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Which Models of the Past Are Relevant to the
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A software effort estimation approach to exploiting useful
past models?

Leandro L. Minku · Xin Yao

Abstract Background: Software Effort Estimation (SEE) models can be
used for decision-support by software managers to determine the effort re-
quired to develop a software project. They are created based on data describ-
ing projects completed in the past. Such data could include past projects from
within the company that we are interested in (WC projects) and/or from
other companies (cross-company, i.e., CC projects). In particular, the use of
CC data has been investigated in an attempt to overcome limitations caused
by the typically small size of WC datasets. However, software companies op-
erate in non-stationary environments, where changes may affect the typical
effort required to develop software projects. Our previous work showed that
both WC and CC models of the past can become more or less useful over
time, i.e., they can sometimes be helpful and sometimes misleading. Aims:
We aim at investigating how to automatically find if and when a model cre-
ated based on past data represents well the current projects being estimated.
Method: We propose an approach called Dynamic Cross-company Learning
(DCL) to dynamically identify which WC or CC past models are most useful
for making predictions to a given company at the present. DCL automatically
emphasises the predictions given by these models in order to improve predic-
tive performance. We compare DCL against existing WC and CC approaches
and thoroughly analyse its behaviour. Results: DCL is successful in improv-
ing SEE by emphasizing the most useful past models. Our detailed analysis of
DCL’s behaviour strengthens its external validity.

Keywords Model-based software effort estimation · machine learning ·
cross-company learning · online learning · non-stationary environments.
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List of Abbreviations and Specialist Terms

AddExp Additive Expert Ensemble machine learning
approach.

Bagging Bootstrap Aggregating machine learning approach.
Base learners Machine learning models composing an ensemble

and their corresponding learning algorithms.
CC Cross-Company; other companies. In this paper,

we will use the term CC loosely. For example,
projects from different departments within the
same company could be considered as CC projects if
such departments employ largely different practices.

Data stream Sequence of chronologically ordered examples.
DCL Dynamic Cross-Company Learning approach

proposed in this work.
DCL-F DCL using only filtering.
DCL-N DCL using no dynamic weighting and no filtering.
DCL-W DCL using only dynamic weighting.
DDD Diversity for Dealing with Drifts machine learning

approach.
∆ Glass’ effect size.
DWM Dynamic Weight Majority machine learning approach.
EBA Estimation By Analogy.
Ensemble Set of machine learning models grouped together

with the aim of improving predictive performance.
Functional size Software size measurement based on the

amount of functionality to be delivered by the software.
Input attribute Independent variable; feature describing a

project / example.
ISBSG International Software Benchmarking Standards Group.
k-NN k-Nearest Neighbours machine learning approach.
MAE Mean Absolute Error measure of predictive performance.
ML Machine Learning.
MLP MultiLayer Perceptron.
Output attribute Dependent variable; feature that the machine

learning approaches aim to predict.
In this work, this is the effort.

Predictive performance Measure of how good the predictions / estimations are;
accuracy of predictions / estimations.

RBF network Radial Basis Function network;
machine learning approach.

Relevancy filtering Approach that eliminates CC projects that are
too different from the WC projects being predicted.

Rguess Random guess.
RT Regression Tree machine learning approach.
SA Standardised Accuracy measure of predictive performance.
SEE Software Effort Estimation.
Time step Moment in time when a new training

example is received.
Training example In this work, this is a project for which

both the input and output attributes are known. It can
be used for training / updating machine learning models.

WC Within-Company.
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1 Introduction

Software Effort Estimation (SEE) is the process of estimating the effort re-
quired to develop a software project. Software effort is typically the main cost
driver in software projects [22,59]. Both over and underestimations of effort
can cause problems to a company. For instance, overestimations may result
in a company losing contracts or wasting resources, whereas underestimations
may result in poor quality, delayed or unfinished software projects.

SEE is a difficult task. Human-made effort estimations may be strongly af-
fected by effort-irrelevant and misleading information, such as the font or mar-
gin size of specifications [21]. Sometimes, software engineers may not improve
their effort estimations even after feedback about their estimates is provided
[18]. Therefore, several Machine Learning (ML) approaches have been investi-
gated to automatically build SEE models [62]. However, SEE models created
using ML might not capture some human factors that influence the effort re-
quired to develop software projects. Therefore, SEE models should not be used
as replacements for experts and experts should not blindly trust such models.
Instead, we believe that SEE models should be used as decision-support tools
to help experts to perform or re-think their estimations.

For example, if an expert estimation is similar to the estimation given
by a model, then we have an increased confidence on the estimate. If the two
estimations differ considerably, then the expert can analyse the project further
to gain extra insights into what effort best reflects the project. Depending on
his/her further analysis, he/she may decide to keep his/her own estimate, or
adopt the model’s estimate, or an estimate in between the two estimates. In
short, we envision learned models to work in conjunction with human experts.

ML approaches create SEE models based on data describing projects com-
pleted in the past. Such data could include past projects from within the
company that we are interested in (WC projects) and/or from other com-
panies (CC projects). It has been suggested that early SEE models such as
COCOMO and SLIM need to be calibrated to the context of specific compa-
nies based on data from within these companies in order to work effectively
[11,25]. Other authors have also suggested that SEE models should be built
based on WC data [29,16]. However, companies may face difficulties in terms
of WC data collection, e.g. [23], (1) the time required to accumulate enough
data [14] on past projects from a single company may be prohibitive; (2) by the
time the dataset is large enough [14], technologies used by the company may
have changed, and older projects may no longer be representative of current
practices; and (3) care is necessary as data need to be collected in a consistent
manner.

In an attempt to overcome these problems, the use of CC models for SEE
has been investigated [23,26,42]. CC models are typically defined as those built
using datasets containing data from several companies. Several CC datasets
are available for SEE (http://openscience.us/repo/) and there are even organ-
isations worldwide that use large proprietary CC datasets with tool support
to provide estimation and benchmarking services. An example is the Interna-
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tional Software Benchmarking Standards Group (ISBSG) [20], which provides
tools to estimate effort and benchmark productivity using their CC data. IS-
BSG also sells their CC data to those companies that wish to use their own
tools for estimation and benchmarking purposes.

However, studies comparing CC and WC SEE models suggested that CC
models typically perform similar or worse (and no better) than WC models
[23]. A more recent study [43] further confirmed that CC models can indeed
sometimes perform worse than WC models. Nevertheless, this study also re-
vealed that CC models have the potential to outperform WC models depending
on the time period analysed [43]. This finding is in accordance with the fact
that companies operate in non-stationary environments. For example, new em-
ployees can be hired or lost, training can be provided, employees can become
more experienced, new types of software projects can be accepted, the man-
agement strategy can change, new programming languages can be introduced,
etc. Such changes can affect the predictive performance of SEE models. In
fact, both WC and CC models of the past can become more or less useful over
time, i.e., they can sometimes be helpful and sometimes misleading [43]. SEE
models developed at a certain point in time may become obsolete. In a simi-
lar way, models that were good in the past and poor at present may become
useful again in the future [43], as a company may start behaving similarly to
a previous situation.

It is likely that whether or not CC data are useful as training data depends
on how similar they are to the current target projects. If the CC projects are
similar to the current target projects, they are likely to be useful for these
projects. Otherwise, they are not currently directly useful. It is also important
to note that, even though the terms CC and WC are widely used in software
effort estimation, WC projects can be themselves dissimilar / heterogeneous.
Therefore, the terms CC and WC are not ideal. In this paper, we will use the
term CC loosely. For example, projects from different departments within the
same company could be considered as CC projects if such departments employ
largely different practices.

If one can successfully identify which CC and WC models are currently the
most useful ones, it may be possible to emphasise the right models to improve
SEE. With that in mind, this paper aims at answering the following research
questions:

RQ1 How can we know which model from the past best represents the current
projects being estimated?

RQ2 Can that information help improving SEE?

In order to answer these research questions, we propose an approach called Dy-
namic Cross-company Learning (DCL) able to identify the models that reflect
well the current projects being estimated automatically. It then emphasises
these models in order to improve SEE.

Our proposed approach was preliminarily presented in [43]. Its mechanism
to emphasize the best models has also been adopted by a later approach [45].
However, those works did not investigate whether the mechanism to emphasize
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the right models really works as expected and why. They did not validate the
improvement in predictive performance that can be achieved by emphasising
such models in comparison to an approach that always gives the same emphasis
to all models either. Even though DCL was compared against a WC model
and a new approach for dealing with non-stationary environments from the ML
literature, typical CC SEE approaches were not included in the analysis [43].
Since that study, a new competitive CC SEE approach has also been proposed
[61]. So, ideally DCL should be compared against that approach. Furthermore,
no previous work provided a thorough understanding of DCL’s behaviours.
A thorough understanding is important when proposing new approaches, as
it can strengthen its external validity by identifying the situations where the
approach is successful and the situations where it could fail. It can also give an
insight into what components of an approach make it successful and whether
all of them are really necessary; and into how robust the approach is to different
parameter choices and types of base learner. The current work performs new
analyses addressing all these issues (sections 6 to 10), providing a thorough
validation of DCL and its ability to emphasise the right models.

The rest of this paper is organised as follows. Section 2 presents related
work. Section 3 presents our formulation of the problem. Section 4 presents
the proposed approach Dynamic Cross-company Learning (DCL). The ap-
proach was preliminarily presented in [43] and answers part of RQ1. Section
5 describes the datasets used in our study. Section 6 provides an analysis of
the ability of DCL to emphasize the right models and a detailed understand-
ing of why and when DCL is expected to succeed or fail to emphasize the
right models. It investigates DCL’s ability to answer RQ1. Section 7 validates
DCL against an approach that always gives the same emphasis to all existing
SEE models, i.e., it evaluates the improvement in SEE predictive performance
achieved by emphasising the right models. It also analyses which of the two
main components of DCL is key for its improved predictive performance. Sec-
tion 8 compares DCL against a corresponding WC model and other WC and
CC approaches. Together, sections 7 and 8 answer RQ2. Section 9 presents a
study showing that DCL is robust against the type of model used in combina-
tion with it. The study also reveals what types of model are likely to do better
in combination with DCL. Section 10 provides an analysis of DCL’s sensitivity
to parameters. These sections contribute to the external validity of our study.
Section 11 discusses threats to validity. Section 12 presents the conclusions,
implications to practice and future work.

