
How to Make Best Use of Cross-Company Data
for Web Effort Estimation?

Leandro Minku∗, Federica Sarro†, Emilia Mendes‡, and Filomena Ferrucci§
∗School of Computer Science, University of Birmingham, UK
∗Department of Computer Science, University of Leicester, UK

†CREST, Department of Computer Science, University College London, UK
‡Blekinge Institute Technology, Sweden

‡University of Oulu, Finland
§Department of Computer Science, University of Salerno, Italy

l.l.minku@cs.bham.ac.uk, f.sarro@ucl.ac.uk, emilia.mendes@bth.se, fferrucci@unisa.it

Abstract—[Context]: The numerous challenges that can hin-
der software companies from gathering their own data have
motivated over the past 15 years research on the use of cross-
company (CC) datasets for software effort prediction. Part of
this research focused on Web effort prediction, given the large
increase worldwide in the development of Web applications. Some
of these studies indicate that it may be possible to achieve better
performance using CC models if some strategy to make the CC
data more similar to the within-company (WC) data is adopted.
[Goal]: This study investigates the use of a recently proposed
approach called Dycom to assess to what extent Web effort
predictions obtained using CC datasets are effective in relation to
the predictions obtained using WC data when explicitly mapping
the CC models to the WC context. [Method]: Data on 125 Web
projects from eight different companies part of the Tukutuku
database were used to build prediction models. We benchmarked
these models against baseline models (mean and median effort)
and a WC base learner that does not benefit of the mapping. We
also compared Dycom against a competitive CC approach from
the literature (NN-filtering). We report a company-by-company
analysis. [Results]: Dycom usually managed to achieve similar or
better performance than a WC model while using only half of the
WC training data. These results are also an improvement over
previous studies that investigated the use of different strategies
to adapt CC models to the WC data for Web effort estimation.
[Conclusions]: We conclude that the use of Dycom for Web effort
prediction is quite promising and in general supports previous
results when applying Dycom to conventional software datasets.

I. INTRODUCTION

Some of the early cost estimation studies (e.g., [1][13])
suggested that general-purpose models such as COCOMO [1]
and SLIM [30] needed to be calibrated to specific companies
before they could be used effectively. This view was also
supported by Kok et al. [16], which, as per the proposals
made by DeMarco [5], suggested that cost estimation models
should be developed only from within-company (WC) data.
However, problems may arise when relying on WC data [2],
[14], e.g.: (1) the time required to accumulate enough data on
past projects from a single company may be prohibitive; (2) by
the time the dataset is large enough to be of use, technologies
used by the company may have changed, and older projects
may no longer be representative of current practices; and (3)
care is necessary as data needs to be collected in a consistent
manner; this means that resources need to be used so to ensure

that quality control procedures during data collection are in
place.

These problems motivated the use of cross-company
(CC) models for effort estimation, productivity benchmark-
ing and defect prediction. CC models are models built
using CC datasets, which are datasets containing data
from several companies. There are several CC software
datasets available to be used for effort and defect prediction
(http://openscience.us/repo/) and even organisations worldwide
that use large proprietary CC datasets with tool support to
provide estimation and benchmarking services. An example
is the International Software Benchmarking Standards Group
(ISBSG) (www.isbsg.org), which provides tools to estimate
effort and benchmark productivity using their CC dataset
(i.e., ISBSG dataset). They also sell the CC dataset to those
companies that wish to use their own tools for estimation and
benchmarking purposes.

Several studies have provided comparisons between the
accuracy of CC and WC predictions. By the end of 2006,
ten studies compared the prediction accuracy between CC
and WC effort estimation models [11]; however only seven
of these presented independent results [11]. Of these seven,
three found that CC models were not significantly different to
WC models and four found that CC models were significantly
worse than WC models [11]. The aforementioned studies and
their comparisons have been detailed in a systematic literature
review [11][12] that identified and analysed studies published
between 1990 and November 2006. Seven years later a second
systematic literature review was carried out covering the period
of 2006 to 2013 [20]. Results showed a tie, where five studies
indicated that CC estimation models were not significantly
worse (four showing no significant difference and one showing
a difference in favour of CC models) than WC models, and
five indicating that they were significantly worse.

Since the second systematic literature review [20] was
published, other four primary studies [7][15][28][33] have
already been published, all employing some sort of strategy
to make the CC data more similar to the WC data. Three of
them have used Web project data from the Tukutuku database.
Kocaguneli et al. [15] employed an analogy-based technique
called TEAK, while Ferrucci et al. [7] and Turhan and Mendes
[33] used Nearest Neighbour filtering (NN-filtering) with step-

wise regression. TEAK provided competing CC predictions for
six, out of the eight different CC models built; the NN-filtering
provided competing CC predictions for seven out of the eight
CC models built. However, some NN-filtering CC predictions
were worse than median-based predictions. Minku and Yao
[28] recently proposed a framework for learning software effort
estimation models for a single company based on mapping CC
models to the single company’s context. They evaluated an
instantiation of such framework (called Dycom) by using five
different datasets. Dycom achieved always similar or better
performance than WC models on those datasets. However, all
those datasets were composed solely of data on conventional
software projects. In this paper we investigate the effectiveness
of Minku and Yao’s framework [28] for Web software projects.

The domain of Web development requires specific attention
since there are many differences between Web and software
development projects, and the results observed using datasets
of non-Web projects are not readily applicable within the
context of Web development. The differences between Web
and conventional software development led to the creation of
a new research field called Web engineering, back in 2001.
A detailed discussion on the differences between Web and
software development is provided by Mendes [17]. Web devel-
opment is a relatively new and rapidly growing industry, with
e-commerce alone weathering the recession and growing 11%
in the United States in 2009, with similar growth in 2010. Our
study is geared towards enabling Web development companies
to make more efficient managerial decisions worthwhile. This
paper answers three research questions, as follows:

RQ1. How successful is a CC dataset at estimating effort
for Web projects from a single company?

RQ2. How successful is the use of a CC dataset compared
to a WC dataset for Web effort estimation?

RQ3. How does Dycom perform with respect to other tech-
niques previously used for CC Web effort estimation?

RQ1 investigates the feasibility of CC models being applied
to a test set of WC projects. To this end we compared the
performance of the CC models built with Dycom for each
of the considered companies with respect to two baseline
approaches, namely mean and median effort. RQ2 compares
the accuracy between predictions obtained using CC models
and WC models in estimating the development effort for WC
projects. To answer it we compared the performance of the CC
models built by Dycom with respect to WC models built by
using a base learner that does not benefit from the mapping.
RQ3 investigates whether Dycom is a competitive approach
for CC Web effort estimation given the previous results from
other studies obtained by filtering the CC datasets. To address
RQ3, we compare the performance of Dycom with respect to
a technique successfully exploited for Web effort estimation in
previous work (NN-filtering) [7][33].

