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Abstract- Evolving Fuzzy Neural Networks are usually ~ with changing dynamics.

used to model evolving processes, which are developing

and changing over time. This kind of network has some 2 Evolving Connectionist Systems and Fuzzy
fixed parameters that usually depend on presented data. Neural Networks

When data change over time, the best set of parameters

also changes. This paper presents two approaches usingThe ECOSs presented in [Kasabov2003] are sys-
Evolutionary Computation for the on-line optimization  tems constituted by one or more neural net-
of these parameters. One of them utilizes Genetic Al- \yorks. They have the following characteristics
gorithms and the other one utilizes Evolutionary Strate-  [Kasabov, Song and Nishikawa 2003]:

gies. The networks were used to Mackey-Glass chaotic
time series prediction with changing dynamics. A com-
parative study is made with these approaches and some

e They facilitate evolving processes modeling task.
e They facilitate knowledge representation and extrac-

variations of them. tion.
e They have the following learning characteristics:
1 Introduction e Lifelong: they learn from continuously incom-
ing data in a changing environment during its
Evolving' processes are processes that are developing, entire existence.
changing over time in a continuous manner. There are many e On-line: they learn each example separately
real world problems that are evolving processas,biolog- while the system operates (usually in real time).

ical data processing, electricity load forecasting anchada
tive speech recognition. These processes are difficult to
model because some of their parameters may not be known
a priori, unexpected perturbations or changes can happen
at certain time during development and they are not strictly

e Incremental: they learn new data without totally
destroying the patterns learned before and with-
out the need to make a new training on old and
new data together.

predictable in the longer term [Kasabov 2003]. e Fast, possibly through just one pass of data
Evolving Connectionist Systems (ECOSs) constitute a propagation.

paradigm created to make easier the evolving processes e Local: they locally partition the problem space,

modeling task. Evolving Fuzzy Neural Networks (EFUNNS) allowing fast adaptation and tracing evolving

[Kasabov 2001] form an example of a class of ECOSs that processes over time.

facilitate the representation and knowledge extractiomgus e They learn as both individual systems, and as part of

fuzzy rules. an evolutionary population of such systems.

Although ECOSs can evolve their structures as in-
coming data arrives, they still have some fixed param-
eters that are not adjusted during the learning. At
this work two approaches using Evo|uti0nary Compu- ° They evolvein an open space, not necessarily of fixed
tation (EC) to on-line optimization of these parameters dimensions.
were implemented. One of them uses a Genetic Alg&=FUNNSs [Kasabov 2001] are a class of ECOSs that join to-
rithm (GA), the other one uses an Evolutionary Strateggether the neural networks functional characteristicsi¢o t
(ES) and both were based in the method introduced k8xpressive power of fuzzy logic. They have a five-layer ar-
[Kasabov, Song and Nishikawa 2003]. chitecture as it is shown in figure 1. The first layer rep-

Experiments were done to compare the results of the opesents the input vector, the second represents fuzzy quan-
timization of some of the fixed parameters of EFUNNs usintification of the input vector, the third represents associa
these approaches and some variations of them. The analyt#iss between fuzzy input space and fuzzy output space, the
also compares the effect of the optimization using the fufourth represents fuzzy quantification of the output vector
power of these approaches with the effect of their executicand the fifth represents the output vector.
in a similar way to [Kasabov, Song and Nishikawa 2003]. The learning occur at the rule nodes layer. Each node
The EFuUNNs were used to chaotic time series prediction of this layer is represented by two vectors of connection
weights W1(rj) and W2(rj)). W1 represents the coordi-

!Notice that the term “evolving” will be used with a differentean  nates of the nodes in the fuzzy input space and it is adjusted
from "evolutionary”.

e They have evolving structures and use constructive
learning.




sumabs(x1,22) is the sum of all absolute val-
ues of the vector obtained after sum of the fuzzy
vectorse1l andz2.

(b) Calculate the activationd1 of all rule nodes.
An example of how it can be calculated is:

Al =1—-D(W1(ry),x¢)

(c) Select the rule node;, that has the smallest
distanceD (W 1(r), zy) and that has activation
Al(rg) >= S(rx). In the case ofm-of-n learn-
ing, selecim nodes instead of just one node.