2 Related Work

2.1 ML for SEE Assuming No Chronology

There has been much work on SEE in the software engineering literature [22,
23]. Algorithmic SEE models have been studied for many years [11,22]. Among
them, ML algorithms have been increasingly investigated as automated SEE
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approaches [22]. Most work using ML for SEE implicitly assumes that the
projects used to build predictive models have no temporal order / chronology.
Such work does not ensure that the software projects used to build a ML model
are projects completed before the projects used for testing this model. This
means that models used for making effort estimations are potentially trained
with projects that would not have been available for training in a real world
scenario. This section explains some work that assumes no chronology.

An important work in this area is that of Shepperd and Schofield [57],
who used a k-Nearest Neighbour (k-NN) algorithm [10] based on normalised
attributes and Euclidean distance as the similarity measure. This approach is
also known as estimation by analogy. Despite being first used for SEE more
than fifteen years ago, this approach has been shown to be able to achieve com-
petitive results in comparison to recent techniques, depending on the dataset
[44].

More recent work has been emphasising the relatively good predictive
performance achieved by ensembles of learning machines [32,44,27] and lo-
cal methods that make estimations based on completed projects similar to
the project being estimated [44,42,8]. For instance, Regression Trees (RTs),
Bagging ensembles of MultiLayer Perceptrons (Bag+MLPs) and Bagging en-
sembles of RTs (Bag+RTs) have been shown to perform well across several
datasets [44].

Several SEE studies have also tried to use CC models in an attempt to
deal with the fact that WC training sets are frequently not large enough to
represent the whole population of projects well, resulting in poor SEE models.
For example, some studies used CC training examples to augment their exist-
ing WC training sets [33]. The resulting augmented training set was then used
to build models to make predictions in the WC context. Others used solely
CC training examples to build such models [12,63]. Both the former and latter
types of studies have found that the resulting models obtained similar or worse
predictive performance than models trained solely on WC training examples
[23].

More recent work on relevancy filtering has demonstrated that eliminating
CC projects that are too different from the projects being predicted can more
frequently lead to CC models able to achieve similar predictive performance
to WC models [61,28]. However, measuring similarity between training and
target projects coming from different and potentially heterogeneous sources
is not straightforward. This is because similarity here involves not only the
space of available input attributes, but also the output attribute (effort). Two
projects that are similar in the input space may still be different in the output
space if they come from heterogeneous sources. This can happen, for example,
as a result of different interpretations given to the levels of subjective input
attributes during data collection, as a result of the unavailability of certain
relevant input attributes, or as a result of different definitions of work hours
(e.g., based on unpaid overtime). Therefore, measuring similarity based solely
on the input attributes will not always work well. This is a potential reason why
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CC SEE approaches based on similarity on the input space such as Relevancy
Filtering [61,28] sometimes perform worse than WC models.

An insightful work [42] in the context of predicting software effort and
defect proneness is based on clustering WC+CC examples, and then creating
prediction rules for each cluster. These prediction rules are aimed at finding
features that lead to less effort or fewer defects. Given a certain cluster, its
neighbouring cluster with the lowest required efforts/defects was referred to as
the envied cluster. When making predictions for WC projects from a cluster,
rules created using only the CC examples from the envied cluster were better
than rules created using only the WC examples from the envied cluster. So,
the authors recommended to cluster WC+CC examples, but to learn rules
using solely the CC examples from the envied cluster. These results are very
encouraging and motivate further investigation of CC SEE, as they suggest
that CC models may also be able to achieve better predictive performance
than WC models in SEE.

2.2 Chronology-Based ML for SEE

The approaches described above do not consider the chronology of the software
projects being used for creating and evaluating the SEE models. However, SEE
operates in online learning scenarios where new completed projects arrive over
time following a temporal order. Such scenarios are unlikely to be stationary,
as software development companies and their employees evolve with time.
For example, new employees can be hired or lost, training can be provided,
employees can become more experienced, new types of software projects can be
accepted, the management strategy can change, new programming languages
can be introduced, etc. So, SEE models developed at a certain point in time
may become obsolete. For instance, Kitchenham et al. [24] reported that the
best fitting regression model changed substantially over time in a case study
with a WC dataset. Premraj et al. [53] also reported that productivity changed
over time in a study with a CC dataset. In order to reflect a real SEE scenario
more closely, the chronology of projects should ideally be considered when
developing/evaluating SEE models.

Existing approaches involving chronology-based ML for SEE can be di-
vided into three types: chronological splitting (section 2.2.1), moving window
(section 2.2.2) and time transfer (section 2.2.3).

2.2.1 Chronological Splitting Approaches

ML evaluation procedures for stationary environments randomly split data
into training and testing data without taking chronology into account. The
training data are used to create predictive models, whereas test data are used
to estimate the models’ predictive performances on unseen data. Examples of
such procedures are repeated (random) holdout and cross-validation. These
procedures are unsuitable for evaluating predictive models in non-stationary
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environments, because changes may cause examples from different periods of
time to have different characteristics. For instance, consider that the produc-
tivity of a company significantly changed over time, affecting the relationship
between available input attributes and effort in a company. If we allow a ML
model to be trained using projects from the future to predict projects from the
past, this model will use examples that reflect the new relationship between
input attributes and effort, which would not have been available in a real world
scenario. As a result, the testing performance obtained by such models will
not reflect the predictive performance that would be achieved in practice.

In order to account for that, chronological splitting approaches create data
splits ensuring that all training projects have been completed before the start-
ing date of the testing projects. For example, Lefley and Shepperd [33] per-
formed a SEE study to compare the predictive performance of genetic pro-
gramming against neural networks, k-nearest neighbours and least squares
regression. In order to perform this comparison in a more realistic manner,
they used a date-based splitting of their dataset into two partitions. The first
partition included 48 WC and 101 CC projects completed by 15th October
1991, and was used for training. The second partition included 15 WC projects
that started after this date, and was used for testing. Sentas et al. [55] also
adopted date-based splitting in two of the three datasets used to compare
ordinal regression and stepwise linear regression.

Auer et al. [7,6] performed an analysis of input attribute weighting methods
for analogy-based SEE. They explained that SEE datasets typically grow over
time as companies take on new projects. Therefore, a realistic SEE procedure
would be to (1) measure the input attributes of the project to be estimated,
(2) estimate the effort for this project based on the existing SEE model, and
(3) upon a project’s completion, add its input attributes and effort to the
dataset and re-build or re-calibrate the SEE model based on the new, larger,
dataset. This approach, where the SEE model used to estimate a given project
is trained on all previously completed projects, can be referred to as project-
by-project splitting or growing portfolio. It allows us to investigate how SEE
models change as they are updated over time. Auer and Biffl’s work [6] was
based on five WC datasets and Auer et al.’s work [7] was based on eleven WC
datasets. However, it is not entirely clear if chronology was considered in all of
them. Several later studies also involved comparisons with growing portfolio
approaches [36,41,5,39,3,4].

In practice, we wish to estimate the effort for a given project soon after
its commencement based on all completed projects available by that time.
We may also wish to update this initial estimate if more completed projects
become available before the end of this project. Therefore, whenever a new
project is completed, one may wish to predict a given number of incomplete
or future projects based on all completed projects. For example, consider that
we have three projects pt, pt+1 and pt+2, completed at times t, t + 1 and
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t + 2, respectively 1. At time t, we may wish to estimate projects pt+1 and
pt+2 based on a model trained with all projects completed up to time t. Then,
once we reach time t + 1, we may wish to provide an updated prediction for
project pt+2 based on a model trained with all projects completed up to time
t + 1. This approach has been used, for example, in a study of the impact of
parameter tuning on SEE [58]. This study was based on three WC datasets
and five ML approaches (MLP, Bag+MLP, RT, Bag+RT and k-NN). It shows
that the best parameters to be used with ML approaches can change over time.
This issue affects some ML approaches such as k-NN more than others such
as Bag+RTs. Other studies also involved this type of chronological splitting,
but in the context of time transfer approaches [49,45].

Even though the studies above used chronological splitting, they did not
investigate the impact of using chronological splitting in comparison with ran-
dom splitting. With that in mind, Lokan and Mendes compared WC mod-
els created based on growing portfolio (WC1) with leave-one-out (WC2) and
leave-two-out (WC3) cross-validation [35]. They also compared CC models
created based on growing portfolio (CC1) with a CC model created based on
the whole CC dataset (CC2). Their study was based on multivariate step-
wise regression and one dataset. In terms of absolute errors, WC1 performed
similarly to WC2 and WC3, and CC1 performed similarly to CC2. However,
in terms of z values, WC1 was significantly worse than WC2 and WC3, and
CC1 was significantly better than CC2. This demonstrates that the results
obtained by using random splitting can differ from the results obtained using
chronological splitting. A similar study in the context of data-based splitting
demonstrates that date-based splitting can also sometimes lead to different re-
sults from random holdout [38]. MacDonell and Shepperd [41] also investigated
growing portfolio in comparison with leave-one-out cross-validation based on
least squares linear regression and a WC dataset. Their results suggest that
these evaluation approaches lead to different results, even though their anal-
ysis is not based on statistical tests. Overall, these studies show that it is
important to consider chronology in order to better reflect the SEE procedure
used in practice.

2.2.2 Moving Window Approaches

Even though the studies presented in section 2.2.1 considered chronology, they
did not consider that older projects may become obsolete and hinder the pre-
dictive performance if included in the training set. Kitchenham et al. [24]
recommended to discard old projects from the training set based on a mov-
ing window approach as follows. For each new project pt to be estimated, a
SEE model should be created based on a “window” containing projects pt−1

to pt−n. As this approach creates windows based on the number of previous
projects to be included, it can be referred to as fixed-size window approach. In

1 Please note that each time step (e.g., t, t+ 1 and t+ 2) refers to the completion time of
a project, and not to the whole duration (from start to completion time) of this project.
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Kitchenham et al.’s case study with the WC CSC dataset, n = 30 was used.
This means that each window had a fixed size of 30 projects. This approach
was proposed due to the observation that the best fitting regression model
changed substantially over time in their case study.

