
Evolutionary Strategies and Genetic Algorithms for Dynamic Parameter
Optimization of Evolving Fuzzy Neural Networks

L. Minku, T. Ludermir
Federal University of Pernambuco

Center of Informatics
P.O. Box 7851, Cidade Universitária, Recife-PE, Brazil, 50732-970

{flm,tbl}@cin.ufpe.br

Abstract- Evolving Fuzzy Neural Networks are usually
used to model evolving processes, which are developing
and changing over time. This kind of network has some
fixed parameters that usually depend on presented data.
When data change over time, the best set of parameters
also changes. This paper presents two approaches using
Evolutionary Computation for the on-line optimization
of these parameters. One of them utilizes Genetic Al-
gorithms and the other one utilizes Evolutionary Strate-
gies. The networks were used to Mackey-Glass chaotic
time series prediction with changing dynamics. A com-
parative study is made with these approaches and some
variations of them.

1 Introduction

Evolving1 processes are processes that are developing,
changing over time in a continuous manner. There are many
real world problems that are evolving processes,e.g. biolog-
ical data processing, electricity load forecasting and adap-
tive speech recognition. These processes are difficult to
model because some of their parameters may not be known
a priori, unexpected perturbations or changes can happen
at certain time during development and they are not strictly
predictable in the longer term [Kasabov 2003].

Evolving Connectionist Systems (ECOSs) constitute a
paradigm created to make easier the evolving processes
modeling task. Evolving Fuzzy Neural Networks (EFuNNs)
[Kasabov 2001] form an example of a class of ECOSs that
facilitate the representation and knowledge extraction using
fuzzy rules.

Although ECOSs can evolve their structures as in-
coming data arrives, they still have some fixed param-
eters that are not adjusted during the learning. At
this work two approaches using Evolutionary Compu-
tation (EC) to on-line optimization of these parameters
were implemented. One of them uses a Genetic Algo-
rithm (GA), the other one uses an Evolutionary Strategy
(ES) and both were based in the method introduced by
[Kasabov, Song and Nishikawa 2003].

Experiments were done to compare the results of the op-
timization of some of the fixed parameters of EFuNNs using
these approaches and some variations of them. The analysis
also compares the effect of the optimization using the full
power of these approaches with the effect of their execution
in a similar way to [Kasabov, Song and Nishikawa 2003].
The EFuNNs were used to chaotic time series prediction

1Notice that the term ”evolving” will be used with a differentmean
from ”evolutionary”.

with changing dynamics.

2 Evolving Connectionist Systems and Fuzzy
Neural Networks

The ECOSs presented in [Kasabov 2003] are sys-
tems constituted by one or more neural net-
works. They have the following characteristics
[Kasabov, Song and Nishikawa 2003]:

• They facilitate evolving processes modeling task.

• They facilitate knowledge representation and extrac-
tion.

• They have the following learning characteristics:

• Lifelong: they learn from continuously incom-
ing data in a changing environment during its
entire existence.

• On-line: they learn each example separately
while the system operates (usually in real time).

• Incremental: they learn new data without totally
destroying the patterns learned before and with-
out the need to make a new training on old and
new data together.

• Fast, possibly through just one pass of data
propagation.

• Local: they locally partition the problem space,
allowing fast adaptation and tracing evolving
processes over time.

• They learn as both individual systems, and as part of
an evolutionary population of such systems.

• They have evolving structures and use constructive
learning.

• They evolve in an open space, not necessarily of fixed
dimensions.

EFuNNs [Kasabov 2001] are a class of ECOSs that join to-
gether the neural networks functional characteristics to the
expressive power of fuzzy logic. They have a five-layer ar-
chitecture as it is shown in figure 1. The first layer rep-
resents the input vector, the second represents fuzzy quan-
tification of the input vector, the third represents associa-
tions between fuzzy input space and fuzzy output space, the
fourth represents fuzzy quantification of the output vector
and the fifth represents the output vector.