(d) If this node does not exist
through unsupervisgd learning\2 represents the co_or_di— i. Create a new rule node fo, y).
nates of the nodes in the fuzzy output space and it is ad-

Figure 1: EFuNN architecture

justed through supervised learning. The learning rules are (e) Else
the following: i. Determine the activatiord2 of the out-
o Wi(rj(t+1)) = Wi(rj(t) + lri(r;(t)) * (x5 — put layer and the normalized output error

Err = subabs(y,y’)/Nout, wherey is
the desired outputy’ is the obtained out-
put andN out is the number of nodes of the
output layer.

Wi(r;(1)))

o W2r;(t + 1)) = W2(r;(t) + Ir2(r; (1) * (yy —
A2) x Al(r;(t))
Where:z ¢ andy are the fuzzy input and fuzzy out-

putvectorsir1(r;(t)) andir2(r;(t)) are the learning li At Err > B

rates for thel’1 and W2 weights of the node; at A. Create a new rule node fér ;,y;).

time t; A2 is the fuzzy output activation vector and ii. Else

Al(r;(t)) is the activation value of the rule node A. Apply the learning rules taV1(ry)

attimet. and W2(ry) (in the case ofm-of-n
The EFuNN learning algorithm is briefly described below. learning, the rules are applied to the
It is recommended to read [Kasabov 2001] to get more de- rule nodes).

tails. (f) Apply aggregation procedure after the presenta-

tion of Nagg examples.

Algorithm 2.1 (EFUNN Learning Algorithm
g ( 9~ ) (9) Update the parametefiry), R(ry), Age(ry)

1. Setinitial values for the following system parameters: andT A(ry). T A(ry) can be, for example, the
number of membership functions; initial sensitivity sum of the activationd 1 obtained for all exam-
thresholdS of the nodes (it is also used to determine ples that, accommodates.
the initial radius of the receptive field of a nodg, (h) Prune rule nodes, if necessary, according to
when it is createdR(r;) = 1 — 5); error threshold OLD andPr-.

E, aggl’egation parametéfagg; pruning pal’ameters . .
OLD andPr; m-of-n value (number of highest acti- .(l) Extract .rules, according @'l and7’2.

of the receptive field\/rad; rule extraction thresh- justed during the learning (rule nodes and their weightd) an
oldsT'1 andT?2. parameters that do not change during the learning, but defin-

ing it (number of membership functioris, Nagg, OLD, Pr,

2. Setthe first rule node, to memorize the first exam- m-of-n value,Mrad, T1 andT2). All parameters that define

ple (. y): the learning must be determined according to the used data
Wi(ro) = zy andW2(ro) = ys set [Kasabov, Song and Nishikawa 2003].
wherez; andy; are the vectors of fuzzy quantifica-
tion of the vectors: andy, respectively. 3 On-line Optimization of ECOSs Parameters
3. Repeat for each new input-output pait y) presen-  Using Evolutionary Computation
tation:

(a) Determine the local normalized fuzzy distancd Nrough the use of different parameters of the kind that de-
D betweenz; and thelV’'1 weights. The dis- fine the learning, ECOSs attain different performances and

tanceD between two fuzzy vectorsl andz2  different weights are learned. Usually the optimal parame-
is calculated as following: ters set depends on the input and output presented data. The

_ objective of ECOSs on-line parameters optimization is the
D(a1,22) = Sumbs(m_l’ 22)/sumabs(z1,22) determination of the best parameters set for the moment, at
where subabs(z1,22) is the sum of all abso- the same time that learning occurs.

lute values of the vector obtained after sub- A method that uses EC to optimize ECOSs parameters
traction of the fuzzy vectors1l and z2 and



was introduced in [Kasabov, Song and Nishikawa 2003]. It (d) Apply crossover and mutation with probabilities

uses a fitness function based only on the Root Mean Squared Pc and Pm, respectively, to generate new indi-
Error (RMSE) generated by the prediction made by EFUNN viduals (parents rule nodes are inherited by chil-
over an data set. In this way, if the allowed values inter- dren).

val for the parameters being optimized is not small enough,
the networks generated are very big in comparison with
the number of training examples presented. Moreover, al-
though the approach can be used with other evolutionary al-
gorithms, [Kasabov, Song and Nishikawa 2003] made tests
just with GAs, that are not always the best evolutionar
technique to the problem at hand.