RQ1 and RQ2 have also been investigated in previous stud-
ies, but in the context of this paper they were examined through
the use of a CC technique (Dycom) that achieved always
similar or better accuracy than WC models on conventional
projects [28]. Given the promising results achieved by Dycom
on conventional projects, we investigate whether Dycom can
increase the benefits of CC data also for Web effort estimation.

The remainder of this paper is organized as follows.
Section II describes previous related work, followed by the
description of Minku and Yao’s approach Dycom in Section
III. The research methodology is presented in Section IV.
Section V presents the results obtained using Dycom. Finally,
conclusions are given in Section VI. Please note that some
descriptive parts of the paper (e.g. problem description, related
work, description of the database and methods) partially re-use
relevant text from authors’ previous publications on the topic.

II. RELATED WORK

Seven studies to date, detailed next, have used datasets
of Web projects in order to investigate the abovementioned
research questions [9][21][18][19][7][15][33].

S1: The first study (S1) was carried out in 2004 by
Kitchenham and Mendes [9]. It investigated, using data on
53 Web projects from the Tukutuku database (40 CC and 13
from a single company), to what extent a CC effort model
could be successfully employed to estimate development effort
for WC Web projects. Their effort models were built using
Forward Stepwise Regression (SWR) and they found that CC
predictions were significantly worse than WC predictions.

S2: The second study (S2) extended S1, also in 2004, by
Mendes and Kitchenham [21], who used SWR and Case-based
reasoning (CBR), and also data on 67 Web projects from the
Tukutuku database (53 CC and 14 from a single company).
They built two CC and one WC model, and found that both
SWR CC models provided predictions significantly worse
than the WC predictions, whereas CBR CC data provided
predictions significantly better than the WC predictions.

S3: By 2007, another 83 projects had been volunteered to
the Tukutuku database (68 CC and 15 from a single company),
and were used by Mendes et al. [18] to carry out a third study
(S3) partially replicating S2 (only one CC model was built),
and using SWR and CBR. They corroborated some of S2’s
findings (SWR CC model provided predictions significantly
worse than WC predictions). However, S2 found CBR CC
predictions to be superior to CBR WC predictions, which is
the opposite of what was obtained in S3.

S4: Later, in 2008, Mendes et al. [19] conducted a fourth
study (S4) that extended S3 to fully replicate S2. They used
the same dataset used in S3, and their results corroborated
most of those obtained in S2. The main difference between S2
and S4 was that one of S4’s SWR CC models showed similar
predictions to the WC model, which contradicts the findings
from S2.

S5: After S4 was published, another 45 projects (i.e., 31
coming from a single company and 14 from different compa-
nies) were volunteered to the Tukutuku database. Therefore,
a fifth study (S5) [7] extended S3 using the entire set of 195
projects from the Tukutuku database, and two WC datasets (31
and 18 projects respectively). In addition, they also investigated
to what extent applying a filtering mechanism to CC datasets
prior to building prediction models can affect the accuracy
of the effort estimates they provide. Their results (without
filtering) corroborated those from S3. However, the filtering
mechanism significantly improved the prediction accuracy
of CC models when estimating WC projects, making their
prediction accuracy similar.

S6: This study used data on 125 projects from the Tuku-
tuktu database (representing eight single companies), and
a self-tuning analogy-based effort estimation method called
TEAK [15] to compare CC versus WC predictions. They used
seven single companies at a time as their CC dataset, and the
eight as the testing set. This means that eight different models
were built. Results showed that six CC models presented
competitive accuracy to WC models, and two CC models
presented worse accuracy than WC models.

S7: This study [33] followed the same approach used in
S5, where only the WC datasets were used in the analysis.
Data from eight companies with a total of 125 projects was
employed, using SWR and relevancy filtering; results were
reported per company as well as via a meta-analysis. The
CC models in general provided poor predictions for the WC
projects. However, when compared to the WC predictions,
results were mixed: CC models built using regular (i.e., no
filtering) regression models provided predictions significantly
worse than the predictions obtained from WC models. Never-
theless, when built using the Nearest Neighbour (NN) filtering
with stepwise regression, CC models presented competing
accuracy to WC models in 7 out of 8 datasets.

Based on the above mentioned studies, we can see that
analogy-based approaches (CBR and TEAK) sometimes pro-
vided worse, sometimes similar, and sometimes better results
for CC models, when compared to WC models. The use
of NN-filtering made the CC models accuracy similar to
the one achieved using WC projects in most of the cases.
These approaches can be seen as local approaches, as their
predictions are based on the projects most similar to the
specific project for which effort is being estimated. Approaches
whose estimations are not based on any sort of locality (SWR)
tended to perform similar or worse than WC models.

III. THE RELATIONSHIP BETWEEN CC
AND WC CONTEXTS

Minku and Yao [28] observed that there is a relationship
between the Software Effort Estimation (SEE) context of a
certain company and other companies. They formalise the
relationship between two companies CA and CB as follows:

fA(x) = gBA(fB(x)) (1)

where CA is the company in which we are interested; CB is
another company (or a section of this other company); fA and
fB are the true functions providing the required effort to CA

and CB , respectively; gBA is a function that maps the effort
from CB’s context to CA’s context; and x = [x1, x2, · · · , xn]
are the input features of a software project. As an illustrative
example, consider the software projects in Table I. In this case,
the true effort of a project in CA is 1.2 times the effort that
would be required in CB , i.e., fA(x) = gBA(fB(x)) = 1.2 ·
fB(x). Even though the relationship between the effort in CA

and CB is linear in this example, our CC learning scenario
does not restrict gBA to linear functions. Note also that fA
and fB can be functions of any type. For instance, fA (or
fB) could be composed of sub-functions representing different
clusters of the company’s data in order to represent the level of
heterogeneity within a company itself [27], [24]. In practice,
it is also likely that there will be some noise in the efforts.

TABLE I: Illustrative example of linear relationship between com-
pany CA and company CB . In this case, the true effort in person-hours
for a given project in CA is 1.2 times its true effort in person-hours
in CB .

ID Functional Development Lang. CB ’s CA’s
Size Type Type True Effort True Effort

0 100 Enhancement 3GL 500 600
1 300 Re-development 4GL 1300 1560
2 400 New Development 4GL 2000 2400
3 500 New Development 3GL 3000 3600

Given equation 1, the learning task of creating an SEE
model to a certain company CA can involve the task of learning
the relationship between CA and other companies. Therefore,
they proposed a framework for learning SEE models for a
company CA based on mapping CC models to CA’s context.
The general idea of the framework is to use CC data to create
one or more CC models, and to use a very limited number
of WC training examples to learn a function that maps the
estimations given by each CC model to estimations in the
WC context. It is hoped that the task of learning the mapping
functions is less difficult than the task of learning a whole WC
model based solely on the WC training examples, as this would
considerably reduce the amount of WC examples required for
learning. This framework can be used both when WC and CC
training examples arrive continuously (online) and when they
comprise pre-existing sets of fixed size (offline). Please refer
to Minku and Yao’s work [28] for details on the framework.