The learning occur at the rule nodes layer. Each node
rj of this layer is represented by two vectors of connection
weights (W1(rj) and W2(rj)). W1 represents the coordi-
nates of the nodes in the fuzzy input space and it is adjusted



Figure 1: EFuNN architecture

through unsupervised learning.W2 represents the coordi-
nates of the nodes in the fuzzy output space and it is ad-
justed through supervised learning. The learning rules are
the following:

• W1(rj(t + 1)) = W1(rj(t)) + lr1(rj(t)) ∗ (xf −
W1(rj(t)))

• W2(rj(t + 1)) = W2(rj(t)) + lr2(rj(t)) ∗ (yf −
A2) ∗A1(rj(t))

Where:xf andyf are the fuzzy input and fuzzy out-
put vectors;lr1(rj(t)) andlr2(rj(t)) are the learning
rates for theW1 andW2 weights of the noderj at
time t; A2 is the fuzzy output activation vector and
A1(rj(t)) is the activation value of the rule noderj
at timet.

The EFuNN learning algorithm is briefly described below.
It is recommended to read [Kasabov 2001] to get more de-
tails.

Algorithm 2.1 (EFuNN Learning Algorithm)

1. Set initial values for the following system parameters:
number of membership functions; initial sensitivity
thresholdS of the nodes (it is also used to determine
the initial radius of the receptive field of a noderj ,
when it is created (R(rj) = 1 − S); error threshold
E; aggregation parameterNagg; pruning parameters
OLD andPr; m-of-n value (number of highest acti-
vation nodes used in the learning); maximum radius
of the receptive fieldMrad; rule extraction thresh-
oldsT 1 andT 2.

2. Set the first rule noder0 to memorize the first exam-
ple (x, y):

W1(r0) = xf andW2(r0) = yf

wherexf andyf are the vectors of fuzzy quantifica-
tion of the vectorsx andy, respectively.

3. Repeat for each new input-output pair(x, y) presen-
tation:

(a) Determine the local normalized fuzzy distance
D betweenxf and theW1 weights. The dis-
tanceD between two fuzzy vectorsx1 andx2
is calculated as following:

D(x1, x2) = subabs(x1, x2)/sumabs(x1, x2)

wheresubabs(x1, x2) is the sum of all abso-
lute values of the vector obtained after sub-
traction of the fuzzy vectorsx1 and x2 and

sumabs(x1, x2) is the sum of all absolute val-
ues of the vector obtained after sum of the fuzzy
vectorsx1 andx2.

(b) Calculate the activationsA1 of all rule nodes.
An example of how it can be calculated is:

A1 = 1−D(W1(rj), xf )

(c) Select the rule noderk that has the smallest
distanceD(W1(rk), xf ) and that has activation
A1(rk) >= S(rk). In the case ofm-of-n learn-
ing, selectm nodes instead of just one node.

(d) If this node does not exist

i. Create a new rule node for(xf , yf ).

(e) Else

i. Determine the activationA2 of the out-
put layer and the normalized output error
Err = subabs(y, y′)/Nout, wherey is
the desired output,y′ is the obtained out-
put andNout is the number of nodes of the
output layer.

ii. If Err > E

A. Create a new rule node for(xf , yf).

iii. Else

A. Apply the learning rules toW1(rk)
and W2(rk) (in the case ofm-of-n
learning, the rules are applied to them
rule nodes).

(f) Apply aggregation procedure after the presenta-
tion of Nagg examples.

(g) Update the parametersS(rk), R(rk), Age(rk)
andTA(rk). TA(rk) can be, for example, the
sum of the activationsA1 obtained for all exam-
ples thatrk accommodates.

(h) Prune rule nodes, if necessary, according to
OLD andPr.

(i) Extract rules, according toT 1 andT 2.

According to algorithm 2.1, there are parameters that are ad-
justed during the learning (rule nodes and their weights) and
parameters that do not change during the learning, but defin-
ing it (number of membership functions,E, Nagg, OLD, Pr,
m-of-n value,Mrad, T1 andT2). All parameters that define
the learning must be determined according to the used data
set [Kasabov, Song and Nishikawa 2003].