At this work two approaches that use EC to on-This approach uses an ES to make EFUNNs parameters op-
line optimization of EFUNN parameters were impletimization. ESs have the following characteristics, ceir
mented. One of them uses a GA, the other one usesparameters optimization of dynamic processes:

an ES and both are based on the approach introduced by ¢ They are good on real values parameters optimization
[Kasabov, Song and Nishikawa 2003]. The following sub- [Eiben and Smith 2003].

sections describe these approaches.

(e) Apply generational survivor selection.

(f) Shift the training and the testing (if there is one)
time window (the new time windows are com-
posed byP — D old points andD new points).

%.2 Optimization Based on Evolutionary Strategy

e Usually they are used with self-adaptation of muta-
tion parameters [Eiben and Smith 2003]. This is de-

3.1 Optimization Based on Genetic Algorithm sired because the fitness surface is not known and it

This approach uses a GA to do EFuNNs pa- can change (in accordance with variations of testing
rameters optimization. As the GA utilized in data characteristics).

[Kasabov, Song and Nishikawa 2003], the used repre- o They have low takeover time
sentation is binary, the mutation is bitwise bit-flippinget [Eiben and Smith 2003].  This characteristic per-
recombination is one-point crossover, the parents selecti mit a fast adaptation to the moment characteristics.
is fitness proportional, using the roulette wheel method and  This is good for on-line optimization because it is not
the survivor selection is generational. It is recommenelabl desired that the population has not became adequate

to read [Eiben and Smith 2003] for an explanation about  before other changes occur in data characteristics.
GAs. Algorithm 3.1 shows the details of the approach The ysed ES utilizes gaussian perturbation mutation with
implemented at the present work. self-adaptation of the standard deviations and one stdndar
deviation for each variable representing an EFUNN param-
eter to be optimized. This kind of mutation is adequate for
1. Initialize the population with individuals created ran-Ordinal numeric parameters optimizatipn. Random numbers
domly choosing values for each bit of the genotyp roduced by a normal distribution obtained by Polar meth(_)d
(the genotype codifies parameters to be optimized). dlisntijig]u#?)gm were used to generate numbers of a gaussian
2. Define awindow witfPtime points for EFUNN learn- ¢ representation uses real values, with two genes for
ing (training time window) and, optionally, define agach EFUNN parameter to be optimized. The first of these
window with P time points for testing (testing time yenes represents the parameter itself and the second repre-
window). sents the corresponding self-adapting standard deviation
3. Repeat for all training/testing data: The crossover is local discrete for the variables repre-
(a) Apply the learning algorithm to each EFUNN ofsenting the parameters to be adjusted and local intermedi-
the popuia’[ion using ab points of the training ary for the variables representing the Self—adapting stathd
time window and the parameters codified by theleviations, as [Eiben and Smith 2003] suggests.
genotype of the individuals. The parents selection is random with equal probabili-

(b) Determine each EFUNN RMSE (using the pre;[ies for all population members and the suivivor selection
diction over the points of the same time window'S (1, A). The latter was chosgn becquse itis better than
used for learning or using the prediction overthe(“ + A) to follow moving OF’“T“a' points of the search
testing time window points, if there is one) angSPace, to scape from local optima of the search space and

fé utilize with self-adaptation of the mutation parameters

Algorithm 3.1 (Optimization Based on GA)

use the weighted sum of the RMSE and the siz

of the network as fithess value to be minimize it;en arid Smith ;(;OfS]. details of thi h
(Fitness = Womee ¥ RMSE + Wiy % size). ee algorithm 3.2 for more details of this approach.
The W,.hse andW;.. weights are pre-defined . .
by the user. g P Algorithm 3.2 (Optimization Based on ES)

(c) Make parent selection using roulette wheel 1. Initialize the population with individuals created ran-
method and probabilities determined through domly choosing values for each parameter to be op-
subtraction of the biggest fitness of the gener- timized (the genotype codifies parameters to be opti-

ation and the fitness of the individual. mized).



2. Define a window withP time points for EFUNN learn- experiments made at this work, the used values wete
ing (training time window) and, optionally, define a0.2, b = 0.1, z(0) = 1.2 andz(¢t) = 0 for ¢ < 0, like the
window with P time points for testing (testing time values utilized by [Kasabov, Song and Nishikawa 2003].
window). The 7 value is changed from 17 to 19 during the ex-

3. Apply the learning algorithm to each EFUNN of the€cution of the algorithms. This modification causes a
population, using alP points of the training time win- change in the chaotic nature and in the series attractor. Al-

dow and the parameters codified by the genotype dfough this modification is not drastic, it can cause fails on
the individuals. the prediction over the series with the modified parameter
[Kasabov 2003].

