,
tableware, or head lamps. The database contains 214 patterns.
The sizes of the 6 classes are 70, 76, 17, 13, 9, and
29 patterns, respectively. Each pattern has 9 inputs and 6
outputs. All inputs are continuous and two of them have
hardly any correlation with the result. As the number of
patterns is quite small, the problem is sensitive to algorithms
that waste information.

The Cancer database consist of diagnosis of breast cancer.
Its patterns try to classify a tumor as either benign or
malignant based on cell descriptions gathered by microscopic
examination. Input attributes are for instance the clump
thickness, the uniformity of cell size and cell shape, the
amount of marginal adhesion, and the frequency of bare
nuclei. There are 699 patterns, and 458 of the patterns are



benign and 241 are malign. Each pattern has 9 inputs and 2
outputs. All inputs are continuous.

The training, test and finaltest data sets utilized by the
experiments were created as follows:

1) Two data sets (training+test data set and finaltest data
set) were created:

• The Proben1 databases (Glass and Cancer) are
already separated in training (50% of the patterns),
validation (25% of the patterns) and test data sets
(25% of the patterns). There are also 3 different
partitions of the patterns which compose each of
these sets. For each partition, the Proben1 training
and validation sets were used to compose an
CONE training+test data set and the Proben1 test
set was used to compose an CONE finaltest data
set.

• The other databases (Iris and Wine) were obtained
directly from the UCI Machine Learning Reposi-
tory. These sets were processed in order to create
3 different partitions of training+test and finaltest
data sets. Each training+test data set contains 75%
of the patterns of each class and each finaltest data
set contains 25% of the patterns of each class.

2) Each one of the 3 partitions of the training+test and
final test data sets was used in a different execution of
the CONE. For each execution:

a) The training+test patterns set was used to create
the clusters of the input space.

b) After that, the training+test patterns set was sep-
arated according to the clusters into subsets of
training+test patterns. Each pattern belongs to the
subset correspondent to the cluster which has the
nearest center to this pattern.

c) Each training+test subset was then divided into
2 subsets. One of them is a training subset, with
66% of its patterns, and the other one is a test
subset, with 34% of its patterns.

In this way, the total number of training patterns is always
50% of the patterns of the database, the total number of test
patterns is 25% of the patterns of the database, and the total
number of final test patterns is 25% of the patterns of the
database.

B. Parameters and Executions

The EFuNN parameters optimized during the coevolu-
tionary process and their intervals of allowed values were:
m-of-n ([1, 15] ∈ Z), error threshold ([0.01, 0.6] ∈ R),
maximum radius ([0.01, 0.8] ∈ R), initial sensitivity thresh-
old ([0.4, 0.99] ∈ R) and membership functions number
([2, 8] ∈ Z).

The genotype was composed by 4 bits for the m-of-n
value, 9 for the error threshold, 10 for the maximum radius, 6
for the initial sensitivity threshold, and 3 for the membership
functions number of each input/output attribute.

The Dthrs parameter of the clustering method was em-
pirically determined and it is 0.40 for Iris database, 50 for

Wine database, 0.20 for Glass database and 0.37 for Cancer
database.

The parameters of the coevolutionary genetic algorithm
were: population size = 12, mutation rate = 2%, crossover
rate = 70%,Wrmse = 0.1, and stop criterium = 50 gen-
erations. Four different values forWsize were used: 0.005,
0.0005, 0.00005, and 0.000005.

Hence the CONE was executed with 4 different combi-
nations of evolutionary parameters for each database. Three
different partitions of the training+test and finaltest data sets
were also used, thus totalizing 12 combinations of configu-
rations. Three executions with different random seeds were
performed for each combination, totalizing 36 executions
for each database. The same 3 seeds were used in the 3
executions of each combination for all databases.

Executions with the above combinations of parameters
were also made using a GA to generate a single EFuNN.
The GA utilized was the same as the coevolutionary genetic
algorithm presented in section III-C, but using the fitness
function 2 for all generations and just one species. In this
way, 36 executions of the GA were made for each database.

The above parameters were determined empirically. Partic-
ularly, the population size was 12 because some executions
were made with bigger populations and did not cause im-
provements in the generalization of the generated ensembles
which have compensated the increase on the execution time.
The stop criterion was 50 generations because in most
executions of the GA, 50 generations have already caused
a certain convergency.

The objective of the executions explained above was to
compare:

• EFuNNs ensembles generated using CONE with
weighted average combining method (weighted
EFuNNs ensembles);

• EFuNNs ensembles generated using CONE with arith-
metic average combining method (arithmetic EFuNNs
ensembles);

• Single EFuNNs generated using GA.
The characteristics compared were the execution times

of the evolutionary approaches and the output classification
errors of the EFuNNs ensembles and of the single EFuNNs
generated.

C. Results

In this section, the classification errors are those obtained
using the finaltest patterns set to test the single EFuNNs
or the EFuNNs ensembles generated after the evolutionary
processes.

Figure 4 shows the classification errors averages of the
EFuNNs ensembles generated after the evolutionary pro-
cesses of all 36 executions of the CONE using weighted
average combining method and arithmetic average combining
method, for each database. The classification errors averages
of the single EFuNNs generated after the 36 executions of
the GA, for each database, are also shown. Observe that the
classification errors average of the Glass database is multi-
plied by 0.1 in this figure. Table I shows the classification



errors averages, standard deviations, minimal and maximum
values, considering the 36 executions of each database. In
this table and in the other tables of this paper, “W Ens” means
Weighted EFuNNs Ensemble, “A Ens” means Arithmetic
EFuNNs Ensemble, “Sing” means Single EFuNN, “Av”
means Average, “SD” means Standard Deviation, “Min”
means Minimal Value, and “Max” means Maximum Value.