3 On-line Optimization of ECOSs Parameters
Using Evolutionary Computation

Through the use of different parameters of the kind that de-
fine the learning, ECOSs attain different performances and
different weights are learned. Usually the optimal parame-
ters set depends on the input and output presented data. The
objective of ECOSs on-line parameters optimization is the
determination of the best parameters set for the moment, at
the same time that learning occurs.

A method that uses EC to optimize ECOSs parameters



was introduced in [Kasabov, Song and Nishikawa 2003]. It
uses a fitness function based only on the Root Mean Squared
Error (RMSE) generated by the prediction made by EFuNN
over an data set. In this way, if the allowed values inter-
val for the parameters being optimized is not small enough,
the networks generated are very big in comparison with
the number of training examples presented. Moreover, al-
though the approach can be used with other evolutionary al-
gorithms, [Kasabov, Song and Nishikawa 2003] made tests
just with GAs, that are not always the best evolutionary
technique to the problem at hand.

At this work two approaches that use EC to on-
line optimization of EFuNN parameters were imple-
mented. One of them uses a GA, the other one uses
an ES and both are based on the approach introduced by
[Kasabov, Song and Nishikawa 2003]. The following sub-
sections describe these approaches.

3.1 Optimization Based on Genetic Algorithm

This approach uses a GA to do EFuNNs pa-
rameters optimization. As the GA utilized in
[Kasabov, Song and Nishikawa 2003], the used repre-
sentation is binary, the mutation is bitwise bit-flipping, the
recombination is one-point crossover, the parents selection
is fitness proportional, using the roulette wheel method and
the survivor selection is generational. It is recommendable
to read [Eiben and Smith 2003] for an explanation about
GAs. Algorithm 3.1 shows the details of the approach
implemented at the present work.

Algorithm 3.1 (Optimization Based on GA)

1. Initialize the population with individuals created ran-
domly choosing values for each bit of the genotype
(the genotype codifies parameters to be optimized).

2. Define a window withP time points for EFuNN learn-
ing (training time window) and, optionally, define a
window with P time points for testing (testing time
window).

3. Repeat for all training/testing data:

(a) Apply the learning algorithm to each EFuNN of
the population using allP points of the training
time window and the parameters codified by the
genotype of the individuals.

(b) Determine each EFuNN RMSE (using the pre-
diction over the points of the same time window
used for learning or using the prediction over the
testing time window points, if there is one) and
use the weighted sum of the RMSE and the size
of the network as fitness value to be minimized
(fitness = Wrmse ∗RMSE +Wsize ∗ size).
TheWrmse andWsize weights are pre-defined
by the user.

(c) Make parent selection using roulette wheel
method and probabilities determined through
subtraction of the biggest fitness of the gener-
ation and the fitness of the individual.

(d) Apply crossover and mutation with probabilities
Pc andPm, respectively, to generate new indi-
viduals (parents rule nodes are inherited by chil-
dren).

(e) Apply generational survivor selection.

(f) Shift the training and the testing (if there is one)
time window (the new time windows are com-
posed byP −D old points andD new points).

3.2 Optimization Based on Evolutionary Strategy

This approach uses an ES to make EFuNNs parameters op-
timization. ESs have the following characteristics, desired
to parameters optimization of dynamic processes:

• They are good on real values parameters optimization
[Eiben and Smith 2003].

• Usually they are used with self-adaptation of muta-
tion parameters [Eiben and Smith 2003]. This is de-
sired because the fitness surface is not known and it
can change (in accordance with variations of testing
data characteristics).

• They have low takeover time
[Eiben and Smith 2003]. This characteristic per-
mit a fast adaptation to the moment characteristics.
This is good for on-line optimization because it is not
desired that the population has not became adequate
before other changes occur in data characteristics.

The used ES utilizes gaussian perturbation mutation with
self-adaptation of the standard deviations and one standard
deviation for each variable representing an EFuNN param-
eter to be optimized. This kind of mutation is adequate for
ordinal numeric parameters optimization. Random numbers
produced by a normal distribution obtained by Polar method
[Knuth 1998] were used to generate numbers of a gaussian
distribution.