4. Determine each EFUNN RMSE (using the predic Two types of experiments were done. In the first one, the

tion over the points of the same time window useq?MSE value to be used in the fitness function was obtained

for learning or using the prediction over the test_bythe prediction over the same time window used for learn-

ing time window points, if there is one) and use themg. This experiment used the points from 0 to 599 with

weighted sum of the RMSE and the size of the net- =" . o
work as fitness value to be minimizedi{ness = 7 = 17 and pqlnts from 600 t_o .1199 with = 19. In the
Wonee # RMSE + Wapoo # size). The Wi and second experiment, the prediction RMSE used was calcu-
W”-nwweights are prei:jzéﬁned by} the useTw lated over a testing time window different from the training

time window. The experiment used the points from 0 to 599

5. Repeat for all training/testing data: with 7 = 17 and the points from 1200 to 1799 with= 19
(a) Randomly selecv parents, using equal proba-for training and the points from 600 to 1199 with= 17
bilities for all individuals of the population. and from 1800 to 2399 with = 19 for testing.

(b) Apply mutation with the self-adapting standard ~ Figure 2 shows time series used.
deviations and crossover with rafe, creating

one child for each pair of parents. 14 T': 17 hT :ﬁlﬂ
[ | + 11 1 . |
(c) Shift the training and the testing (if there is one) W Ot o s
time window (the new time windows are com- 0.8 r”r”v“nl ull{w llll"N“H"J WUH ﬂww
posed byP — D old points andD new points). g:: LI L O L |
(d) Apply the learning algorithm for each child. “-3
(e) Determine each child RMSE. ] 200 400 GOO E0O 1000 1200
(f) Make (u, \) survivor selectionj.e. make a de- 17 Time r=19
terministic selection of the, (u is the popula- ol T T AT W
tion size) best individuals among allchildren. "3 it ad alateh fImHiﬂ T ATALAT gt o .'.I]l
The children numberia = N/2 andX > p. :: HH”.H Hl fU”.’ li”H“ “.I
l.'l:l- I ‘ !
4 Experiments 02
The algorithms described in sections 3.1 and 3.2 were o 1o 00 T'i":,“e 16002000 2400
used to make on-line optimization of some of the pa-
rameters that define the EFUNN learning. The EFuNNs Figure 2: Mackey-Glass time series

were used to Mackey-Glass chaotic time series prediction

with changing dynamics, like the experiments made by The EFuNN prediction task is to determing +6) from

[Kasabov, Song and Nishikawa 2003]. the data vectorge(t — 18), x(t — 12), z(t — 6), z(t)].
Section 4.1 describes the Mackey-Glass time series, sec-

tion 4.2 shows the parameters of the Optimization, the exg-2 Opt|m|zat|on Parameters and Experiments Objec-

cutions made for the experiments and the objective of these tjyes

executions, section 4.3 explain the results of the experi- o
ments. The EFUNN optimized parameters weEe Mrad, m-of-n

andOLD.

The experiments were made in order to compare results
of the approaches with and without considering the EFUNNs
The EFUNNs were used to time series prediction. Theizes in the fitness function, with and without pruning and
time series utilized was the benchmark chaotic time seriggth the RMSE obtained from the prediction over a time
Mackey-Glass [Mackey and Glass 1977]. It is described byindow equal to the training window and from the predic-

4.1 Mackey-Glass Chaotic Time Series

the following differential equation: tion over a time window different from the training window,
dx(t) az(t — 7) as it was explained in sections 31 3.2and 4.1.
= — bx(t) Two sets of allowed values intervals for the parameters

dt 1420t —71) - )
to be optimized were used. The set 1 was equal to the uti-
This time series has chaotic behaviour for some values tifed by [Kasabov, Song and Nishikawa 2003], in a try to
the parameters, a, b and for the initial valuec(0). Inthe get similar results for some of the tests with;.. = 0. In



this set, then-of-ninterval is[1, 8] € Z, theMrad intervalis | App | Prun| Test=Train| W,.. | Intset| Num |