Lokan and Mendes [36]’s work is to the best of our knowledge the first
work to provide a detailed investigation of whether moving windows can im-
prove predictive performance. Their work revealed that SEE models trained
on fixed-size windows can provide significantly better predictive performance
than the growing portfolio approach [36]. However, whether or not fixed-size
windows were beneficial depended on the window size. In their case study using
multivariate stepwise regression and the WC ISBSG dataset (a subset derived
from ISBSG Release 10), smaller windows (from 20 to 40 projects) had a detri-
mental effect in comparison with growing portfolio. Larger windows (from 85
to 120 projects) had a positive effect on predictive performance in terms of
magnitude of the relative error, but led to similar predictive performance in
terms of absolute error.

Amasaki and Lokan [3] also compared fixed-size windows against growing
portfolio as part of their study with the same WC ISBSG dataset as [36].
However, they used linear regression based on input attributes selected with
Lasso [60] instead of stepwise regression. The reason for using Lasso was that
their preliminary results showed that Lasso provided more accurate estimates.
Fixed-size windows achieved similar absolute error to growing portfolio for
window sizes from 20 to 40, and significantly better absolute error for win-
dow sizes between 40 (exclusive) and 120 (inclusive). In terms of magnitude
of the relative error, fixed-size windows started to provide better predictive
performance even for some window sizes smaller than 40.

MacDonell and Shepperd [41] investigated the predictive performance of
fixed-size windows with size of five projects in a study based on least squares
linear regression and the WC MacDonell dataset. Even though their analysis
is not based on statistical tests, it suggests that moving windows can provide
much better results than growing portfolio.

A further study [40] found fixed-size windows to obtain either similar or
significantly worse predictive performance than growing portfolio when using
multivariate stepwise linear regression for the WC Finnish dataset (a subset
of the Finnish dataset).

All results above were based on linear regression, which can be considered
as a global learning approach. Global learning approaches make estimations
based on models representing the whole training set. Different from global
learning approaches, local learning approaches make estimations based only
on the training projects most similar to the project being estimated. Amasaki
et al. [5] explained that, as the estimations are based on a subset of all training
projects, moving window approaches might be less useful for local learning ap-
proaches. Therefore, they performed a comparison between fixed-size window
and growing portfolio using the local approach k-NN and two WC datasets
(CSC and Maxwell). Their experiments found no statistically significant dif-
ferences in predictive performance between the two approaches.
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A later study [1] with the WC ISBSG dataset showed that statistical sig-
nificances were found in favour of fixed-size windows when using k-NN, even
though for less window sizes than when using linear regression. Therefore,
fixed-size windows were effective both with linear regression and k-NN for this
dataset when compared against growing portfolios. However, the degree of ef-
fectiveness was higher when using linear regression. A very recent study [4]
with the WC Finnish dataset showed that fixed-size windows obtained either
similar or significantly worse predictive performance than growing portfolios
when using k-NN.

Another type of moving window approach defines window size in terms of
duration as follows. For each new project to be estimated, a SEE model should
be created based on a window containing all projects whose development span
occurred during the last n months. This means that the number of projects
within the window is not fixed – it depends on the number of projects de-
veloped during the last n months. The advantage of duration-based windows
is that they allow for a clear cut in terms of how recent projects must be in
order to be included in the window, ensuring that projects deemed old are not
included. The disadvantage is that there is no explicit control over the number
of projects included in the window. If the number of projects developed dur-
ing the last n months is small, the small training set used to create the SEE
models may result in poor predictive performance.

Lokan and Mendes [40] compared duration-based windows against growing
portfolio and fixed-size windows, based on stepwise multivariate regression and
two WC datasets (WC ISBSG and WC Finnish). For the WC ISBSG dataset,
their analysis shows that duration-based moving windows can be beneficial
to predictive performance in comparison with growing portfolio, depending
on the duration. Duration of around 36 months provided the most promis-
ing results for their dataset. When using the most promising duration and
number of projects for duration-based and fixed-size windows, duration-based
moving windows performed statistically similarly to fixed-size windows. How-
ever, for the WC Finnish dataset, both duration-based windows and fixed-size
windows obtained either similar or significantly worse predictive performance
than growing portfolio.

Amasaki and Lokan [4] further investigated the predictive performance of
duration-based windows when using k-NN. They also used the WC Finnish
dataset. However, they found that duration-based windows achieved either
similar or better predictive performance than growing portfolio, depending on
the duration. The results when using k-NN with duration-based windows are
thus very different from the results using k-NN with fixed-size windows and
from the results using linear regression with duration-based windows.

Amasaki and Lokan also proposed the use of weighted fixed-size [3] and
weighted duration-based [2] windows. Weighted windows give more weight
to more recent projects within the window than to older projects. Weighted
and unweighted windows were compared using linear regression with Lasso in-
put attributes selection and the WC ISBSG dataset. The analysis shows that
weighted fixed-size windows significantly improved predictive performance in
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larger windows, and significantly worsened predictive performance in smaller
windows [3]. Weighted duration-based windows improved predictive perfor-
mance significantly especially for larger windows. For some other window sizes,
weighted duration-based windows were detrimental [2].

All the studies above were based on WC datasets. The fact that windows
can sometimes be beneficial is an indication that the (unknown) real under-
lying function mapping input attributes to effort in a single company may
change over time, emphasising the importance of proposing and investigating
approaches able to deal with such changes at the same time as not hindering
predictive performance when there are no changes. The main difficulty with
using moving windows is that their predictive performance is highly depen-
dent on the window size and they may be detrimental to some datasets. The
studies explained in this section show that discarding old data can be helpful,
but is not always advisable.

2.2.3 Time Transfer Approaches

Our work [43] showed that CC and WC models can become more or less useful
over time, sometimes representing well the current projects being estimated
and sometimes being misleading. These results corroborate the finding that
discarding old data is not always advisable [40]. Based on that, a dynamic
adaptive approach (DCL) was proposed to automatically adapt to changes by
making use of old data when they are helpful. This type of approach can be
seen as transferring knowledge from different periods of time to the present
when they are beneficial.

DCL is to the best of our knowledge the first approach able to use CC data
for improving predictive performance over WC SEE models [43]. It is able to
achieve that by identifying which models among CC and WC models created
with past data are most useful to a company at each given point in time based
on a weighting mechanism. Its weighting mechanism to emphasize the best
models has also been adopted by a later approach [45]. However, as explained
in section 1, DCL and its weighting scheme have not been thoroughly evaluated
yet. DCL is explained in detail in section 4.

2.3 ML Literature on Predictive Models for Non-Stationary Environments

The ML literature contains several approaches designed for dealing with online
and non-stationary environments. However, such approaches typically assume
the availability of large amounts of data, forming a data stream [52] unlikely to
exist in SEE. A widely known approach for classification tasks in this type of
environment is Dynamic Weight Majority (DWM) [31]. DWM creates different
base learners2, each associated with a dynamic weight which is reduced when
the base learner gives a wrong prediction. Base learners are dynamically added

2 The models (and their corresponding learning algorithms) composing an ensemble are
referred to as its base learners.
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and removed, facilitating adaptation to changes. DWM’s predictions are based
on the weighted majority vote among the base learners.

Additive Expert Ensemble (AddExp) [30] is an approach similar to DWM
that works for both classification and regression tasks, even though regression
is restricted to predictions in the interval [0, 1]. However, AddExp is less robust
to noise. Another approach is Diversity for Dealing with Drifts (DDD) [49]. Its
main idea is that very highly diverse ensembles (whose base learners produce
very different predictions from each other) are likely to present poor predictive
performance under stable conditions, but may become useful when there are
changes. So, DDD maintains both a low diversity ensemble and a high diversity
ensemble, which is only activated upon change detection.

3 Formulation of the Problem

We formulate SEE as an online learning problem in which a new completed
project implemented by a single company is received as a training example at
each time step, forming a WC data stream. These training examples can be
used to create a WC SEE model. Different from typical online data stream
problems [52], even though new projects arrive with time, the volume of in-
coming training data is small. So, there are no tight space or time constraints.
For instance, it is acceptable for a new SEE model to be created from scratch
whenever a new training project becomes available.

At each time step, we wish to determine which SEE models among a set
of WC and CC models are currently most useful for the single company, i.e.,
which SEE models best represent the current relationship between input and
output attributes for the projects being estimated. We also wish to predict
the effort of a given number of future projects from the WC data stream, i.e.,
projects that have not yet completed and whose actual effort is still unknown.
We consider ten as a reasonable number of future projects to be predicted in
this study, although our approach is applicable to any value.

It is important to emphasize that only past completed projects with known
effort (training examples) can be used for determining which SEE models are
currently most useful and for training / updating existing models.

4 Dynamic Cross-company Learning (DCL)

This section describes an approach called Dynamic Cross-company Learning
(DCL), which is able to automatically identify which existing CC or WC mod-
els are currently the most relevant for making SEEs for a company (RQ1).
These models are then emphasized in order to improve SEE for this company
(RQ2).

The idea behind DCL is that models performing poorly at a certain moment
may become beneficial in the event of changes in the environment [47]. For
instance, a CC model may perform poorly for some period of time and perform
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relatively well in a later period [43]. So, DCL maintains a memory of m models
trained on past CC data and one model specific for WC data stream learning.
Each model is associated with a weight representing how useful it currently
is, inspired by Kolter and Maloof’s ML approaches [31,30]. These weights
are dynamically updated and allow DCL to emphasize estimations given by
CC data models when they are useful. They are proposed to address research
question RQ1 outlined in section 1. DCL’s estimations are then based on the
weighted average of the base learners’ estimations. In this way, we expect DCL
to improve SEE by giving different emphasis to different models (RQ2).

As a backup measure, should the weighting mechanism fail at some point,
DCL also restricts the use of CC models. If the project to be estimated is “too
different” from the projects used to build a CC model, this model is filtered
out, i.e., is not allowed to contribute to the weighted average for estimating
this project. Filtering out CC data for localization has been shown to be useful
for SEE [61,28].

The method to filter CC models out in DCL is as follows. An impactful
input attribute is used to define whether a certain WC project to be predicted
is “too different” from the projects used to build a CC model. For example, for
all the WC datasets used in this study, size is likely to be the most impactful
input attribute, given that regression trees trained on these datasets selected
size as the top-level attribute. A CC model is then considered in the estimation
of a certain project only if the size of this project is lower than the quantile
Q of the size of the training projects used to build this model, where Q is
a pre-defined parameter. CC models that do not satisfy this requirement are
filtered out of the estimation of this project, but are kept in the system so
that they can possibly contribute to the estimation of other projects in the
future. As the WC model is likely to be poor and unstable in the beginning
of its life due to the very small number of WC training projects, filtering of
CC models is only applied after a considerable number Tstart of WC training
projects have been presented, where Tstart is a pre-defined parameter. It is
worth noting that other input attributes than size should be used for filtering
if they are deemed more influential than size. This may happen, for example,
when projects have a high level of reuse and integration.