The representation uses real values, with two genes for
each EFuNN parameter to be optimized. The first of these
genes represents the parameter itself and the second repre-
sents the corresponding self-adapting standard deviation.

The crossover is local discrete for the variables repre-
senting the parameters to be adjusted and local intermedi-
ary for the variables representing the self-adapting standard
deviations, as [Eiben and Smith 2003] suggests.

The parents selection is random with equal probabili-
ties for all population members and the survivor selection
is (µ, λ). The latter was chosen because it is better than
(µ + λ) to follow moving optimal points of the search
space, to scape from local optima of the search space and
to utilize with self-adaptation of the mutation parameters
[Eiben and Smith 2003].

See algorithm 3.2 for more details of this approach.

Algorithm 3.2 (Optimization Based on ES)

1. Initialize the population with individuals created ran-
domly choosing values for each parameter to be op-
timized (the genotype codifies parameters to be opti-
mized).



2. Define a window withP time points for EFuNN learn-
ing (training time window) and, optionally, define a
window with P time points for testing (testing time
window).

3. Apply the learning algorithm to each EFuNN of the
population, using allP points of the training time win-
dow and the parameters codified by the genotype of
the individuals.

4. Determine each EFuNN RMSE (using the predic-
tion over the points of the same time window used
for learning or using the prediction over the test-
ing time window points, if there is one) and use the
weighted sum of the RMSE and the size of the net-
work as fitness value to be minimized (fitness =
Wrmse ∗ RMSE + Wsize ∗ size). TheWrmse and
Wsize weights are pre-defined by the user.

5. Repeat for all training/testing data:

(a) Randomly selectN parents, using equal proba-
bilities for all individuals of the population.

(b) Apply mutation with the self-adapting standard
deviations and crossover with ratePc, creating
one child for each pair of parents.

(c) Shift the training and the testing (if there is one)
time window (the new time windows are com-
posed byP −D old points andD new points).

(d) Apply the learning algorithm for each child.

(e) Determine each child RMSE.

(f) Make (µ, λ) survivor selection,i.e. make a de-
terministic selection of theµ (µ is the popula-
tion size) best individuals among allλ children.
The children number isλ = N/2 andλ > µ.

4 Experiments

The algorithms described in sections 3.1 and 3.2 were
used to make on-line optimization of some of the pa-
rameters that define the EFuNN learning. The EFuNNs
were used to Mackey-Glass chaotic time series prediction
with changing dynamics, like the experiments made by
[Kasabov, Song and Nishikawa 2003].

Section 4.1 describes the Mackey-Glass time series, sec-
tion 4.2 shows the parameters of the optimization, the exe-
cutions made for the experiments and the objective of these
executions, section 4.3 explain the results of the experi-
ments.

4.1 Mackey-Glass Chaotic Time Series

The EFuNNs were used to time series prediction. The
time series utilized was the benchmark chaotic time series
Mackey-Glass [Mackey and Glass 1977]. It is described by
the following differential equation:

dx(t)

dt
=

ax(t− τ)

1 + x10(t− τ)
− bx(t)

This time series has chaotic behaviour for some values of
the parametersτ , a, b and for the initial valuex(0). In the

experiments made at this work, the used values werea =
0.2, b = 0.1, x(0) = 1.2 andx(t) = 0 for t < 0, like the
values utilized by [Kasabov, Song and Nishikawa 2003].
The τ value is changed from 17 to 19 during the ex-
ecution of the algorithms. This modification causes a
change in the chaotic nature and in the series attractor. Al-
though this modification is not drastic, it can cause fails on
the prediction over the series with the modified parameter
[Kasabov 2003].

Two types of experiments were done. In the first one, the
RMSE value to be used in the fitness function was obtained
by the prediction over the same time window used for learn-
ing. This experiment used the points from 0 to 599 with
τ = 17 and points from 600 to 1199 withτ = 19. In the
second experiment, the prediction RMSE used was calcu-
lated over a testing time window different from the training
time window. The experiment used the points from 0 to 599
with τ = 17 and the points from 1200 to 1799 withτ = 19
for training and the points from 600 to 1199 withτ = 17
and from 1800 to 2399 withτ = 19 for testing.