[0.75,0.95] € R and theE interval is[0.05,0.25] € R. The GA | Yes Yes 0 2 10
experiments made by [Kasabov, Song and Nishikawa 2003] 0.0005 2 10
did not optimize the pruning parameted. D and they did No 0 2 10
not use pruning. The assumed interval utilized in the expen 0.002 2 10
iment of this paper wal 0, 266] € Z. The second intervals No Yes 0 1 10
set utilized wasn-of-n ([1,15] € Z), Mrad ([0.01,0.8] € 0 2 1
R), E ([0.01,0.6] € R) andOLD ([10,266] € Z). This set 0.0005| 2 10
contains the values usually allowed by EFUNNSs. No 0 1 10
The experiments without pruning did not need to opti- 0 2 1
mize theOLD parameter. The experiments without prun- 0.002 2 10
ing usedPr = 0 and the experiments with pruning used| ES | Yes Yes 0 2 10
Pr = 1. TheNagg parameter was fixed in 0 (no aggrega- 0.0005 2 10
tion was used)T1 andT2 were fixed in O (no rule extraction No 0 2 10
was performed), anBwas fixed in 0.9. The population size 0.002 2 10
was 12, the RMSE weight for the calculation of the fithessg No Yes 0 1 10
wasW,..se = 10, the time window size wa® = 200, with 0 2 1
90% of overlap between consecutive windows & 20). 0.0005 2 10
Note that the modification of parameter occur at genera- No 0 1 10
tion 21. 0 2 1
The GA usedPc = 0.7, Pm = 0.01. The genotype for 0.002 2 10
the experiments with the allowed values interval set 1 had
3 bits form-of-n value, 6 forMrad, 6 for E and 8 forOLD, Table 1: Executions

when it was used. The genotype for the experiments with

the allowed values interval set 2 had 4 bitsfieof-n value, eration 28. The networks became too big because the fit-

10 forMrad, 9 for E and 8 forOLD, when it was used. ness function was not penalized with the size of the net-
The ES used’c = 0.7 and NV = 96. The genotype had 51 The EFUNNS of the executions showed in table 2 and
6 real type variables when no pruning was utilized and &, 117 4 0 were smaller than those witi,;,. = 0.
when pruning was utilized. Notice that this representatiofg gjzes showed in the table are concerning the biggest
is more adequate for ordinal numeric parameters optimizgr,,NNs of all generations of all 10 executions made. Us-
tion than binary representation because in the latter smq-)}lllg the allowed values intervals set 1 aid,;.. = 0, in
modifications on the_ genotype can cause big modificationSg;nijar way to [Kasabov, Song and Nishikawa 2003], the
on the phenotype [Eiben and Smith 2003]. EFuNNs did not became too big in comparison with the

_Table 1 summarizes the executions. In the tables of,mper of training examples, but this intervals set haslsmal
this paper, App means approach, Prun means pruningianals in comparison with set 2.
Test=Train means that the testing time window is equal to

the training time windowi¥; .. indicates thé¥V; .. weight Prun [ Intset| W.... | App | Test= Train| Size |
utilized, Int set means allqwed values intervals set and Num No > ) NS Yes 1214
means number of executions. No 3373
ES Yes 5239
4.3 Results No 5575
This section explains the main analysis of the executions 0.0005| AG Yes 838
showed in table 1. Sometimes the results will be considered 0.002 No 201
only after generation 15, not to be affected by the fast dro 0.0005| ES Yes 911
on RMSE values of the first generations. 0.002 No 196

The executions showed in table 2 and with;,. =
generated very bfgEFUNNSs in comparison with the num-
ber of training examples (1200). Big networks make théervals set2
training time bigger and need more memory to be stored,
especially when various networks are used, as it is the case
of an evolutionary algorithms with population size bigger

Table 2: Executions without pruning and allowed values in-

| Prun| Wii.. | Size average$ RMSE average$

than 1 individual. The executions were finalized at gener- No_ | 0.0005 biggest biggest
. : Yes | 0.0005 smallest

ation 28 because of the size of the generated networks, so ¥ o est

their sizes in the table are concerning the EFUNNSs at the fi- es smalles

nal of this_generation. The networks of gener_ation 28_ WerPable 3: Executions of ES with testing time window equal
also the biggest best networks of all generations until 9€ts training time window and allowed values intervals set 2

2The terms size, big and small networks refer to the rule nadesber.