A. Dycom

Minku and Yao [28] presented an online learning instanti-
ation of the framework above, called Dynamic Cross-company
Mapped Model Learning (Dycom). Dycom was validated
using data on conventional software projects, and shown to
achieve similar or better performance than a corresponding
WC approach [28]. Dycom is described next:

CC training data: CC training examples are available
beforehand. They are split into sections based on some clus-
tering algorithm, or on their productivity, or on the size of
the projects. Each section CBi is considered as a separate CC
training set. For example, if there are N companies and the
training examples from each company are split into S sections,
then there will be M = N · S different CC training sets. If
the company from which each CC training example comes
from is not known, then the entire CC training set is split into
different sections, as if N = 1. The reason for the splitting will
be explained later in the paragraph on mapping functions. Note
that we use the term CC loosely herein. For example, projects
from different departments within the same company could be
considered as CC projects if such departments employ largely
different practices.

CC SEE models: Each of the M CC training sets is used
to create a different CC model f̂Bi (1 ≤ i ≤ M).

WC training data: Dycom considers that the WC data is
entered according to the same sequence in which the projects
are completed (online). In particular, it considers that one
WC project arrives at each time step. WC projects that arrive
at every p (p > 1) time steps contain both information
on their input features and actual effort. All remaining WC

projects contain only the information on the input features,
whereas their actual effort is missing. So, even though an effort
estimation is required for all WC projects, only a few of them
(those arriving at time stamps multiple of p) can be used as
training examples. We will refer to the company for which we
are interested in providing predictions as CA.

Mapping functions: Whenever a new WC training ex-
ample arrives, each model f̂Bi is asked to perform an SEE.
Each SEE is then used to create a mapping training example
(f̂Bi(x), y). A mapping function ĝBiA that receives estimations
f̂Bi(x) in the context of CBi as input and maps them to
estimations in the context of CA is trained with the mapping
training example. Dycom considers that the relationship for-
malised in equation 1 can be modelled reasonably well by
linear functions of the format ĝBiA(f̂Bi(x)) = f̂Bi(x) · bi
when different sections containing relatively more similar
CC training examples are considered separately. This is the
reason to split CC training examples into different sections, as
previously explained.

Learning a function of the format ĝBiA(f̂Bi(x)) = f̂Bi(x) ·
bi is equivalent to learning the factor bi. This is done using
equation 2:

bi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1,
if no mapping training example
has been received yet;

y

f̂Bi(x)
, if (f̂Bi(x), y) is the first

mapping training example;

lr ·
y

f̂Bi(x)
+ (1− lr) · bi, otherwise.

(2)

where (f̂Bi(x), y) is the mapping training example being
learnt, lr (0 < lr < 1) is a pre-defined smoothing factor and
the factor bi in the right side of the equation represents the
latest value of bi before receiving the current mapping training
example.

While there is no mapping training example available, the
mapping function performs a direct mapping bi = 1. When the
first mapping training example is received, bi is set to the value
y/f̂Bi(x). This gives a perfect mapping for the example being
learnt, as f̂Bi(x) · bi = f̂Bi(x) · y/f̂Bi(x) = y. For all other
mapping training examples received, an exponential decay with
smoothing factor lr is used to set bi. This is the simple
weighted average of the value that would provide a perfect
mapping for the current mapping example and the previous
value of bi, which was calculated based on the previous
mapping examples. A high smoothing factor lr will put more
emphasis on the most recent mapping training examples and
higher adaptability to changing environments, whereas a low lr
will lead to a more stable mapping function. In summary, the
smoothing function allows for mapping functions that provide
good mappings based on previous mapping examples to be
learnt, while allowing for adaptability to changes that may
affect a company’s required software effort.

WC SEE model: Whenever a new WC training example
arrives, it is used to train a WC model f̂WA

. This model is not
expected to perform very well, because it will be trained on

a limited number of examples. However, its effort estimations
may be helpful when used in an ensemble together with the
mapped estimations, given that ensembles have been showing
to improve SEE considerably [26][27].

Mapped SEE model: Both the mapped models
ĝBiA(f̂Bi) and the WC model f̂WA

can provide an SEE in
the WC context when required. The SEE given by Dycom is
the weighted average of these M + 1 estimations:

f̂A(x) =

[

M
∑

i=1

wBi · ĝBiA(f̂Bi(x))

]

+ wWA
f̂WA

(x), (3)

where the weights wBi and wWA
represent how much we trust

each of the models, are positive and sum to one. So, Dycom
uses an ensemble of mapped and WC SEE models.

Weights: The weights are initialised so that they have the
same value for all models being used in the ensemble and
are updated as as follows [26]: whenever a new WC training
example is made available, the model which provided the
lowest absolute error is considered to be the winner and the
others are the losers. The losers have their weights multiplied
by a pre-defined parameter β (0 < β ≤ 1), and then all weights
are normalised in order to sum up to one.

Algorithm 1 presents Dycom’s learning process. Dycom
first learns the CC models (line 3). The weight associated
to each CC model is initialised to 1/M , so that each model
has equal weight and all weights sum to one (line 4). The
mapping functions are initialised to bi = 1 (line 5). Be-
fore any WC training example is made available, the weight
wWA

corresponding to the WC model is initialised to zero (line
7), because this model has not received any training yet. In this
way, CC models can be used to make predictions while there
is no WC training example available. After that, for each new
WC training example, the weights are updated (lines 10–19). If
the WC training example is the first one, the weight of the WC
model needs to be set (line 17). Then, the mapping training
examples are created and used to update the corresponding
mapping functions (lines 22 and 23). Finally, the WC model
is updated with the WC training example (line 26).

IV. METHODOLOGY

A. Database

To examine the use of Dycom on Web project data, we
used projects part of the Tukutuku database. This database
has been created and maintained by Emilia Mendes [23]
and includes information on projects developed by several
companies located in different countries around the world [6].
It currently contains data on 195 projects developed by 51
companies. However, within the context of this work, we only
used data from companies that provided at least 5 projects,
in order to have enough WC projects for investigating the
performance for each single company separately. This yielded
125 projects from 8 companies. Each company’s project data
was used as a WC dataset, thus leading to a total of 8 WC
datasets as shown in Table II. For each WC, the remaining
projects were considered as the CC data and were split into
three CC sets for use with Dycom according to different ranges
of productivity, as done in the original work [28]. The ranges
used for the different CC sets were chosen to provide similar

Algorithm 1 Dycom

Parameters:
DBi (1 ≤ i ≤ M): CC training sets.
β: factor for decreasing model weights

1: {Learn CC base models:}
2: for each CC training set DBi do
3: Create CC model b̂Bi using DBi

4: wBi =
1
M

{Initialise weight.}
5: bi = 1 {Initialise mapping function.}
6: end for
7: wWA

= 0 {Initialise WC model weight.}
8: for each new WC training example (x, y) do
9: {Update weights:}

10: for each model f̂Bi and f̂WA
do

11: Determine the model’s estimation to x.
12: Calculate the absolute error AEBi (or AEWA

).
13: end for
14: Determine loser models based on their AE.
15: Multiply loser models’ weights by β.
16: if (x, y) is the first WC training example then
17: wWA

= 1

M+1

18: end if
19: Divide each weight by the sum of all weights.
20: {Update mapping functions:}
21: for each model f̂Bi do
22: Create mapping example (f̂Bi(x), y).
23: Use (f̂Bi(x), y) to update ĝBiA based on Eq. 2.
24: end for
25: {Update WC model:}
26: Update WC model f̂WA

using (x, y).
27: end for

TABLE II: Average productivity and project number for each WC.