Figure 2 shows time series used.

Figure 2: Mackey-Glass time series

The EFuNN prediction task is to determinex(t+6) from
the data vectors[x(t− 18), x(t− 12), x(t− 6), x(t)].

4.2 Optimization Parameters and Experiments Objec-
tives

The EFuNN optimized parameters wereE, Mrad, m-of-n
andOLD.

The experiments were made in order to compare results
of the approaches with and without considering the EFuNNs
sizes in the fitness function, with and without pruning and
with the RMSE obtained from the prediction over a time
window equal to the training window and from the predic-
tion over a time window different from the training window,
as it was explained in sections 3.1, 3.2 and 4.1.

Two sets of allowed values intervals for the parameters
to be optimized were used. The set 1 was equal to the uti-
lized by [Kasabov, Song and Nishikawa 2003], in a try to
get similar results for some of the tests withWsize = 0. In



this set, them-of-n interval is[1, 8] ∈ Z, theMrad interval is
[0.75, 0.95] ∈ R and theE interval is[0.05, 0.25] ∈ R. The
experiments made by [Kasabov, Song and Nishikawa 2003]
did not optimize the pruning parameterOLD and they did
not use pruning. The assumed interval utilized in the exper-
iment of this paper was[10, 266] ∈ Z. The second intervals
set utilized wasm-of-n ([1, 15] ∈ Z), Mrad ([0.01, 0.8] ∈
R), E ([0.01, 0.6] ∈ R) andOLD ([10, 266] ∈ Z). This set
contains the values usually allowed by EFuNNs.

The experiments without pruning did not need to opti-
mize theOLD parameter. The experiments without prun-
ing usedPr = 0 and the experiments with pruning used
Pr = 1. TheNagg parameter was fixed in 0 (no aggrega-
tion was used),T1 andT2 were fixed in 0 (no rule extraction
was performed), andS was fixed in 0.9. The population size
was 12, the RMSE weight for the calculation of the fitness
wasWrmse = 10, the time window size wasP = 200, with
90% of overlap between consecutive windows (D = 20).
Note that the modification ofτ parameter occur at genera-
tion 21.

The GA usedPc = 0.7, Pm = 0.01. The genotype for
the experiments with the allowed values interval set 1 had
3 bits form-of-n value, 6 forMrad, 6 for E and 8 forOLD,
when it was used. The genotype for the experiments with
the allowed values interval set 2 had 4 bits form-of-n value,
10 forMrad, 9 for E and 8 forOLD, when it was used.

The ES usedPc = 0.7 andN = 96. The genotype had
6 real type variables when no pruning was utilized and 8
when pruning was utilized. Notice that this representation
is more adequate for ordinal numeric parameters optimiza-
tion than binary representation because in the latter small
modifications on the genotype can cause big modifications
on the phenotype [Eiben and Smith 2003].

Table 1 summarizes the executions. In the tables of
this paper, App means approach, Prun means pruning,
Test=Train means that the testing time window is equal to
the training time window,Wsize indicates theWsize weight
utilized, Int set means allowed values intervals set and Num
means number of executions.

4.3 Results

This section explains the main analysis of the executions
showed in table 1. Sometimes the results will be considered
only after generation 15, not to be affected by the fast drop
on RMSE values of the first generations.

The executions showed in table 2 and withWsize = 0
generated very big2 EFuNNs in comparison with the num-
ber of training examples (1200). Big networks make the
training time bigger and need more memory to be stored,
especially when various networks are used, as it is the case
of an evolutionary algorithms with population size bigger
than 1 individual. The executions were finalized at gener-
ation 28 because of the size of the generated networks, so
their sizes in the table are concerning the EFuNNs at the fi-
nal of this generation. The networks of generation 28 were
also the biggest best networks of all generations until gen-

2The terms size, big and small networks refer to the rule nodesnumber.