The CC models can be any CC models available to the company that we
are interested in. In particular, if the company has access to the CC training
projects themselves, m different CC training sets can be created based on some
a priori knowledge. For example, different sets can be created for different com-
panies, or different sets can be created by grouping together CC projects with
similar productivity. It is worth noting that we use the term CC loosely here.
For example, projects from different departments within the same company
could be considered as CC projects if such departments employ largely dif-
ferent practices. Separation based on productivity ranges can be particularly
useful and easily automated. The reason for the usefulness of productivity-
based separation is that different productivity ranges can simulate different
possible situations of a company. When a change happens, a company may
become more or less productive, and CC models built using different produc-
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Algorithm 1 DCL
Parameters:
Lc, 1 ≤ c ≤ m: CC models.
βc, βw: factors for decreasing model weights 0 ≤ βc, βw < 1

1: for each CC model Lc, 1 ≤ c ≤ m do
2: wc = 1/m {Initialise weight for CC models.}
3: wm+1 = 0 {WC model weight.}
4: Allow using DCL for predictions while there is no WC training project available
5: for each new WC training project (x, y) do
6: winner = argmini,1≤i≤m+1 |Li(x)− y|
7: for loser, 1 ≤ loser ≤ m+ 1 ∧ loser 6= winner do
8: wloser = βwloser, where

β = βc if loser <= m and β = βw otherwise.
9: if (x, y) is the first WC training project then

10: wm+1 = 1
m+1

11: Divide each weight by the sum of all weights
12: Use (x, y) to learn WC model Lm+1

13: Allow using DCL for predictions while no new WC training project is made available

tivity ranges could become more or less beneficial. Note that productivity is
based on effort. So, we cannot use the productivity of the project being es-
timated to decide which CC models are likely to be more beneficial for this
project. Instead, DCL determines which base learners are likely to be more or
less beneficial at each time step based on dynamic weights updated through
its learning algorithm whenever a new WC project is completed.

Algorithm 1 presents DCL. Existing CC models can be learnt beforehand
and provided to the algorithm as input arguments. DCL initialises the weights
associated to each CC model with the value 1/m (line 2). Weights associated
with WC models are initialized to zero (line 3), so that DCL can be used
for predictions before any WC training project becomes available, i.e., based
solely on CC models (line 4).

After that, whenever a new WC training project is made available, it is
used to (1) update the weights used to determine which SEE models are most
relevant at present and (2) train the WC model. One WC training project
from the stream is received at each iteration, which corresponds to one time
step. The weight update rule is shown in lines 6–11. Each base learner is used
to perform an estimation for the incoming training project. ¡— The model
with the lowest absolute error estimate is considered to be the winner (line
6). This can be either the WC or a CC model. The weights associated with
all the loser models are multiplied by β, 0 ≤ β < 1, where β = βc for the
CC models and β = βw for the WC model. Lower/higher β values cause the
system to quickly/slowly reduce its emphasis on models that are providing
wrong estimations. If the current WC training example is the first WC training
example, the weight of the WC model is changed from 0 (zero) to 1/(m + 1)
(line 10). After all weights are updated, they are divided by the sum of all
weights (line 11).
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The WC model’s training is done at the end of the iteration (line 12). It
consists of using the incoming training project to train the WC model using
its own learning algorithm, which may or may not need retraining on the
previous projects. DCL is made available for predictions after the WC model
is trained at the end of each iteration (line 13) and until a new WC training
project arrives. Typically, one would like to predict a certain number of future
projects from the WC data stream before a new WC training project arrives.

5 Datasets

Five different datasets were used in our study: ISBSG2000, ISBSG2001, IS-
BSG, Nasa60Coc81 and Nasa60Coc81Nasa93. These include both datasets
derived from the International Software Benchmarking Standards Group (IS-
BSG) Repository [20] and the PRedictOr Models In Software Engineering
Software (PROMISE) Repository [54]. Each dataset is composed of a WC
data stream, and a number of CC subsets.

5.1 ISBSG Datasets

Three SEE datasets were derived from ISBSG Release 10, which contains
software project information from several companies. Information on projects
belonging to a single company was provided to us upon request. The data were
preprocessed, maintaining only projects with:

– Data and function points quality A (assessed as being sound with nothing
being identified that might affect their integrity) or B (appears sound but
there are some factors which could affect their integrity).

– Recorded effort that considers only development team.
– Normalised effort equal to total recorded effort, meaning that the reported

effort is the actual effort across the whole life cycle.
– Functional sizing method IFPUG version 4+ or identified as with adden-

dum to existing standards.

The preprocessing resulted in 187 projects from a single company (WC)
and 826 projects from other companies (CC). Three different datasets were
then created:

– ISBSG2000 – 119 WC projects implemented after the year 2000 and 168
CC projects implemented up to the end of year 2000.

– ISBSG2001 – 69 WC projects implemented after the year 2001 and 224
CC projects implemented up to the end of year 2001.

– ISBSG – no date restriction to the 187 WC and 826 CC projects, meaning
that CC projects with implementation date more recent than WC projects
are allowed. This dataset can be used to simulate the case in which it is
known that other companies can be more evolved than the single company
analysed.
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Fig. 1 Sorted productivity of the 826 ISBSG CC projects. The vertical black lines separate
the projects into three subsets according to the ranges in table 1.

The split date has been chosen so as to provide increments of roughly the
same size. ISBSG2001 contains a few more than 60 WC projects, ISBSG2000
contains almost 2 · 60 projects and ISBSG contains a few more than 3 · 60
projects. Even though these datasets are not entirely independent, they can
demonstrate how well DCL is able to cope with different data stream lengths.
Indeed as can be seen in section 6 (figures 3(a), 3(b) and 3(c)), the weights
learned by DCL differ for these three datasets.

Four input attributes (development type, language type, development plat-
form and functional size) and one output attribute (software effort in person-
hours) were used. K-Nearest Neighbours [13] imputation was used for dealing
with missing attributes for each dataset separately.

The CC models used by DCL were trained on CC project subsets cre-
ated according to their normalised level 1 productivity rate provided by the
repository. The separation into subsets was based on the distribution of pro-
ductivity. A representative example of productivity and its skewness is shown
in figure 1. The ranges used for creating the subsets are shown in table 1 and
were chosen to provide similar size partitions. This process could be easily
automated in practice. Note that each of the three datasets derived from the
ISBSG repository thus contain three different CC subsets and one WC data
stream.

5.2 Nasa60Coc81 Dataset

Nasa60 3 and Cocomo81 are two software effort estimation datasets available
from the PROMISE Repository. Nasa60 contains 60 Nasa projects from 1980s-
1990s and Cocomo81 consists of the 63 projects analysed by Boehm to develop

3 Nasa60 has also been named Cocomo Nasa in the past, and is not available for download
from the current PROMISE repository.
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Table 1 Ranges of productivity for CC subsets. For ISBSG2000, ISBSG2001, IS-
BSG and Nasa60Coc81, these ranges were used to create different CC subsets. For
Nasa60Coc81Nasa93, these ranges represent the different productivity values present in the
original Cocomo81 and Nasa93 datasets.

CC Subset Productivity Band Number of Examples
CC-0 [0.7,5] 56

ISBSG2000 CC-1 (5,13] 57
CC-2 (13,155.7] 55
CC-0 [0.7,6] 72

ISBSG2001 CC-1 (6,14] 79
CC-2 (14,155.7] 73
CC-0 [0.3,10] 291

ISBSG CC-1 (10,20] 250
CC-2 (20,424.9] 285

Coc81-0 [0.7,2.85] 19
Nasa60Coc81 Coc81-1 (2.85,6.6] 20

Coc81-2 (6.6,49] 24
Nasa60Coc81Nasa93 Coc81 [0.7,49] 63

Nasa93 [0.59,89.38] 93

the software cost estimation model COCOMO [11]. Both datasets contain 16
input attributes (15 cost drivers [11] and number of lines of code) and one
output attribute (software effort in person-months). Cocomo81 contains an
additional input attribute (development type) not present in Nasa60, which
was thus removed.

Nasa60’s projects were considered as the WC data and Cocomo81’s projects
were considered as the CC data. There is no information on whether Nasa60’s
projects are sorted in chronological order. The original order of the Nasa60
projects was preserved in order to simulate the WC data stream. Even though
this may not be the true chronological order, a simulated chronological order
can be used to show (1) whether DCL would be able to identity which model
is more relevant with that order of projects and (2) whether DCL can benefit
from the CC models to improve SEE. As for Cocomo81, the dataset provided
by the PROMISE repository is sorted according to project identifier. In this
study, we have sorted Cocomo81’s projects according to the completion year
provided in Boehm’s book [11].

In order to create different CC models for DCL, the productivity in terms of
effort divided by the number of lines of code was calculated for Cocomo81. The
productivity values are skewed, similarly to ISBSG’s, shown in figure 1. CC
projects were then separated into subsets according the ranges shown in table
1. Each CC subset was used to train one CC model. Note that Nasa60Coc81
is thus composed of three CC subsets (derived from Cocomo81) and one WC
data stream (Nasa60).

5.3 Nasa60Coc81Nasa93 Dataset

This dataset is also composed of Nasa60 and Cocomo81, but it includes an
additional dataset called Nasa93, which contains 93 Nasa projects from 1970s-
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1980s and has the same input and output attributes as Cocomo81. As with Co-
como81, the attribute development type was removed in order to keep compat-
ibility with Nasa60. Nasa60 and Nasa93 are both composed of Nasa’s projects,
and they have an overlap of 55 projects. Nasa60 is used here as the WC data
stream, whereas Cocomo81 and Nasa93 are used as two “CC subsets”. So,
Nasa93 should be identified as very useful for predicting Nasa60 projects by
any approach or analysis performed with that purpose.