WC Data Avg Productivity # of Projects % Projects
C1 2.03 14 11.2
C2 4.61 20 16
C3 0.87 15 12
C4 2.49 6 4.8
C5 1.42 13 10.4
C6 0.67 8 6.4
C7 0.90 31 24.8
C8 1.20 18 14.4
Total - 125 100

size partitions and are shown in Table III. Herein, productivity
was computed as the ratio between the AdjustedSize and
Actual Effort, where the AdjustedSize measure includes only
those size measures that together have a significant relationship
with effort and has been obtained by using a size-based effort
estimation model built with Manual StepWise Regression, as
proposed by Kitchenham and Mendes [10].

Each project in the Tukutuku database is characterized by
a total of 19 independent variables and a dependent variable
(i.e., the total effort in person hours). Similar to other studies
(e.g., [7][33]), we excluded categorical variables to increase
the degrees of freedom for analysis. A short description of
the independent variables used herein is given in Table IV,
and summary statistics are reported in Table V. A more
comprehensive description of the Tukutuku’s features can be

TABLE III: Productivity ranges for CC data.

CC Data Productivity Band # Projects
CC-C1 Low: (0.13,0.65] 37

Medium: (0.65,1.36] 37
High: (1.36,21.60] 37

CC-C2 Low: (0.17,0.73] 35
Medium: (0.73,1.34] 35
High: (1.34,5.78] 35

CC-C3 Low: (0.15,0.69] 36
Medium: (0.69,1.31] 36
High: (1.31,16.78] 38

CC-C4 Low: (0.11,0.65] 39
Medium: (0.65,1.27] 39
High: (1.27,21.59] 41

CC-C5 Low: (0.16,0.71] 37
Medium: (0.71,1.25] 37
High: (1.25,10.69] 38

CC-C6 Low: (0.10,0.71] 39
Medium: (0.74,1.33] 39
High: (1.33,17.50] 39

CC-C7 Low: (0.15,0.66] 31
Medium: (0.66,1.35] 31
High: (1.36,8.15] 32

CC-C8 Low: (0.14,0.67] 35
Medium: (0.67,1.31] 35
High: (1.30,15.81] 37

TABLE IV: Variables used for the Tukutuku database.

Variable Description
nlang Number of different development languages used.
DevTeam Size of a project’s development team.
TeamExp Avg team experience with the development language(s) used.
TotWP Total number of Web pages (new and reused).
NewWP Total number of new Web pages.
TotImg Total number of images (new and reused).
NewImg Total number of new images created.
Fots Number of features reused without any adaptation.
HFotsA Number of reused high-effort features/functions adapted.
Hnew Number of new high-effort features/functions.
totHigh Total number of high-effort features/functions
FotsA Number of reused low-effort features adapted.
New Number of new low-effort features/functions
totNHigh Total number of low-effort features/functions
TotEff Actual total effort used to develop the Web application.

found in [23]. The companies used in this study are small Web
development companies whose projects were volunteered to
the Tukutuku database within the period between 2003 and
2006. The descriptive statistics suggest that datasets are fairly
homogeneous. Statistics for each company can be found at
http://cc.oulu.fi/∼bturhan/ccsc/ and were omitted due to space
constraints. Box plots of effort, for each of the companies, are
shown in figure 1; they suggest that, apart from company C3,
effort variance for each single company is not very large.

Minku and Yao [28] investigated Dycom in an online
scenario based on the chronological order of the WC pro-
jects. However, since the Tukutuku database does not include
chronological information, Dycom has been used herein in an
offline scenario, as explained in Section IV-B.

B. Evaluation Procedure

RQ1 investigates the feasibility of CC models being applied
to a test set of WC projects. To this end we compared the
performance of the CC models built with Dycom for each

TABLE V: Descriptive statistics for the variables used in our study.

Variable Mean Median Std.Dev. Min Max
nLang 3.89 4 1.45 1 8
DevTeam 2.58 2 2.38 1 23
TeamExp 3.83 4 2.03 1 10
TotWP 69.48 26 185.69 1 2000
NewWP 49.55 10 179.14 0 1980
TotImg 98.58 40 218.37 0 1820
NewImg 38.27 1 125.47 0 1000
Fots 3.19 1 6.24 0 63
HFotsA 11.96 0 59.85 0 611
Hnew 2.08 0 4.7 0 27
TotHigh 14.04 1 59.63 0 611
FotsA 2.24 0 4.53 0 38
New 4.24 1 9.65 0 99
TotNHigh 6.48 4 13.22 0 137
TotEff (dependent var.) 468.11 88 938.51 1.1 5000

Fig. 1: Effort required to develop software projects in each company.

of the considered companies with respect to CC baseline
approaches, namely the mean effort and median effort. These
baselines always make predictions equal to the mean and
median of a given training set, respectively. In order to answer
RQ1, the mean and median models used the same training set
as Dycom.

In order to evaluate Dycom, the CC baseline approaches,
and CC random guess in offline mode, we repeated the
following steps 30 times (1000 times for random guess):

1) Shuffle the WC data.
2) Select every p WC example as a training example, as

well as all CC examples, and use them to train the
approach.

3) Use all other WC examples to test the approach. This
will lead to |WCdata| − |WCtrainingexamples|
effort estimations made by the approach.

4) Calculate the approach’s performance based on these
effort estimations using the chosen performance mea-
sure (e.g., Mean Absolute Error).

The performance measures used in the comparisons were
Mean Absolute Error (MAE), Standardized Accuracy (SA) and
Mean Absolute Error in the Logarithmic Scale (MAEL). MAE
has been recommended for the evaluation of software effort
estimators because it is unbiased towards over or underestima-

tions. SA is based on MAE and represents the ratio of how
much better an approach is than random guess [31]. Random
guess is defined as uniformly randomly sampling the true effort
over all the projects of a given training set. Different from
MAE, MAEL is a measure independent of project size. These
performance measures are defined as follows, where T is the
number of examples used for evaluating the performance, yi
is the actual effort for the example i, and ŷi is the estimated
effort for example i:

• MAE = 1

T

∑T
i=1

|ŷi − yi|;

• MAEL = 1

T

∑T
i=1

|ei|, where ei = ln yi − ln ŷi;

• SA =
(

1−
MAEPi

MAErguess

)

· 100, where MAEPi
is

the MAE of the approach Pi being evaluated and
MAErguess is the MAE of a large number (e.g., 1000
runs) of random guess.