App Prun Test = Train Wsize Int set Num

GA Yes Yes 0 2 10
0.0005 2 10

No 0 2 10
0.002 2 10

No Yes 0 1 10
0 2 1

0.0005 2 10
No 0 1 10

0 2 1
0.002 2 10

ES Yes Yes 0 2 10
0.0005 2 10

No 0 2 10
0.002 2 10

No Yes 0 1 10
0 2 1

0.0005 2 10
No 0 1 10

0 2 1
0.002 2 10

Table 1: Executions

eration 28. The networks became too big because the fit-
ness function was not penalized with the size of the net-
work. The EFuNNs of the executions showed in table 2 and
with Wsize 6= 0 were smaller than those withWsize = 0.
The sizes showed in the table are concerning the biggest
EFuNNs of all generations of all 10 executions made. Us-
ing the allowed values intervals set 1 andWsize = 0, in
a similar way to [Kasabov, Song and Nishikawa 2003], the
EFuNNs did not became too big in comparison with the
number of training examples, but this intervals set has small
intervals in comparison with set 2.

Prun Int set Wsize App Test = Train Size

No 2 0 AG Yes 1214
No 3373

ES Yes 5239
No 2275

0.0005 AG Yes 838
0.002 No 201
0.0005 ES Yes 911
0.002 No 196

Table 2: Executions without pruning and allowed values in-
tervals set 2

Prun Wsize Size averages RMSE averages

No 0.0005 biggest biggest
Yes 0.0005 smallest
Yes 0 smallest

Table 3: Executions of ES with testing time window equal
to training time window and allowed values intervals set 2

Comparing the executions from table 3, it can be ob-



served that ES without pruning had the biggest rule nodes
numbers averages and ES with pruning andWsize = 0.0005
had the smallest, as figure 3 shows. ES without pruning
had the biggest RMSE averages and ES with pruning and
Wsize = 0 had the smallest most of the time after genera-
tion 15, as figure 3 shows. Notice that the executions with
pruning andWsize = 0.0005 generated smaller networks
than executions with pruning andWsize = 0, as expected,
sinceWsize = 0.0005 penalizes the size of the networks.
GA had a similar behaviour for these parameters, as figure
4 shows. T-Student statistic tests [Witten and Frank 2000]
executed for ES and GA, among their own rule nodes num-
ber averages and among their own RMSE averages, with
5% of significance level, confirmed these analysis.

Figure 3: ES rule nodes number and RMSE averages for
testing time window equal to training time window

Prun Wsize Size variation RMSE variation

No 0.002 smaller smaller
Yes 0.002 bigger bigger
Yes 0

Table 4: ES executions with testing time window different
from training time window and allowed values intervals set
2

Comparing executions from table 4, it can be observed
that with pruning the rule nodes number averages and the
RMSE averages vary more than in the executions without
pruning, as it can be seen in figure 5. It can also be observed
that for a similar RMSEs averages, ES with pruning and
Wsize = 0.002 generated EFuNNs with smaller rule nodes

Figure 4: GA rule nodes number and RMSE averages for
testing time window equal to training time window

Figure 5: ES rule nodes number and RMSE averages for
testing time window different from training time window



number averages than ES with pruning andWsize = 0. This
was expected, sinceWsize = 0.002 penalizes the size of the
networks. GA had a similar behaviour for these parameters,
as figure 6 shows.

Figure 6: GA rule nodes number and RMSE averages for
testing time window different from training time window

Notice that for these ESs and GAs executions, the use
of testing time window different from training time window
whenWsize = 0 or when no pruning was performed had the
effect of reducing EFuNN average sizes in comparison with
the use of equal windows. This analysis was confirmed with
T-Student tests with 5% of significance level. The RMSEs
of the EFuNNs with testing time window different from
training time window and with testing time window equal
to training time window cannot be compared because they
are calculated over different testing data sets. The bigger
values of testing time window different from training time
window occur as a direct consequence of the use of a testing
data set different of that used for learning.