Comparing the executions from table 3, it can be ob-



served that ES without pruning had the biggest rule nodes

numbers averages and ES with pruning 8ng.. = 0.0005 GArule nodes number of the best fitness EFUNN from each
had the smallest, as figure 3 shows. ES without pruning  ofthe 10 executions (y axis), for each generation(x axis)

had the biggest RMSE averages and ES with pruning and
Wsize = 0 had the smallest most of the time after genera- 500
tion 15, as figure 3 shows. Notice that the executions with /
pruning andiW;.. = 0.0005 generated smaller networks 400

300 M

600 .

than executions with pruning andl,;.. = 0, as expected,

sinceW,;.. = 0.0005 penalizes the size of the networks. 200 ')L—' AL

GA had a similar behaviour for these parameters, as figure 100 =
4 shows. T-Student statistic tests [Witten and Frank 2000] 0 T

OLﬁOLﬁOLﬁOLﬁOLﬁO

executed for ES and GA, among their own rule nodes num- GA RMSE average ofthe best ftness EFuNN from each of
ber averages and among their own RMSE averages, With  the 10 executions (y axis), for each generation (x axis)

5% of significance level, confirmed these analysis. 0.08 -
0.07
ESrule nodes number of the best fithess EFUNN frem each 0.06 +
of the 10 executions {y axis), for each generation(x axis) 0.05 -
900 :
800 - 0.04
700 - 0.03 -
600 + 0.02 - A
500
0.01 C AT -—‘—\J%
400 . M VAR
300 4 T T
200 - NN R e S =
100 _’\M = Without pruning Wsize = 0.0005
With pruning Wsize = 0.0005
0 T With pruning  Wsize - 0

:lm:lm:lm:lm:iun:l
- [ I B e T

ES RMSE average of the best fithess EFuNN from each of
the 10 executions {y axis), for each generation (x axis) Figure 4: GA rule nodes number and RMSE averages for

0.008 i . . . i .
0.007 | testing time window equal to training time window
0.006
0.005
0.004
ESrule nodes number of the best fitness EFuNN from each
0.003 -—\\— of the 10 executions (y axis), for each generation{x axis)
0.002 i 250 4
v“
i b A R Al
0.001 L,—f‘..‘_ 4 200 NRAYATNAY
0+
15 20 25 30 35 40 45 50 150 LT S| . ]
= Without pruning Wsize = 0.0005 e —————————r
With pruning Wsize = 0.0005 100 -?;"‘E’
With pruning Wsize =0 i
50_ —_——— O AL A A N o A LA
Figure 3: ES rule nodes number and RMSE averages for 0 -Frrrr e

0 5 10 15 20 25 30 35 40 45 50

testing ime window equal to training time window ES RMSE average of the best fithess EFUNN from each of
the 10 executions (y axis), for each generation (x axis)
0.25
| Prun| Wj,.. | Size variation| RMSE variation] 0.2 .
No | 0.002 smaller smaller ogs LD NN Ry
Yes | 0.002 bigger bigger ' NN
IM
Yes 0 0.1
Table 4: ES executions with testing time window different 0.05
from training time window and allowed values intervals set 0 Frrrrrrrrrrrr e
2 0 5 10 15 20 25 30 35 40 45 50
) . ) = Without pruning Wsize = 0.002
Comparing executions from table 4, it can be observed With pruning  Wsize = 0.002
that with pruning the rule nodes number averages and the With pruning  Wsize = 0

RMSE averages vary more than in the executions without
pruning, as it can be seen in figure 5. It can also be observegyure 5: ES rule nodes number and RMSE averages for

that for a similar RMSEs averages, ES with pruning angksting time window different from training time window
Wsize = 0.002 generated EFUNNSs with smaller rule nodes



number averages than ES with pruning &ig.. = 0. This
d. sind&.... — 0.002 l the si fth RMSE average of the best fithess EFUNN from each of
was expected, SING&s;z. = 0. penalizes the size orthe the 10 executions (y axis), for each generation (x axis)

networks. GA had a similar behaviour for these parameters, 999 -
as figure 6 shows. 0.08
0.07 +
0.06
GArule nodes number of the best fitness EFUNN from each “
of the 10 executions (y axis), for each generation(x axis) 0.05 ‘_\l
180 0.04 -—V\
160 - 0.03 — AN
:;g M WAL 0.02 4=
i At AN 0.01 +—
100——.;-!'\‘:.- ————— 1 0 T T o e e T
80 —’—-——— 0 5 M0 15 20 25 30 35 40 45 50
60 —4— & — R 2 AN o Rule nedes humber of the best fithess EFUNN from each
LA A AAIVUVAGRIT Y Y VA of the 10 executions {y axis), for each generation(x axis)
250
20
0 -FrrrTTTTT T 200