MAE and MAEL are measures to be minimised, i.e., the lower
their values, the better the estimation method. SA is a measure
to be maximised.

RQ2 compares the accuracy between predictions obtained
using Dycom and WC models in estimating the effort for WC
projects, i.e., models trained solely on WC data.

In order to evaluate the WC models, we repeated the
following steps 30 times:

1) Shuffle the WC data using the same order as for
Dycom.

2) Forbid every p example to ever be used as a test
example.

3) For each WC example that can be used for testing,
select it as a test example, use all remaining WC
examples for training, and get the WC model’s esti-
mation to the test example.

4) There will now be |WCdata| −
|WCtrainingexamples| effort estimations.

5) Calculate the performance based on these effort esti-
mations using the chosen performance measures.

The above RQs questions have also been the ones investi-
gated in previous studies, but within the context of this paper
they were examined using Dycom and in an iterative fashion:
first, we replicated the use of Dycom in exactly the same way
proposed by Minku and Yao [28], without any dataset-specific
fine tuning of parameters; second, we re-applied Dycom after
fine tuning the parameter p to the Tukutuku database’s context,
as detailed in section IV-C.

RQ3 compares the accuracy between predictions obtained
using Dycom and NN-filtering [33] in estimating the effort
for WC projects. We chose NN-filtering to answer R3 because
it is the only CC approach that managed to achieve similar
performance to WC Web effort estimation models for seven
out of eight Tukutuku single companies. Therefore, it can be
considered as the most competitive CC Web effort estimation
approach in the literature. The training and testing datasets
used with NN-filtering were exactly the same as the ones used
by Dycom, i.e., the results were evaluated by using the same
procedure employed to answer RQ1.

The performance measures were compared based on Wil-
coxon Sign Rank tests. The comparisons were based on
Holm-Bonferroni corrections considering eight comparisons
(corresponding to the eight Tukutuku single companies) at the
overall level of significance of 0.05.

C. Experimental Setup

Dycom can be used with any base learner. We employed
Regression Trees (RTs) as they were the base learners used
in the original study [28]. Minku and Yao [28] chose to use
RTs since they are local approaches in which estimations are
based on the projects that are most similar to the project being
predicted. This can help dealing with the heterogeneity within
each dataset [27]. In order to provide a fair comparison, the
models used for WC learning and NN-filtering were also RTs.
Given the base learner used in the experiments, Dycom will be
referred to as Dycom-RT, the WC model will be referred to as
WC-RT, and NN-filtering as NN-filtering-RT in our analysis.
As Minku and Yao [28], we used the RT implementation
REPTree provided by WEKA [8], where splits are created so as
to minimise the variance of the targets of the training examples
in the nodes. The study of Dycom with other base learners is
left as future work.

Dycom’s parameters were set to the values used in the
original work [28] as follows: Dycom’s parameter β was set
to the default value of 0.5, which has been previously used
in other studies for similar weight update mechanisms [26].
Dycom’s parameter lr was set to 0.1, a value chosen after
some initial experimentation with 0.05 and 0.1 in [28]. The
parameters used with each RT were the ones more likely
to obtain good results in previous work [27]: minimum total
weight of 1 for the instances in a leaf, and minimum proportion
of the variance on all the data that need to be present at a node
in order for splitting to be performed 0.0001. The parameter
p, which controls the amount of WC training examples that
can be used by Dycom, was first set to p = 10, meaning that
Dycom uses only 10% of the WC training examples used by
the WC model. This is the same as the value used in Minku
and Yao’s work [28]. In addition, we also investigated the use
of Dycom-RT with p = 2. In this case Dycom uses half of
the WC training examples used by the WC-RT. The reason
for investigating Dycom with p = 2 is that the Tukutuku WC
datasets are very small in comparison to the WC datasets used
in the original Dycom study. Using p = 10 resulted in Dycom
employing too few WC training projects to train the mapping
function (in some cases even only 1 WC training project),
which led to very poor results. Due to space restrictions, only
the results obtained with p = 2 will be reported herein.

As for the NN-filtering setup, similarly to previous work
where NN-filtering was applied to Web effort estimation using
Tukutuku data [7][33], we used 10 nearest neighbours and the
Euclidean distance as similarity measures.

D. Threats to Validity

Internal validity regards to establishing that a certain ob-
servable event was responsible for a change in behaviour. It
is related to the question “Is there something other than the
treatment that could cause the difference in behaviour?” [29].
When using machine learning approaches, it is important that

the approaches being compared use fair parameter choices in
comparison to each other [3][4][25][32]. In this paper, both
the RTs used as WC learners and within Dycom and NN-
filtering employed the same parameters, which were the ones
more likely to obtain good results in the literature [27]. Dycom
contains two extra parameters which were set to the same
value for all companies used in our analysis, i.e., they were not
fine tuned for each company separately. Therefore, the results
presented herein do not depend on the user fine tuning Dycom
for each individual company. Future work will investigate
whether Dycom’s results could be improved further by fine
tuning parameters for each company.

Construct validity regards to accurately naming our mea-
sures and manipulations [29]. The size measures and effort
drivers used in the Tukutuku database, and therefore in our
study, have been obtained from the results of a survey in-
vestigation and have also been confirmed by an established
Web company and a second survey [22]. Consequently, it
is our belief that the variables identified are measures that
are meaningful to Web companies and are constructed from
information their customers can provide at a very early stage in
the project development. As for data quality, it was found that
at least for 93.8% of Web projects in the Tukutuku database
effort values were based on recorded data [22]. With respect
to performance measures, we used MAE, SA, and MAEL in
order to evaluate Dycom. These measures are unbiased towards
under or over-estimations. We believe these form a good set of
measures for evaluating performance in SEE, given that MAE
considers project size, MAEL is independent of project size
and SA allows for easier interpretability. Should the reader be
interested in other performance measures, we provide results
for Dycom-RT, WC-RT and NN-filtering-RT using several
other performance measures in a separate report available
at http://www0.cs.ucl.ac.uk/staff/F.Sarro/esem15measures.pdf.
These are logarithmic standard deviation, correlation, root
mean squared error, mean magnitude of the relative error and
percentage of predictions within 25% of the actual values.
Wilcoxon statistical tests with Holm-Bonferroni corrections
were used to check the statistical significance of the differences
in overall performance. In this paper, we report the median
performances over all 30 runs. The average performances were
also computed as in Minku and Yao’s work [28] and are
available in the report abovementioned. The use of averages
and medians to compare the approaches led to the same
conclusions in terms of which approach is better.