Cocomo81 is used as a single CC subset for DCL as shown in table 1,
instead of being divided into three. Similar to Nasa60Coc81, the original order
of the Nasa60 projects is preserved in order to simulate the WC data stream.
Note that Nasa60Coc81Nasa93 is thus composed of two CC subsets (Cocomo81
and Nasa93) and one WC data stream (Nasa60).

It is worth noting that there are mainly two types of analyses in this paper:
(1) analyses to evaluate and understand the behaviour of DCL and its ability
to emphasize the right models, and (2) analysis to check whether CC data can
improve predictive performance over WC models. For the former, the existence
of an overlap between the CC and WC data simulates the case where a given
CC model is very helpful for improving WC predictions. This is very useful
to test whether DCL is successful in finding out that the corresponding CC
model is helpful. For the latter, the overlap means that we cannot use Nasa93
as a CC subset to draw the conclusion that CC data are useful for improving
WC predictions.

6 DCL’s Ability to Emphasize the Right Models

DCL was designed to be able to identify which past models best represent
the current projects being estimated by a given company in terms of the ef-
fort required to develop software projects. Therefore, it is essential to analyse
whether DCL is successful in doing so. This section evaluates the ability of
DCL’s dynamic weighting mechanism to emphasize the models that best rep-
resent the company that we are interested in (single company). It investigates
how well DCL addresses RQ1. It also provides an in depth understanding of
DCL’s behaviour, contributing to its external validity.

6.1 Experimental Setup

The analysis is based on the following:

– the weights given by DCL to each base learner, and
– the predictive performance of each base learner in isolation, i.e., when used

for predictions as a single model rather than within DCL.

If the highest / lowest weights correspond to the base learners that perform
best / worst, DCL’s weighting scheme is successful.

Regression trees (RTs) were used as the data models in the experiments, as
they achieved good predictive performance for SEE in comparison to several
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other approaches [44]. The input and output attributes of the RTs are the in-
put and output attributes of the datasets explained in section 5. We used the
REPTree implementation from Weka [19] to implement the RTs. The param-
eters of the RTs were minimum total weight of one for the instances in a leaf,
and minimum proportion 0.0001 of the variance on all the data that need to
be present at a node in order for splitting to be performed. These parameters
were shown to be appropriate in the literature [48].

DCL’s parameters were the default values of βc = βw = 0.5, Tstart = 15
and Q = 0.9. The use of default values for DCL ensures that any benefit
obtained by DCL does not depend heavily on fine tuning its parameters. This
is especially desirable considering that companies would frequently not have
resources for fine tuning parameters, and that non-stationary environments
might cause the best parameters to change with time. An analysis of the impact
of different parameter choices on DCL’s predictive performance is provided in
section 10.

A single execution for each dataset from section 5 was performed, as both
DCL and the RTs used in this study are deterministic and the datasets must
have their order of examples fixed to represent the real online learning scenario
of a company. This is a standard procedure when evaluating online learning
approaches [49,31].

At each time step, the predictive performance was measured in terms of
Mean Absolute Error (MAE) over the predictions on the next ten projects of
the WC data stream. MAE is defined as:

MAE =

n∑
i=1

|yi − ŷi|
n

,

where n is the number of cases considered (which is ten in this work), yi is
the actual value of the variable being predicted and ŷi is its estimation. MAE
was chosen for being a symmetric measure unbiased towards under or overesti-
mates, different from other measures such as measures based on the Magnitude
of the Relative Error (MRE) [37,56]. Lower MAE indicates higher/better pre-
dictive performance.

6.2 Analysis

If a base learner performs better than another one at a given time step, this
means that it represents the current relationship between input and output at-
tributes of the single company better than this other model. Therefore, DCL’s
weighting scheme can be considered successful in learning this if it assigns
higher weights to base learners that perform better. In particular, if a certain
CC model obtains better predictive performance than the WC model at a
given time step, it is considered more beneficial than the WC model at this
time step. If the CC model’s predictive performance is worse at a given time
step, it is considered detrimental at this time step. Therefore, we provide an
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analysis of the predictive performance of each RT used within DCL in combi-
nation with the weight assigned by DCL to it.

Figure 2 shows the MAE of each isolated RT at each time step. We can
see that the MAEs of different models (CC-RTs and WC-RT) are consider-
ably different from each other and that they can become more or less bene-
ficial/detrimental for the single company whose projects are being estimated,
depending on the moment in time. For ISBSG2000, ISBSG2001, ISBSG and
Nasa60Coc81 (the datasets that use real CC data), it is interesting to observe
that the CC-RTs sometimes perform better than the WC-RT. This demon-
strates that CC models have the potential to improve predictive performance
over WC models [43].

Figure 3 shows the weights attributed by DCL to each model throughout
time. The weights vary much more for ISBSG2000, ISBSG2001 and ISBSG
than for Nasa60Coc81 and Nasa60Coc81Nasa93. This reflects the fact that
the relative predictive performance of the best performing base learners is
less stable for ISBSG2000, ISBSG2001 and ISBSG than for Nasa60Coc81 and
Nasa60Coc81Nasa93 (figure 2). For instance, the predictive performances of
CC-RT0 and WC-RT are competing during several moments for ISBSG (figure
2(c)), especially after time step 50. These two models usually present the best
predictive performances after this time step (figure 2(c)). This is reflected by
DCL, whose weights attributed to CC-RT0 and WC-RT are also dominating
and competing against each other during this period (figure 3(c)). On time
steps 20-45, CC-RT1 also achieves competitive predictive performance (figure
2(c)), presenting similar and competing weight to CC-RT0 and WC-RT (figure
3(c)). Before time step 20, the best predictive performance is achieved by CC-
RT0, and this is also successfully reflected by its higher weight during the
first time steps. Nevertheless, there are some moments in time where a certain
learner is best at predicting the next ten projects, but this is still not reflected
by DCL’s weights.

From figure 2(d), we can see that CC-RT1 was the model with the best
overall predictive performance across time steps for Nasa60Coc81. This was re-
flected by its large weight shown in figure 3(d). Therefore, DCL was successful
in identifying the model that most contributed to a better overall predictive
performance across time steps. However, we can also see that CC-RT0 was
better than CC-RT1 between time steps 25–35, and this behaviour was not
reflected by DCL’s weights. A possible reason for that is that CC-RT0’s weight
became too low due to its prolonged time behaving worse than CC-RT1. So,
we have performed experiments restricting the weights of all models to a mini-
mum of 0.01 to check whether the weight can reflect better the current projects
being estimated. This resulted in an increase of CC-RT0’s weights, but this
increase was delayed and only started to become more apparent after time step
30. So, restricting the weights to 0.01 did not provide significant improvements
in predictive performance.

In order to find the reason why DCL is sometimes not able to empha-
size the right models sufficiently, we examined the absolute error obtained by
base learners on the project at the current time step. For example, in order
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Fig. 2 Predictive performance of CC-RTs (not trained with WC data) and WC-RTs for
each dataset in terms of MAE. Some RTs have very high MAE, but the limit of the y-axis
was not increased to avoid hindering visualization of the better performing RTs. From [43].

to understand why DCL was not able to emphasize CC-RT0 sufficiently for
Nasa60Coc81 between time steps 25–35, we examined the absolute error ob-
tained by each model on the project at the current time step between time
steps 25–45 (table 2). This reveals that, even though CC-RT0 is a better model
to predict the effort of the next ten projects (figure 2(d)), WC-RT is better at
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Fig. 3 DCL’s dynamic weights.

making predictions for the current project during 25–27, becoming frequently
the winner during these time steps. As a result, WC-RT’s weight, rather than
CC-RT0’s, increases on these times steps (this increase is only visually no-
ticeable in plots when restricting DCL’s weights to 0.01, which were omitted
due to space constraints). This analysis shows that, when future projects be-
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Table 2 Absolute error of each base learner for the project at the current time step for
Nasa60Coc81. Cells in yellow (light grey) represent the winner model.

Time Step C-RT-0 CC-RT1 CC-RT2 WC-RT
25 105.00 105.57 766.00 47.00
26 77.93 62.60 119.40 2.40
27 77.93 62.60 119.40 1.20
28 21.20 6.89 56.80 10.80
29 15.20 0.89 62.80 23.80
30 1.60 15.91 79.60 9.60
31 0.80 13.51 77.20 2.40
32 26.00 11.69 52.00 7.80
33 177.80 151.80 70.20 52.80
34 149.00 264.50 2131.00 857.00
35 185.00 228.50 2095.00 120.00
36 40.00 373.50 2240.00 145.00
37 185.00 228.50 2095.00 36.00
38 38.00 7.00 501.20 12.00
39 10.33 21.33 956.50 110.00
40 10.00 5.00 956.50 58.40

come suddenly too different from the current ones, DCL may not be able to
emphasize the best models for predicting those future projects fast enough.
This is not unexpected, because a learner cannot learn what has not been
taught. Such a situation might be better handled by techniques for detecting
concept drifts [49]. Similarly, on time steps 30-37, both CC-RT0 and WC-RT
win frequently, causing their weights to increase competitively during this pe-
riod. This impedes CC-RT0 of achieving a higher overall weight. The reason
for WC-RT’s higher MAE on time steps 25–35 (figure 2(d)) is its very high
error on a single project (time step 34), and not the number of times that it
loses.

From figure 2(e), we can see that CC-RT1 was the best model throughout
the whole learning for Nasa60Coc81Nasa93. This is expected, as CC-RT1 was
trained on a dataset containing an overlap with the WC data stream. As
shown by figure 3(e), DCL gave the highest weight to this model throughout
the learning. Therefore, DCL was successful in identifying CC-RT1 as the best
model to be used.

In short, the dynamic weighting mechanism of DCL is generally successful
in identifying the best base learners to be emphasized (RQ1). However, abrupt
changes can sometimes cause a given model to suddenly present much better
/ worse predictive performance than before, without a transition period for its
weights to gradually start reflecting the new situation. In these cases, weights
have a short delay in reflecting the new situation, because they can only start
reflecting it once it becomes active. In the future, techniques for detecting
concept drifts [49] could be used here.
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7 DCL’s Predictive Performance

DCL was designed to emphasize the models that reflect well the current re-
lationship between input and output attributes for a given company. Section
6 demonstrated that DCL is successful in doing so. However, no analysis has
been done so far to check whether emphasizing the right models can really lead
to improvements in SEE. This section presents such an analysis, contributing
to answering RQ2. Given that DCL relies not only on the weighting mecha-
nism, but also on a backup filtering mechanism, this section also investigates
how helpful each of these mechanisms is in improving predictive performance
and whether they are both really essential to DCL. Section 7.1 explains the
experimental setup, and sections 7.2 and 7.3 present the analysis.