= — A — " x B R R — ]
- e NN Rt =

GA RMSE average of the best fithess EFUNN from each of

PN\A
the 10 executions {y axis), for each generation (x axis) 150 4 W
0.3 -
100 2 A

0.25 >

0_2_ ________ 50 ¥ L nd W g
Lol h..\-n-\r

0.5 $—— = TR LS ¢+

0 Al 0 5 10 15 20 25 30 35 40 45 50
) —GA

0.05 ES

R A -
- = A N & ™ F = B

= Without pruning Wsize = 0.002
With pruning Wsize = 0.002 : )
With pruning Wsize = 0 with pruning andi/;.. = 0.0005

Figure 6: GA rule nodes number and RMSE averages for

testing time window different from training time window RMSE average of the best fitness EFUNN from each of

0 Oﬁthe 10 executions (y axis), for each generation (x axis)

Notice that for these ESs and GAs executions, the use .05
of testing time window different from training time window
whenWy;.. = 0 or when no pruning was performed had the
effect of reducing EFUNN average sizes in comparison with %3

the use of equal windows. This analysis was confirmed with 0.02 15 A
T-Student tests with 5% of significance level. The RMSEs ¢ “%ﬁ%
of the EFUNNs with testing time window different from 0

training time window and with testing time window equal o 5 10 15 20 25 30 35 40 45 50

to training time window cannot be compared because they Ryl nodes number of the best fitness EFUNN from each

are calculated over different testing data sets. The bigger ofthe 10 executions (y axis), for each generation(x axis)
00 -

0.04 +

1 o

T

values of testing time window different from training time "o
window occur as a direct consequence of the use of a testing goo |
data set different of that used for learning. 700
Table 5 shows the results of comparisons between AG —
and ES, all confirmed by T-Student tests with 5% of signif- 44 _,_f
icance level. Figures 7, 8 and 9 shows the graphics of the 300 __[;u-----—-"
comparisons number 1, 2 and 3, respectively. igg NP
5 Conclusions 0 5 10 15 20 25 30 35 40 45 50
J—-
The optimization approaches presented in this paper make ES

the main characteristics of ECOSs, as adaptive learning,

Figure 7: GA and ES RMSE and rule nodes number aver-
ages for testing time window equal to training time window,

even more useful to applications that have incoming da‘i—%gure 8: GA and ES RMSE and rule nodes number aver-

with changing characteristics.
Changing only one parameter in the executions, there ape, o+ pruning andV,;.. = 0.0005
three different ways to generate smaller EfuNNs. They are o

ages for testing time window equal to training time window,



| Comparison numbef Prun| Test=Train| W,;.. | App | RMSE averages Size average$

1 Yes Yes 0.0005| GA bigger bigger
ES smaller smaller
2 No Yes 0.0005| GA bigger smaller
ES smaller bigger
3 No No 0.002 | GA bigger bigger
ES smaller smaller

Table 5: Comparisons between GA and ES with allowed valuesvals set 2

RMSE average of the bestfithess EFUNN from each of The RMSE of the EFUNNs generated using ES was
0.2 the 10 executions {y axis), for each generation (x axis) smaller than the RMSE of EFUNNs generated using GA
0.18 M without pruning. Similar effect was observed for execusion
g:i | W‘_’A with pruning and testing equal to training time window.
012 qu Future works include an investigation of the effect of
0.1 varying the fitness function weights, the creation of a
0.08 method for varying the weights of the fitness function over
ggi time and the use of multi-objective techniques.
0.02
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Rule nodes number of the best fithess EFUNN from each

140°f the 10 executions {y axis), for each generation(x axis)
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Figure 9: GA and ES RMSE and rule nodes averages f
testing time window different from training time window,
without pruning andV;.. = 0.002

Iti

time window different from training time window because
it causes a high variation of the size and RMSE averages of Pub. Co.. 1998.
the EFUNNS. ’
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