External validity regards to generalizing the results to a
wider context [29]. The Tukutuku database comprises data on
projects volunteered by individual companies, and therefore
it does not represent a random sample of projects from a
defined population. This means that we cannot conclude that
the results of this study apply to other companies different from
the ones that volunteered the data used herein. However, we
believe that Web companies that develop projects with similar
characteristics to those used in this paper may be able to apply
our results to their Web projects. We have also used RTs as
the base learners in this study, as these were the base learners
used in the original work [28]. This choice has been made
because it guarantees that any different results obtained in this
paper in comparison to the original work are not due to the
use of a different base learner from the original work. Even
though RTs have been shown to perform well on conventional

software data as well as Web data in the past, our future work
will further investigate if the results obtained herein generalise
to other base learners that have also been successfully used
with Web data (e.g., stepwise regression).

V. RESULTS

A. RQ1

Table VI shows the comparisons between Dycom-RT and
the mean and median effort baseline approaches when using
p = 2. Under this setting, except for C8 in terms of MAE
against the median, Dycom-RT achieved similar or better
MAE and MAEL than both mean and median in all cases.
These results are confirmed by Wilcoxon sign-rank tests (two-
sided) with Holm-Bonferroni corrections at the overall level
of significance of 0.05. In particular, Dycom-RT performed
significantly better than the median effort in four cases in
terms of MAE (C2–4, C7), significantly better in seven cases
in terms of MAEL (C1–5,C7,C8) and significantly worse in
only one case in terms of MAE (C8). These results show
some improvement over previous research where, for the same
set of 125 Web projects, NN-filtering CC stepwise regression
models presented significantly worse accuracy than median-
based predictions in five cases (C2, C4, C6–8) [33].

It is interesting to note that the characteristics of the
data sets can influence the performance of the approaches,
and that different performance measures capture such effects
differently. For instance, C3 is the single company with the
highest median effort (see Figure 1). This was associated to
higher MAE for all approaches shown in Table VI. However,
the higher efforts were not associated to higher MAEL because
this measure is independent of project size, which is typically
positively correlated with effort.

RQ1 asked how successful a CC dataset is at estimating
effort for projects from a single company. The above results
show that, when using Dycom-RT to convert CC data to the
WC context, CC datasets can be successful in estimating effort
for projects from a single company. The measure SA suggests
that Dycom-RT performed from around 10 to 97 percent better
than a CC random guess approach when using p = 2.

B. RQ2

Table VII shows Dycom-RT’s results in comparison to WC-
RT. According to Wilcoxon sign-rank (two-sided) statistical
tests with Holm-Bonferroni corrections at the overall level
of significance of 0.05, Dycom-RT obtained similar or better
performance than WC-RT in most cases. Note that, in the
case of Dycom, similar performance already represents a good
advantage over WC models, because Dycom requires a lower
number of WC training examples, saving the cost of collecting
the required effort for WC projects. Obtaining similar or better
performance thus indicates a strong advantage of Dycom-RT
over WC-RT.

The datasets for which Dycom-RT obtained the best be-
haviour were C2, C6 and C7. The performance measure
SA suggests that Dycom-RT performed up to around 97
percent better than a WC-based random guess approach, even
though for C8 it performed worse. These results present some
improvement in terms of CC models’ accuracy, compared

to WC models, with respect to previous studies that used
different strategies to adapt the CC models to the WC context.
Kocaguneli et al.’s results [15] were not based on statistical
significance; however, their win-tie-loss results showed CC
models built using TEAK to provide competing accuracy
(not superior) for 6 out of 8 models. Turhan and Mendes’
results [33] were more competitive, showing that CC models
built using NN-filtering with stepwise regression presented
competing accuracy to WC models for 7 out of 8 models.
Still, NN-filtering never achieved better performance than WC
models on these datasets.

RQ2 asked how successful the use of a CC dataset is
compared to a WC dataset for Web effort estimation. The
analysis presented above shows that, when using Dycom-RT,
CC data can help to improve performance for Web effort
estimation. Overall, our experiments show that Dycom-RT not
only managed to use only half of the WC training examples,
but also was usually able to provide similar or better average
performance than WC-RT.

We believe that the implications that these results have
for research and practice are that CC datasets may be a
competitive choice for Web companies that have just a few
available WC projects, when CC models are built using a
strategy where they are explicitly mapped to the WC context.
Such findings hold for companies that develop applications
similar to those described herein, and for the eight companies
who have volunteered data for the Tukutuku database.

C. RQ3

Table VIII shows the results of the comparison between
Dycom-RT and NN-Filtering-RT. We can observe that Dycom-
RT obtained significantly better MAE than NN-Filtering-RT in
3 cases (i.e., C2, C4, C7) and worse in only one case (C8); in
the remaining cases (C1, C3, C5, C6) no significant statistical
differences were found. MAE allows larger projects to have
larger influence on the performance than MAEL. In terms of
MAEL, Dycom-RT obtained significantly better performance
in 2 cases (C2 and C7) and worse in one case (C8).

RQ3 focused on the performance of Dycom with respect to
other techniques previously used for CC Web effort estimation
where some sort of ‘filtering’ was applied to the CC data
during model building. Our results show that Dycom-RT tends
to obtain similar or better performance than a competitive
approach from the literature (NN-Filtering-RT) specially when
considering larger projects, given the difference in MAE and
MAEL results. Therefore, it can be worth to separate and
map CC projects into the WC context for achieving good
performance in Web effort estimation.

VI. CONCLUSIONS

In this study, we have used data from eight different single
company datasets in the Tukutuku database to empirically
compare the accuracy between estimates obtained using cross-
company (CC) and within-company (WC) models. Dycom CC
models using Regression Trees (RTs) as the base learners were
evaluated and benchmarked against baseline models (mean and
median effort), a WC base learner (WC-RT) and a technique
previously used for CC Web effort estimation (NN-filtering).

TABLE VI: RQ1. Comparison between Dycom-RT vs. CC baseline approaches (mean and median effort).