7.1 Experimental Setup

The analysis presented in this section is based on a comparison between DCL
and the following approaches:

– DCL using only filtering (DCL-F),
– DCL using only dynamic weighting (DCL-W) and
– DCL using no dynamic weighting and no filtering (DCL-N).

DCL-F and DCL-N represent approaches that give the same emphasis to all
SEE models. They use a fixed weight of 1/(m + 1) for each model and will
be used to validate DCL’s success in improving SEE in comparison to cor-
responding approaches that do not attempt to emphasise different models.
DCL-W and DCL-F will be compared to DCL in order to analyse the contri-
bution of dynamic weighting and filtering to DCL’s predictive performance.
The parameters of all approaches were the same as in section 6.1.

Besides evaluating predictive performance in terms of MAE, this section
also analyses the standardized accuracy (SA) and effect size ∆ [56] in order
to provide interpretable results in terms of the magnitude of the predictive
performance. SA is defined as SAL = (1−MAEL/MAER)× 100, where L is
the approach being evaluated, MAEL is the MAE of this approach, and MAER

is the MAE of a large number, typically 1000, runs of random guesses (rguess).
Rguess estimates the effort of a WC project pt on a time step t as the effort of
a WC project pi, 1 ≤ i < t sampled uniformly at random. We used 1000 runs
of rguess, following previous work [56]. SAL is viewed as the ratio of how much
better L is than rguess. The effect size ∆C of an approach against the control
approach C in terms of MAE is defined as ∆C = (MAEC−MAEL)/SC , where
SC is the sample standard deviation of the control approach. As suggested by
Shepperd and McDonell [56], we interpret the absolute value of the effect
size, which is standardised (i.e., scale-independent), in terms of the categories
proposed by Cohen [15]: small (≈ 0.2), medium (≈ 0.5) and large (≈ 0.8). So,
the effect size can be used to explain how large the difference in MAE between
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an approach and a control approach is, and thus gives insight into how large
the impact of this difference is likely to be in practice.

SEE is typically a very difficult task and approaches might perform worse
than rguess [56]. An approach that performs similar or worse than rguess is
useless from the practical point of view. We compared DCL against rguess in
our previous work [43]. Our experiments showed that DCL always performed
statistically significantly better than random guess with very high effect size.

7.2 DCL’s Ability to Improve Overall MAE

In order to investigate the success of DCL in improving SEE predictive perfor-
mance, we compare it against DCL-F and DCL-N, which represent approaches
that give the same emphasis to all SEE models. In order to find out which
mechanism (dynamic weighting or filtering) contributes more to DCL’s pre-
dictive performance, we compare DCL against DCL-W and DCL-F.

Table 3 shows the overall predictive performance achieved by DCL, DCL-
W, DCL-F and DCL-N for each dataset. As we can see, DCL-W provided the
best results for most datasets, whereas DCL using both dynamic weighting
and filtering produced the best results for ISBSG2000. In most cases, the
worst results were obtained when neither dynamic weighting nor filtering was
used (DCL-N).

In order to check whether these differences in predictive performance are
statistically significant, we performed a Friedman test for comparing the over-
all MAE across multiple datasets, as recommended by Demšar [17]. The test
detected statistically significant difference at the level of significance of 0.05
(FF = 27.25 > F (3, 12) = 3.49, p-value < 0.0001). The average ranking of the
approaches is shown in table 4. The highest ranked approach was DCL-W; the
second highest ranked was DCL; and the worst ranked approach was DCL-N.

The average rankings give us insight into what approaches performed bet-
ter/worse. For instance, even before performing post-hoc tests we can see that
although DCL-W’s average ranking was 1.2 and DCL’s was 1.8, these two val-
ues were quite similar to each other if we consider the standard deviation. In
the same way, DCL-F’s and DCL-N’s rankings were similar to each other, and
worse than DCL-W’s. Post-hoc tests with Holm-Bonferroni corrections were
performed to confirm which approaches are statistically significantly different
from the highest ranked approach DCL-W. The z and p-values of the post-
hoc tests are shown in table 4. They confirm that DCL using both dynamic
weighting and filtering performed similarly to DCL-W, whereas DCL-F and
DCL-N performed worse.

These results show that dynamic weighting was essential to DCL’s predic-
tive performance, as the best results for each particular dataset were always
achieved when dynamic weighting was used (DCL-W or DCL). This means
that DCL’s mechanism to emphasize different models is successful in improv-
ing predictive performance in comparison to approaches that give the same
weight to all models. The fact that there is no statistically significant differ-
ence between DCL-W and DCL across datasets means that filtering used in
combination with weighting did not provide additional benefits in all cases.
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Table 4 Ranking average and standard deviation of approaches across datasets based on
overall MAE; and z and p-values of the post-hoc tests for comparison of each approach
against DCL-W. The p-value in yellow (light grey) represents statistically significant differ-
ence of overall MAE using Holm-Bonferroni corrections at the overall level of significance of
0.05. For each dataset, smaller ranking represents better overall MAE.

Approach Rank Avg Rank Std z P-value
DCL-W 1.2 ≈ 1 0.45 – –

DCL 1.8 ≈ 2 0.45 0.7348 0.4624
DCL-F 3.2 ≈ 3 0.45 2.4495 0.0143
DCL-N 3.8 ≈ 4 0.45 3.1843 0.0015

7.3 Analysis of MAE at Each Time Step

Statistics such as overall average predictive performance reported in section
8.2 are good for providing a general idea of the predictive performance of
approaches. However, drawing conclusions based solely on such statistics is not
ideal, as they may hide other characteristics of the behaviour of the prediction
models throughout time that can be important when choosing one model over
the other. For instance, these statistics do not show whether a certain approach
is better at some time steps, but worse at others.

Figure 4 shows DCL’s MAE throughout time against DCL-N’s, which is
an approach that does not use DCL’s filtering and adaptive weighting mecha-
nisms. We can see that DCL performed better than DCL-N most of the time,
reflecting its better overall MAE presented in section 7.2. During a few periods
of time, however, DCL-N outperformed DCL. These were around time step 40
for ISBSG2000, 40–45 for ISBSG2001 and 37–45 for Nasa60Coc81. Improving
DCL’s weighting mechanism may help to avoid such periods of lower predictive
performance as is proposed as future work.

8 Using CC Models to Improve SEE

As explained in section 1, given the problems caused by small WC datasets,
both industry and academia have been investing in CC data [54,20], mak-
ing approaches able to use such CC data to improve SEE desirable. However,
existing approaches in the literature struggle to achieve such improvements
in predictive performance (see section 2). This section investigates how DCL’s
predictive performance compares to WC SEEs. It also compares DCL’s results
against existing CC SEE approaches, to check whether it is worth adopting
DCL in comparison to existing approaches. Together with section 7, this sec-
tion answers RQ2. Section 8.1 explains the experimental setup and sections
8.2 and 8.3 present the analysis.

8.1 Experimental Setup

DCL and the following approaches were compared:
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Fig. 4 Predictive performance of DCL and DCL-N for each dataset in terms of MAE. At
each time step, a new WC project is used for training, then the approaches are used to
predict the next ten projects, and the MAE is calculated based on these ten predictions.

– RT trained on the WC data stream (referred to simply as RT). As explained
in section 3, a new WC project is completed and received at each time step.
In order to create RTs, at each time step, the current RT was discarded and
a new RT was trained on all WC projects completed so far (including the
one completed at the current time step). This RT was then used to predict
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future projects of the WC data stream. As explained in section 6.1, RTs
have shown to produce good predictive performance for SEE in comparison
to several other automated approaches [44], being a good baseline approach
for this study.

– RT trained both on the CC and WC data streams (CC-RT). At each time
step, the current CC-RT was discarded and a new CC-RT was trained on all
CC data and WC projects completed so far (including the one completed
at the current time step). This CC-RT was then used to predict future
projects of the WC data stream. This approach represents existing CC
techniques that treat CC and WC data as a single dataset to be used for
building SEE models, e.g., [33].

– Relevancy filtering [61] trained on the WC data stream (Relevancy Fil-
tering). Relevancy filtering is the state-of-the-art in CC SEE. As it can
be applied to both WC and CC data, we first compare DCL against a
WC-only Relevancy Filtering using RT as the base learner. Similar to the
previous approaches, at each time step, the current Relevancy Filtering
model was discarded and a new one trained on all WC projects completed
so far.

– Relevancy filtering [61] trained on the WC and CC data (CC-Relevancy
Filtering). This model is created similarly to WC Relevancy Filtering, but
using not only all WC data received so far, but also all CC data as the
training data at each time step.

– DWM trained on the WC data stream (referred to as DWM). DWM is a
popular ML approach for dealing with non-stationary environments [31]. It
is included in the analysis to check whether DCL would be able to improve
predictive performance over an existing dynamic adaptive approach and
was first investigated in the SEE context in [43]. Different from DDD [49],
DWM keeps base learners likely to represent several different concepts. This
is more likely to be beneficial for SEE, where each concept is available for
a short period of time and may reoccur in the future.

– DWM first trained using the CC and then the WC data stream (CC-
DWM). CC-DWM was used to check whether DCL would produce com-
petitive results in comparison to a CC approach prepared to deal with
non-stationary environments.

The weight update rule used in DWM and CC-DWM was the same as the
one used in DCL, to provide a fair comparison and allow for regression tasks.
A new base learner is added to the ensemble if its estimation on the current
training project has absolute error higher than τ in a time step multiple of
p, where p is a parameter of DWM/CC-DWM. Existing base learners with
weight < θ are deleted also in time steps multiple of p, following the original
DWM algorithm [31].

DCL’s, CC-RT’s and RT’s parameters were the default parameters shown
in section 6.1. This ensures that the analysis of the behaviour of these ap-
proaches does not depend on fine tuning parameters. Relevancy Filtering and
CC-Relevancy Filtering used the default parameter value of k = 10 [61]. DWM
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and CC-DWM used the default parameter values of β = 0.5, p = 1, θ = 0.01
and τ = 0.25y [31,43] 4.