Table 5 shows the results of comparisons between AG
and ES, all confirmed by T-Student tests with 5% of signif-
icance level. Figures 7, 8 and 9 shows the graphics of the
comparisons number 1, 2 and 3, respectively.

5 Conclusions

The optimization approaches presented in this paper make
the main characteristics of ECOSs, as adaptive learning,
even more useful to applications that have incoming data
with changing characteristics.

Changing only one parameter in the executions, there are
three different ways to generate smaller EfuNNs. They are

Figure 7: GA and ES RMSE and rule nodes number aver-
ages for testing time window equal to training time window,
with pruning andWsize = 0.0005

Figure 8: GA and ES RMSE and rule nodes number aver-
ages for testing time window equal to training time window,
without pruning andWsize = 0.0005



Comparison number Prun Test = Train Wsize App RMSE averages Size averages

1 Yes Yes 0.0005 GA bigger bigger
ES smaller smaller

2 No Yes 0.0005 GA bigger smaller
ES smaller bigger

3 No No 0.002 GA bigger bigger
ES smaller smaller

Table 5: Comparisons between GA and ES with allowed values intervals set 2

Figure 9: GA and ES RMSE and rule nodes averages for
testing time window different from training time window,
without pruning andWsize = 0.002

the use of:

• Wsize 6= 0. It permits the use of bigger allowed val-
ues intervals for the parameters to be optimized even
when no pruning is utilized.

• Training time window different from testing time
window. This way is valid when either there is no
pruning orWsize = 0.

• Pruning. This way is valid when the training time
window is equal to the testing time window. It per-
mits the use of bigger allowed values intervals for the
parameters to be optimized even whenWsize = 0.
Besides, it generates not only EFuNNs with a reduced
size, but also EFuNNs with reduced RMSE averages.

It is not recommended to use pruning with a testing
time window different from training time window because
it causes a high variation of the size and RMSE averages of
the EFuNNs.

The RMSE of the EFuNNs generated using ES was
smaller than the RMSE of EFuNNs generated using GA
without pruning. Similar effect was observed for executions
with pruning and testing equal to training time window.

Future works include an investigation of the effect of
varying the fitness function weights, the creation of a
method for varying the weights of the fitness function over
time and the use of multi-objective techniques.

Acknowledgments

This work was supported by CNPq.

References

[Kasabov 2003] Kasabov, N.Evolving Connectionist Sys-
tems. Great Britain: Springer, 2003.

[Kasabov, Song and Nishikawa 2003] Kasabov, N., Song,
Q., Nishikawa, I. Evolutionary Computation for
Dynamic Parameter Optimization of Evolving
Connectionist Systems for On-line Prediction of
Time Series with Changing Dynamics.IEEE Pro-
ceedings, IJCNN’2003, v. 1, p. 438-443, Port-
land, Oregon, July 2003.

[Kasabov 2001] Kasabov, N. Evolving Fuzzy Neural
Networks for Supervised/Unsupervised On-line,
Knowledge-Based Learning.IEEE Transactions
on Systems, Man and Cybernetics, Part B, v. 31,
n. 6, p. 902-918, Dec. 2001.

[Mackey and Glass 1977] Mackey, M. C., Glass, L. Oscil-
lations and Chaos in Physiological Control Sys-
tems.Science, v. 197, p. 287-289, Jul. 1977.

[Eiben and Smith 2003] Eiben, A.E., Smith, J. E.In-
troduction to Evolutionary Computing. Berlin:
Springer, 2003.

[Witten and Frank 2000] Witten, I. H., Frank, E., Credibil-
ity: Evaluating What’s Been Learned. In:Data
Mining - Pratical Machine Learning Tools and
Techniques with Java Implementations. San Fran-
cisco: Morgan Kaufmann Publishers, 2000.

[Knuth 1998] Knuth, B. E.,The Art of Computer Pro-
gramming - Seminumerical Algorithms. 3ed., v. 2.
Massachusetts: Reading Mass Addison-Wesley
Pub. Co., 1998.