Test Set Mean vs. Dycom MAE SA MAEL Median vs. Dycom MAE SA MAEL
C1 Mean-P2 542.9989 -747.3199 3.0267 Median-P2 57.9686 9.5432 1.2305

Dycom-RT-P2 36.6201 42.8563 0.65105 Dycom-RT-P2 36.6201 42.8563 0.65105
P-value 2.00E-06 2.00E-06 P-value 5.72E-01 1.00E-05

C2 Mean-P2 590.8896 -588.0089 4.6718 Median-P2 89.5760 -4.2988 2.8610
Dycom-RT-P2 4.2004 95.1092 0.553 Dycom-RT-P2 4.2004 95.1092 0.553
P-value 2.00E-06 2.00E-06 P-value 2.00E-06 2.00E-06

C3 Mean-P2 2170.0519 13.5880 1.7619 Median-P2 2523.5714 -0.4892 3.4836
Dycom-RT-P2 734.1386 70.7664 0.23605 Dycom-RT-P2 734.1386 70.7664 0.23605
P-value 4.10E-05 2.00E-06 P-value 2.80E-05 2.00E-06

C4 Mean-P2 392.4489 -71.6249 2.1131 Median-P2 185.2500 18.9869 2.0480
Dycom-RT-P2 110.96 51.4752 0.7837 Dycom-RT-P2 110.96 51.4752 0.7837
P-value 2.00E-06 2.00E-06 P-value 4.00E-06 2.00E-06

C5 Mean-P2 465.0405 -19.2921 1.6425 Median-P2 325.4167 16.5242 1.2256
Dycom-RT-P2 321.19815 17.6063 0.9441 Dycom-RT-P2 321.19815 17.6063 0.9441
P-value 1.25E-01 4.00E-06 P-value 5.30E-01 4.90E-04

C6 Mean-P2 490.7463 -545.7188 2.0440 Median-P2 29.6250 61.0197 0.4109
Dycom-RT-P2 36.052 52.5632 0.41305 Dycom-RT-P2 36.052 52.5632 0.41305
P-value 2.00E-06 2.00E-06 P-value 3.82E-01 7.97E-01

C7 Mean-P2 802.1830 -13.2760 1.8029 Median-P2 605.6667 14.4740 1.2335
Dycom-RT-P2 23.234 96.7191 0.1244 Dycom-RT-P2 23.234 96.7191 0.1244
P-value 2.00E-06 2.00E-06 P-value 2.00E-06 2.00E-06

C8 Mean-P2 421.2622 -194.8180 1.5218 Median-P2 94.6667 33.7481 0.7119
Dycom-RT-P2 128.99745 9.7218 0.5614 Dycom-RT-P2 128.99745 9.7218 0.5614
P-value 4.00E-06 2.00E-06 P-value 2.11E-03 3.85E-03

MAE, SA, and MAEL are the median performances over 30 runs. Cells in lime (light grey) represent better values for Dycom-RT, whereas
cells in orange (dark grey) represent better values for the baseline approach. P-values of Wilcoxon sign rank tests to compare Dycom-RT against
the baseline approaches for each company are also shown. When in cells highlighted in lime or orange, these p-values indicate statistically
significant difference using Holm-Bonferroni corrections at the overall level of significance of 0.05 considering the eight companies. Statistical
tests were not performed for SA because this measure is an interpretable equivalent to MAE. Therefore, none of the SA cells have been
coloured.

TABLE VII: RQ2: Comparison between Dycom-RT vs. WC-RT.

Approach MAE SA MAEL
C1 WC-RT 22.8779 43.8107 0.7362

Dycom-RT 36.6201 10.0591 0.6511
P-value 4.99E-03 4.41E-01

C2 WC-RT 5.2373 26.1423 0.6399
Dycom-RT 4.2004 40.7643 0.5530
P-value 1.71E-03 2.77E-03

C3 WC-RT 627.7143 28.5761 0.2615
Dycom-RT 734.1386 16.4667 0.2361
P-value 8.59E-02 7.04E-01

C4 WC-RT 64.7500 73.4631 0.4000
Dycom-RT 110.9600 54.5246 0.7837
P-value 3.32E-04 1.70E-06

C5 WC-RT 374.0833 6.8672 0.9879
Dycom-RT 321.1982 20.0337 0.9441
P-value 7.34E-01 6.00E-01

C6 WC-RT 44.7500 -7.1856 0.5736
Dycom-RT 36.0520 13.6479 0.4131
P-value 5.71E-02 7.73E-03

C7 WC-RT 223.7953 68.5268 0.3517
Dycom-RT 23.2340 96.7325 0.1244
P-value 2.40E-06 4.20E-04

C8 WC-RT 76.6667 27.7487 0.4242
Dycom-RT 128.9975 -21.5683 0.5614
P-value 2.16E-05 4.53E-04

TABLE VIII: R3: Comparison between Dycom-RT vs. NN-filtering.

Approach MAE SA MAEL
C1 NN-Filtering-RT 22.0922 45.7405 0.9009

Dycom-RT 36.6201 10.0591 0.6511
P-value 4.99E-03 4.41E-01

C2 NN-Filtering-RT 15.8203 -123.1032 1.0056
Dycom-RT 4.2004 40.7643 0.5530
P-value 1.71E-03 2.77E-03

C3 NN-Filtering-RT 670.8572 23.6671 0.2864
Dycom-RT 734.1386 16.4667 0.2361
P-value 8.59E-02 7.04E-01

C4 NN-Filtering-RT 125.8413 48.4257 0.7564
Dycom-RT 110.9600 54.5246 0.7837
P-value 3.32E-04 1.70E-06

C5 NN-Filtering-RT 400.0417 0.4046 1.1105
Dycom-RT 321.1982 20.0337 0.9441
P-value 7.34E-01 6.00E-01

C6 NN-Filtering-RT 35.8375 14.1617 0.5393
Dycom-RT 36.0520 13.6479 0.4131
P-value 5.71E-02 7.73E-03

C7 NN-Filtering-RT 226.3800 68.1633 0.4112
Dycom-RT 23.2340 96.7325 0.1244
P-value 2.40E-06 4.20E-04

C8 NN-Filtering-RT 73.0556 31.1518 0.4309
Dycom-RT 128.9975 -21.5683 0.5614
P-value 2.16E-05 4.53E-04

MAE, SA, and MAEL are the median performances over 30 runs. Cells in lime (light grey) represent better values for Dycom-RT, whereas
cells in orange (dark grey) represent better values for WC-RT or NN-Filtering-RT. P-values based on the Wilcoxon sign rank tests (used to
compare Dycom-RT against WC-RT and NN-Filtering-RT for each company) are also shown; when in cells highlighted in lime or orange, these
p-values indicate a statistically significant difference using Holm-Bonferroni corrections at the overall level of significance of 0.05 considering
the eight companies. Statistical tests were not performed for SA because this measure is an interpretable equivalent to MAE. Therefore, none
of the SA cells have been coloured.

With regard to RQ1, our results show that, when using
Dycom-RT to map CC data to the WC context, CC datasets
can be successful in estimating effort for projects from a single
company. Dycom-RT always performed significantly better
than the mean effort in terms of MAE and MAEL except for
one company in terms of MAE, where it performed similarly.
Dycom-RT always performed similarly or significantly better
than the median effort in terms of MAE and MAEL, except
for one company in terms of MAE, where it performed
worse These results represent an improvement over previous
studies employing other strategies to adapt CC models to the
WC data [15][33] for Web effort estimation. With regard to

RQ2, Dycom-RT provided similar or significantly superior
performance to WC-RT in most cases. These results are also an
improvement over the strategies proposed in previous studies
[15][33]. As for RQ3, we found that Dycom-RT performs
similarly or significantly better than NN-filtering-RT for all
companies except one. Overall the results presented herein are
quite promising, and in general support previous results when
applying Dycom-RT to conventional software datasets.