A single execution for each dataset from section 5 was performed for RT,
CC-RT, DWM, CC-DWM and DCL as they are deterministic when using the
deterministic RTs in this study. CC-Relevancy Filter and Relevancy Filter
are non-deterministic. So, 30 runs were performed for these approaches. The
average of the thirty runs at each time step was used in the analysis.

This analysis depends not only on DCL’s ability to emphasize the right
models, but also on how much CC data can help improving predictive perfor-
mance in comparison to WC models. Given that Nasa60Coc81Nasa93 contains
a CC subset which overlaps with the WC data, it cannot be used in this anal-
ysis. Therefore, this analysis is based only on ISBSG2000, ISBSG2001, ISBSG
and Nasa60Coc81.

8.2 Analysis of Overall MAE Across Time Steps

Table 5 presents the overall predictive performance across time steps in terms
of MAE, SA and ∆rguess. RT, DWM, Relevancy Filtering and CC-Relevancy
Filtering have effect size ∆rguess varying from medium to large, whereas DCL
and CC-DWM always have a very high effect size, showing a much better
predictive performance. Even though DCL’s, CC-DWM’s and CC-Relevancy
Filtering’s SAs were considerably larger given the difficulty of the SEE task,
RT, DWM and Relevancy Filtering presented low SA for ISBSG2001, indicat-
ing a clear need for improvement.

In order to compare multiple models over multiple datasets, we used Fried-
man statistical tests, as recommended by Demšar [17]. The measure compared
was the overall MAE across time steps. The test detected statistically signifi-
cant difference among the overall MAE of the approaches at the level of signif-
icance of 0.05 (FF = 6.46 > F (6, 18) = 2.66, p-value = 0.0009). The ranking
of approaches obtained from the test is shown in table 6. DCL was ranked
first (lowest/best MAE) for all datasets and was the only approach ranked
higher than RT. Therefore, we computed Wilcoxon Signed-Rank tests with
Holm-Bonferroni between DCL and RT for each dataset with overall level of
significance of 0.05. This is a stronger test than the usual post-hoc tests that
would normally be needed if we were interested in comparing every approach
against the baseline RT. Statistical comparisons between other approaches and
RT are not needed in this case because we know from the rankings that none
of them would outperform RT. The p-values for comparing DCL against RT
are 0.0015 for ISBSG2000, 0.0139 for ISBSG2001, < 0.0001 for ISBSG and
0.0074 for Nasa60Coc81, confirming that DCL outperforms RT on all these
datasets.

4 DCL was compared against DWM and CC-DWM in our preliminary work [43], but
those experiments were performed fine tuning DWM’s and CC-DWM’s parameters
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Table 6 Ranking average and standard deviation of approaches across datasets based on
the overall MAE. For each dataset, smaller ranking represents better overall MAE.

Approach Rank Avg Rank Std
DCL 1.00 0.00
RT 3.00 1.41

DWM 3.75 ≈ 4 0.96
Relevancy Filter 4.00 2.16

CC-DWM 4.00 1.41
CC-RT 6.00 1.41

CC-Relevancy Filter 6.25 ≈ 6 0.50

Our experiments are based on predicting the next ten projects in the WC
data stream. However, our approach is also applicable to other numbers of
future projects. As a sanity check, we have performed additional experiments
using DCL and the baseline approach RT for predicting the next three, five
and fifteen projects using Nasa60Coc81, ISBSG, ISBSG2000 and ISBSG2001.
If we count the number of wins (without checking for statistical significance),
DCL wins in all cases. A Wilcoxon Signed-Rank test to compare DCL-RT and
RT across datasets and numbers of future predictions confirms that DCL was
better ranked than RT (p-value of 0.00044).

Overall, we can conclude that DCL is successful in using CC data to im-
prove SEE in comparison with other existing SEE approaches, including WC
approaches. This result is of practical importance. It means that companies
can use data from other companies in order to reduce the issues caused by
the small size of their WC SEE datasets, saving the cost of collecting a large
number of WC data.

8.3 Analysis of MAE at Each Time Step

In this section, we analyse the predictive performance of DCL against the
baseline approach RT in order to further understand the benefit of using DCL
as a CC approach. Figure 5 shows the MAE at each time step for DCL and
RT. There are several periods of around 20 time steps in which DCL outper-
forms RT. This number of time steps possibly involves several months (or even
years) of worse RT estimations, which could have harmful consequences for a
company. So, the improvements provided by DCL are considerable in terms of
number of time steps.

We can see from figures 2 and 5 that DCL managed to use the poten-
tial benefit from CC data in several cases. However, even though DCL rarely
obtained worse predictive performance than RT throughout time, it still has
room for further improvement. Its MAE was a bit worse during the first 15
time steps for ISBSG2001. The full potential benefit from CC-RT1 and CC-
RT2 was not used by DCL in the last 15 time steps for Nasa60Coc81 either.
Improvements on DCL’s weighting scheme may help it to achieve better pre-
dictive performance, as it sometimes does not reflect the best models (section
6). Filtering may sometimes also hinder predictive performance, as shown in
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(a) ISBSG 2000 (≈ 2.5 years)
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(b) ISBSG 2001 (≈ 1.5 year)
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(c) ISBSG (≈ 6.5 years)
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(d) Nasa60Coc81 (≈ 17 years)

Fig. 5 Predictive performance of RT and DCL for each dataset in terms of MAE. The
number of years represents the period covered by the time steps considering the implemen-
tation date of the single company projects.At each time step, a new WC project is used for
training, then the approaches are used to predict the next ten projects, and the MAE is
calculated based on these ten predictions.

section 7. Therefore, future research could also look into improving DCL’s
filtering.

We also computed the effect size of DCL against RT’s for a sliding window
representing different periods of time using the function shown in algorithm
2. The window size is a critical parameter of this function. Too small windows
could be more likely to find short consecutive periods in which one approach
is continuously better than the other, creating too large effect sizes. Too large
windows would provide the same information as the overall effect size. In order
to determine the window size, we ran algorithm 2 with window sizes from 10
to 2/3 of the size of the dataset and computed the average of the effect sizes

in
−→
∆RT for each window size. The average of all effect sizes in

−→
∆RT should

be close to the overall effect size. So, the window size whose average effect
size achieved the smallest absolute difference with respect to the overall effect
size was chosen. This resulted in window sizes of 33 for ISBSG2000, 39 for
ISBSG2001, 43 for ISBSG and 32 for Nasa60Coc81. The sliding window effect
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sizes are shown in figure 6. As we can see, all datasets had at least some
moments in which the effect size was large and in favour of DCL (above the
top horizontal dotted black line). This further demonstrates that it is worth
using DCL as a CC learning approach.

Algorithm 2 Sliding Effect Size
Parameters:−−−→
MAEDCL: vector with DCL’s MAE at each time step;
−−−→
MAERT : vector with RT’s MAE at each time step;
T : number of time steps;
W : window size.

1: Create empty vector of effect sizes
−→
∆RT .

2: for i = 1 to T do
3: if i+W − 1 > T then
4: Return Eff .

5: AvgDcl←
∑j=i+W−1

j=i

−−−→
MAEDCL[j]

W

6: AvgRt←
∑j=i+W−1

j=i

−−−→
MAERT [j]

W

7: StdRt←
√

1
W−1

∑j=i+W−1
j=i (

−−−→
MAERT [j]−AvgRt)2

8: Add AvgRt−AvgDcl
StdRt

to the end of
−→
∆RT .

Return
−→
∆RT .

9 DCL and Types of Base Learners

This section analyses the overall behaviour of DCL when using different types
of base learner than RTs. It aims at (1) verifying whether it can still provide
benefits over its corresponding WC model when using other types of base
learner, and at (2) revealing what base learners do better in combination
with DCL. This analysis supports the external validity of this work, as it
shows whether DCL still performs as expected even when using different base
learners. It also gives insights to practitioners in terms of what base learners
to use with DCL for achieving better SEEs.

9.1 Experimental Setup

Besides using RTs as in the previous sections, this section also considers the
following base learners:

– Estimation by Analogy (EBA) [57] – this is the k-nearest neighbour algo-
rithm [9] based on normalised attributes and Euclidean distance.

– Bagging ensembles of RTs (Bag+RTs) [44].
– Radial Basis Function networks (RBFs) [9].
– Multilayer Perceptrons (MLPs) [9].
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(a) ISBSG 2000, window size = 33
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(b) ISBSG 2001, window size = 39
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(c) ISBSG, window size = 43
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(d) Nasa60Coc81, window size = 32

Fig. 6 Effect size∆RT based on sliding windows. The horizontal dotted black lines represent
the borders between what is considered a positive or negative small/medium/large effect size.

These base learners were chosen because they provide a variety of differ-
ent behaviours, including EBA as a competitive traditional approach to SEE;
Bag+RTs and RTs as two approaches that have more recently been shown to
be good for SEE in comparison to other approaches [44]; MLP as an approach
that has been shown to be successful as a base learner in other types of ensem-
bles for SEE [44,50], and RBF as an approach that has not been doing very
well for SEE [44,50]. RBFs were included to check whether DCL could make
their predictive performance competitive. Similar to section 8, base learners
trained on the WC data streams are simply referred to by the base learner’s
name (e.g., RT or RBF). DCL using a certain base learner is referred to as
DCL+<base learner name> in this section. For example, we refer to the DCL
models being used in the previous sections as DCL+RT in this section. Similar
to section 8, a WC model used on its own is simply referred to by its name
(e.g., RT).

The parameters used with DCL and RT are the default values used in
section 6.1. The parameter values for the other base learners were chosen
following the same procedure as for RTs, i.e., they are the values that most
often produced better results in [44]. These were number of neighbours k = 1
for EBA; number of hidden nodes 9, learning rate and momentum 0.1, number
of epochs 100 for MLP; minimum standard deviation for clusters 0.01 and
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number of clusters 6 for RBF; and for Bag+RT, number of base learners 50,
minimum total weight of 1 for the instances in a leaf of the RT, and minimum
proportion of the variance on all the data that need to be present at a node in
the RT in order for splitting to be performed 0.0001. A single execution was
performed for each dataset for EBA, which is a deterministic approach as our
RT. For the others, 30 runs were performed on each dataset.