Fig. 4. Classification errors

TABLE I

MEASURESRELATED TO THE CLASSIFICATION ERRORS

Iris Wine Glass Cancer
W Ens Av 0.0513 0.0272 0.3543 0.0484

SD 0.0397 0.0301 0.0991 0.0152
Min 0 0 0.1698 0.0230
Max 0.1282 0.0889 0.5849 0.0920

A Ens Av 0.0513 0.0272 0.3585 0.0528
SD 0.0397 0.0301 0.0974 0.0211
Min 0 0 0.1698 0.0172
Max 0.1282 0.0889 0.5849 0.0920

Sing Av 0.0670 0.0346 0.4350 0.0535
SD 0.0384 0.0234 0.1680 0.0252
Min 0 0 0.1887 0.0172
Max 0.2051 0.1111 0.6792 0.1207

It can be observed that for all databases the classification
errors averages of ensembles was lower than the classification
errors averages of single EFuNNs. Nevertheless, just the av-
erages of the ensembles created for Iris and Glass databases
were considered statistically lower than the classification
errors averages of single EFuNNs.

In the executions made with Iris and Wine databases,
the classification errors averages of the weighted EFuNNs
ensembles were considered statistically equal to the classifi-
cation errors averages of the arithmetic EFuNNs ensembles.
However, in the executions made with Glass and Cancer
databases, the classification errors averages of the weighted
EFuNNs ensembles were considered statistically lower than
the classification errors averages of the arithmetic EFuNNs
ensembles.

Table II shows the statistics of the paired T student tests
[24] performed to prove the analysis made with the classifi-
cation errors. The signals “=” indicate that the classification
errors of all 36 executions of the compared approaches were
equal.

TABLE II

T STUDENT TEST STATISTICS COMPARING THE CLASSIFICATION

ERRORS AVERAGES AND USING LEVEL OF SIGNIFICANCE EQUAL TO0.05

Iris Wine Glass Cancer
W Ens x A Ens = = -3.1623 -2.2832
W Ens x Sing -2.3052 -1.2076 -4.3775 -1.3435
A Ens x Sing -2.3052 -1.2076 -4.0719 -0.1565

Figure 5 shows the execution times averages of the 36
executions of CONE to generate EFuNNs ensembles and of
the 36 executions of GA to generate single EFuNNs, for
each database. Observe that the execution times averages of
Glass and Cancer databases are multiplied by 0.1 in this
figure. Table III shows the execution times averages, standard
deviations, minimal and maximum values, considering the
36 executions of each database. It is interesting to see that
the standard deviations of the execution times of the CONE
to produce EFuNNs ensembles were lower than the standard
deviations of the execution times of the GA to produce single
EFuNNs for all databases.

Fig. 5. Execution times in seconds

TABLE III

MEASURESRELATED TO THE EXECUTION T IMES

Iris Wine Glass Cancer
Ens Av 32.3333s 31.8333s 142.5556s 277.1944s

SD 2.5185s 6.4209s 64.6478s 160.3850s
Min 29s 21s 56s 649s
Max 38s 42s 281s 109s

Sing Av 163.8611s 95.3611s 264.1111s 996.4444s
SD 89.2397s 44.0488s 150.7067s 621.8672s
Min 54s 144s 72s 403s
Max 297s 167s 466s 2768s

For all databases, the execution times average among all
36 executions of the GA to generate a single EFuNN was
statistically greater than the execution times average among
all 36 executions of the CONE to generate an EFuNNs
ensemble. Table IV shows the statistics of the paired T
student tests made to prove this analysis.

The execution time of the CONE to generate EFuNNs
ensembles was lower than the GA execution time to generate
single EFuNNs possibly because in the optimization process
of a single EFuNN, for each pattern presented to train/test
the EFuNN, the activation levels of all rule nodes of the



TABLE IV

T STUDENT TEST STATISTICS COMPARING THE EXECUTION TIMES

AVERAGES AND USING LEVEL OF SIGNIFICANCE EQUAL TO0.05

Iris Wine Glass Cancer
Ens x Sing -8.8184 -9.5510 -7.8229 -8.8763

EFuNN have to be calculated. When an EFuNNs ensemble
is being created, just the activation levels of the rule nodes
of the correspondent EFuNN (or the correspondent EFuNNs
in the case of test) have to be calculated. The single EFuNN
is usually bigger than each EFuNN which compose an
ensemble because the single EFuNN has to accommodate
all training patterns and a component of an ensemble has to
accommodate only the patterns correspondent to a particular
cluster of the input space.

Table V shows the number of clusters created for the
executions of CONE with each partition of the data sets,
for each database. The clusters number are a consequence of
theDthrs used.

TABLE V

CLUSTERSNUMBER

Iris Wine Glass Cancer
Partition 1 13 7 13 7
Partition 2 15 6 17 7
Partition 3 13 7 15 6
Average 13.6667 6.6667 15 6.6667

V. CONCLUSIONS

This paper introduces a new coevolutionary approach
to produce neural network ensembles, called CONE and
describes a clustering method and a coevolutionary algorithm
which can be used to create EFuNNs ensembles.

The experimental results on four benchmark problems
and a particular instance of CONE show that the EFuNNs
ensembles generated using this instance have either betteror
equal generalization abilities to the single EFuNNs generated
using a GA. They also show that the weighted EFuNNs
ensembles have either better or equal generalization abilities
to the arithmetic EFuNNs ensembles generated using the
instance of CONE. The execution times of the instance of
CONE to produce EFuNNs ensembles are lower than the
execution times of GA to produce single EFuNNs. The
standard deviations of the execution times are also lower for
CONE.

Future works include the use of other clustering methods
and coevolutionary algorithms to create neural network en-
sembles using CONE.
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