Our work has implications to both practice and future
research. Regarding implications to practice, Dycom presents,
in our view, the following benefits:

1) Dycom in combination with CC datasets has the

potential to provide competitive accuracy for Web
effort estimation in industry by mapping estimations
from the CC to the WC context. This would require
Dycom to be embedded into a simple interface for
use by companies, which is part of our future work.

2) Dycom reduces the amount of WC data that needs to
be collected by a single company in order to obtain
Web effort estimates.

3) Dycom can also be used to provide a better un-
derstanding of the relationship between the effort
required to develop projects within a company and
the effort required by other companies. This can be
used by software engineers when they are planning
strategies to improve their company’s productivity.
An example of that has been given by Minku and Yao
[28]. As future work, this can also be investigated for
Web projects.

4) By providing a better understanding of the rela-
tionship between the effort of different companies,
Dycom can also be used by a single company to
check whether improvements in productivity are be-
ing obtained in comparison to other companies.

Some of the implications of this work for future research
are the following: Regression Trees (RTs) were the sole base
learners employed in our study. However, other base learners
should also be investigated and compared against RTs’ results,
which is part of our future work. Dycom has now been assessed
on both conventional as well as Web-based project data, all
with promising results. However, there are also more recent
releases of the ISBSG database (R13), and other large datasets
(e.g., Finnish dataset) that can be used to assess Dycom further,
and which are also part of our future work. In addition, we
have separated the CC data into different subsets according to
productivity in order to generate the CC models. A comparison
of this strategy against the use of clustering algorithms to
separate the CC data would be a valuable contribution.

REFERENCES

[1] B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[2] L. Briand, T. Langley, and I. Wieczorek. A replicated assessment of
common software cost estimation techniques. In ICSE, pages 377–386,
2000.

[3] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and
E. Mendes. How effective is tabu search to configure support vector
regression for effort estimation? In PROMISE, pages 4:1–4:10, 2010.

[4] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino, F. Sarro, and
E. Mendes. Using tabu search to configure support vector regression
for effort estimation. Empirical Software Engineering, 18(3):506–546,
2013.

[5] T. DeMarco. Controlling Software Projects: Management, Measure-
ment, and Estimates. Prentice Hall PTR, 1986.

[6] F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, and E. Mendes. Investi-
gating tabu search for web effort estimation. In Euromicro Conference
on Software Engineering and Advanced Applications, pages 350–357,
2010.

[7] F. Ferrucci, E. Mendes, and F. Sarro. Web effort estimation: The value
of cross-company data set compared to single-company data set. In
PROMISE, pages 29–38, 2012.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten. The weka data mining software: An update. SIGKDD
Explorations, 11(1):10–18, 2009.

[9] B. Kitchenham and E. Mendes. A comparison of cross-company and
single-company effort estimation models for web applications. In
Empirical Assessment in Software Engineering, pages 47–55, 2004.

[10] B. Kitchenham and E. Mendes. Software productivity measurement
using multiple size measures. IEEE TSE, 30(12):1023–1035, 2004.

[11] B. Kitchenham, E. Mendes, and G. H. Travassos. A systematic review
of cross- vs. within-company cost estimation studies. In EASE, pages
10–12, 2006.

[12] B. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus within-
company cost estimation studies: A systematic review. IEEE TSE,
33(5):316–329, May 2007.

[13] B. Kitchenham and N. Taylor. Software cost models. ICL Technical
Journal, pages 73–102, 1984.

[14] B. A. Kitchenham and E. Mendes. A comparison of cross-company
and within-company effort estimation models for web applications. In
International Symposium on Software Metrics, pages 348–357, 2004.

[15] E. Kocaguneli, T. Menzies, and E. Mendes. Transfer learning in effort
estimation. Empirical Software Engineering, pages 1–31, 2014.

[16] P. Kok, B. Kitchenham, and J. Kirawkowski. The mermaid approach
to software cost estimation. In ESPRIT, pages 296–314. Springer
Netherlands, 1990.

[17] E. Mendes. Practitioner’s Knowledge Representation. Springer-Verlag,
2014, DOI: 10.1007/978-3-642-54157-5 2.

[18] E. Mendes, S. Di Martino, F. Ferrucci, and C. Gravino. Effort
estimation: How valuable is it for a web company to use a cross-
company data set, compared to using its own single-company data set?
In International Conference on World Wide Web, pages 963–972, 2007.

[19] E. Mendes, S. Di Martino, F. Ferrucci, and C. Gravino. Cross-company
vs. single-company web effort models using the tukutuku database: An
extended study. JSS, 81(5):673–690, May 2008.

[20] E. Mendes, M. Kalinowski, D. Martins, F. Ferrucci, and F. Sarro.
Cross- vs. within-company cost estimation studies revisited: an extended
systematic review. In EASE, pages 12:1–12:10, 2014.

[21] E. Mendes and B. Kitchenham. Further comparison of cross-company
and within-company effort estimation models for web applications. In
International Symposium on Software Metrics, pages 348–357, 2004.

[22] E. Mendes, N. Mosley, and S. Counsell. Comparison of cross-company
and single-company effort estimation models for web applications. In
International Conference on Empirical Software Engineering, pages 1–
22, 2003.

[23] E. Mendes, N. Mosley, and S. Counsell. Investigating web size metrics
for early web cost estimation. JSS, 77(2):157–172, 2005.

[24] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmerman. Local vs. global lessons for defect
prediction and effort estimation. IEEE TSE, 39(6):822–834, 2013.

[25] T. Menzies and M. Shepperd. Special issue on repeatable results in
software engineering prediction. Empirical Software Engineering, 17:1–
17, 2012.

[26] L. Minku and X. Yao. Can cross-company data improve performance
in software effort estimation? In PROMISE, pages 69–78, 2012.

[27] L. Minku and X. Yao. Ensembles and locality: Insight on improving
software effort estimation. IST, 55(8):1512–1528, 2013.

[28] L. L. Minku and X. Yao. How to make best use of cross-company data
in software effort estimation? In ICSE, pages 446–456, 2014.

[29] M. L. Mitchell and J. M. Jolley. Research Design Explained. Cengage
Learning, USA, 7th edition, 2010.

[30] L. H. Putnam. A general empirical solution to the macro software sizing
and estimating problem. IEEE TSE, 4(4):345–361, 1978.

[31] M. Shepperd and S. McDonell. Evaluating prediction systems in
software project estimation. IST, 54(8):820–827, 2012.

[32] L. Song, L. Minku, and X. Yao. The impact of parameter tuning on
software effort estimation using learning machines. In PROMISE, pages
9:1–9:10, 2013.

[33] B. Turhan and E. Mendes. A comparison of cross- versus single-
company effort prediction models for web projects. In Euromicro
Conference on Software Engineering and Advanced Applications, pages
285–292, 2014.