The first part of the analysis aims at checking whether DCL improves upon
its corresponding WC learners. For that, the average overall MAE of DCL us-
ing each type of base learner on each dataset was paired with the average
overall MAE of the corresponding WC learner for each dataset. This compar-
ison is not used to check what combinations of DCL and base learner could
provide best results, but whether DCL can improve the predictive performance
of each type of WC base learner. Therefore, given that Nasa60Coc81Nasa93
contains a CC subset which overlaps with the WC data, it was not used for
this part of the analysis. This resulted in 20 pairs (5 types of base learner and
4 datasets). The comparison between DCL and the corresponding WC models
was based on a Wilcoxon Signed-Rank test across datasets, as recommended
by Demsar [17].

The second part of the analysis aims at finding out what combinations of
base learner do better with DCL. For that, a Friedman test [17] was performed
for comparison across all datasets considering each of the 5 combinations of
DCL with a base learner. Statistics such as SA, effect size ∆rguess and standard
deviation of the ranking in terms of overall MAE were also used in the analysis.

9.2 Analysis of DCL Vs WC Models

The Wilcoxon Signed-Rank test to compare DCL and the corresponding WC
models shows that the overall MAE rankings are statistically significantly
different across datasets with level of significance of 0.05 (p-value = 0.00068).
DCL’s sum of ranks was 196, whereas the WC models’ sum of ranks was 14,
where higher means better. So, DCL’s ranking is generally superior than its
corresponding WC models and we can conclude that DCL is generally robust
to the type of base learners. The only two cases where a WC model was ranked
higher than DCL were RBF for ISBSG2001 and EBA for Nasa60Coc81.

Table 7 shows the overall MAE, SA and effect size ∆rguess for the best three
ranked approaches in terms of MAE for each dataset. As we can see, the best
three ranked approaches were always based on DCL, i.e., DCL never lost from
a WC model when it was among the best ranked approaches. Moreover, the
effect size ∆rguess of the best three ranked approaches in terms of MAE was
always large, showing that they are considerably better than rguess. Therefore,
we can conclude that DCL is generally successful in improving SEE over its
corresponding WC model, contributing to its external validity. As a sanity
check, we have also compared the best ranked DCL against the best ranked
WC model for each dataset using Wilcoxon Signed-Rank tests with Holm-
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Table 7 Predictive performance of the best three ranked approaches in terms of MAE for
each dataset. Effect sizes in red (dark grey) can be considered as large.

Dataset Approach MAE SA ∆rguess

DCL+MLP 2262.83 48.26 3.35
ISBSG2000 DCL+Bag+RT 2293.03 47.57 3.31

DCL+RT 2352.59 46.21 3.21
DCL+IBK 2661.77 35.28 2.84

ISBSG2001 DCL+MLP 2784.57 32.29 2.60
DCL+RT 2873.11 30.14 2.43
DCL+Bag+RT 2586.80 57.30 1.66

ISBSG DCL+RT 2805.56 53.69 1.55
DCL+MLP 2856.90 52.84 1.53
DCL+RT 205.83 56.92 0.97

Nasa60Coc81 DCL+Bag+RT 244.93 48.74 0.83
DCL+MLP 247.40 48.22 0.82

Table 8 Ranking average and standard deviation of DCL approaches across datasets based
on overall MAE; and z and p-values of the post-hoc tests for comparison of each approach
against DCL+RBF. The p-values in yellow (light grey) represents statistically significant dif-
ference of overall MAE using Holm-Bonferroni corrections at the overall level of significance
of 0.05. For each dataset, smaller ranking represents better overall MAE.

Approach Rank Avg Rank Stdev z p-value
DCL+RT 2 1.00 2.6 0.0093

DCL+Bag+RT 2.2 ≈ 2 1.10 2.4 0.0164
DCL+MLP 2.6 ≈ 3 1.14 2 0.0455
DCL+EBA 3.6 ≈ 4 1.67 1 0.3173
DCL+RBF 4.6 ≈ 5 0.55 – –

Bonferroni corrections. The results show that DCL was significantly better for
all datasets.

9.3 Analysis of Combinations of Base Learners and DCL

The Friedman test for comparison of DCL using different base learners in
terms of overall MAE across datasets detected statistically significant differ-
ence at the level of significance of 0.05 (FF = 3.58 > F (4, 16) = 3.01, p-value
= 0.0288). Table 8 shows that DCL+RT is the highest ranked approach. From
the table, we can see that the average rankings of DCL+RT, DCL+Bag+RT
and DCL+MLP are similar. DCL+EBA has a larger standard deviation. This
reflects the fact that even though it was the best ranked on one dataset, it
was the worst ranked on two others. The approach with the worst average
ranking (DCL+RBF) was more consistently the worst ranked, as we can see
from its lower standard deviation. So, we performed post-hoc tests with Holm-
Bonferroni corrections to check what approaches are statistically significantly
different from it. The tests reveal that both DCL+RT and DCL+Bag+RT per-
form better than DCL+RBF, whereas DCL+MLP’s and DCL+EBA’s rank-
ings are not statistically significantly different from DCL+RBF’s.
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Table 9 ANOVA factors and interactions.

Factors 2-Factor Interactions 3- and 4-Factor Interactions
βw βw ∗ βc βw ∗ βc ∗Q
βc βw ∗Q βw ∗ βc ∗ Tstart
Q βw ∗ Tstart βw ∗Q ∗ Tstart
Tstart βc ∗Q βc ∗Q ∗ Tstart

βc ∗ Tstart βw ∗ βc ∗Q ∗ Tstart
Q ∗ Tstart

It is worth mentioning that Bag+RTs were always higher ranked than
single RTs, corroborating Minku and Yao’s results in terms of comparison
of these two approaches [44]. However, DCL+RTs is very competitive, being
three times better and two times worse than DCL+Bag+RT. DCL+RT was
always among the three best approaches, whereas DCL+Bag+RT was not for
ISBSG2001. None of the cases where DCL lost from the corresponding WC
model involved RTs or Bag+RTs. RBFs obtained the worst rankings in 4 out
of 5 datasets, and DCL+RBF did not manage to improve the ranking enough
to be among the best three. Overall, this analysis shows that it is worth using
DCL with RTs as the base learners.

10 The Impact of DCL’s Parameters

The previous sections used DCL’s default parameters. This section analyses
DCL’s sensitivity to parameters, revealing whether DCL’s predictive perfor-
mance can be influenced by parameter tuning [58] and which parameters in-
fluence its predictive performance the most.

10.1 Experimental Setup

We have performed an Analysis of Variance (ANOVA) based on a full factorial
design. The factors analysed are the main parameters involved in DCL: Q,
Tstart, βc, and βw. The first two are parameters related to the filtering of
cross-company models, whereas the last two are used in the adjustment of
weights of base learners. This leads to a total of 15 factors and interactions,
as shown in table 9. The following parameter values were tested:

– Q = 0.6, 0.7, 0.8, 0.9, 1.0;
– Tstart = 0, 15, 30, 45, 60;
– βc = 0.1, 0.3, 0.5, 0.7, 0.9; and
– βw = 0.1, 0.3, 0.5, 0.7, 0.9;

For each dataset among ISBSG2000, ISBSG2001, ISBSG and Nasa60Coc81,
the observations were DCL’s MAEs at each time step. The base learners were
RTs, as in section 8. Sphericity is the main assumption made by within-
subjects ANOVA [17]. We have used Mauchly tests to check whether spheric-
ity is violated, and found that sphericity is violated in all cases, except for
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Tstart in CocNasaCoc81 and ISBSG2000. Whenever sphericity was violated,
Greenhouse-Geisser corrections have been adopted. Our analysis is also based
on the effect size η2 [34] of factors and interactions with significant impact on
MAE.

10.2 Sensitivity Analysis

ANOVA reveals that all factors and interactions among factors have statisti-
cally significant impact on MAE, except for βw for ISBSG2000, and βc and
βw ∗Q for ISBSG2001. Most p-values were smaller than 0.009. As we have 15
factors and interactions, we expect all effect sizes η2 to be small. So, we inter-
pret them in relative rather than absolute terms. Our smallest η2 was 0.00006,
and the largest was 0.07345. We consider all η2 larger than 0.01000 as relatively
high. Table 10 shows all factors and interactions with both significant impact
on MAE and η2 larger than 0.01000, 0.02500 and 0.05000, respectively. Co-
hen’s suggested reference values for small, medium and large η2 were defined
for one-way ANOVA, which does not reflect our design. They are more likely
to be applicable to partial η2. Our partial η2 varied from 0.01483 to 0.28314.
However, we concentrated our analysis on η2 because, among other advan-
tages, η2 is more interpretable, representing the percentage of the variance
accounted for each factor / interaction [34].

Table 10 Effect size η2 of factors and interactions with statistically significant impact on
MAE.

Dataset η2 > 0.01000 η2 > 0.02500 η2 > 0.05000
ISBSG2000 βc, Q, βw ∗ βc None None
ISBSG2001 None βw βw ∗ βc

ISBSG βc, βw ∗ βc None None
CocNasaCoc81 Q, Q ∗ Tstart βc, Tstart, βw ∗ βc βw

Table 10 reveals that βc or its interaction with βw (βw ∗ βc) had relatively
high η2 for all datasets. This means that the choice of values for parameter
βc or the way these values interact with the values chosen for βw normally
affect DCL’s MAE considerably. Factors and interactions βw, Q, Tstart, and
Q ∗ Tstart had relatively high η2 for some datasets, but not for the others.
Therefore, even though these parameters and interactions can affect DCL’s
MAE, this is not always the case. Other interactions always had very small
η2, meaning that they have little effect on DCL’s MAE.

It is worth observing that Q and Q ∗ Tstart were less important for IS-
BSG2001 and ISBSG according to this analysis, given that their η2 was very
small for these datasets. As these parameters are related to whether or not
filtering is applied, this corroborates the results presented in Table 3, which
show that the difference in SA when using (DCL) or not using (DCL-W) filter-
ing was small. It is also worth noting that the interactions between weighting
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and filtering parameters (i.e., βc ∗Q, βc ∗Tstart, βw ∗Q and βw ∗Tstart) always
had very low η2. Interactions between βc and βw always had relatively high
η2, and interactions between Q and Tstart sometimes had relatively high η2.
This is expected, as βw and βc have a strong relationship with each other, and
Q and Tstart also have a strong relationship with each other.

11 Threats to Validity

In terms of internal validity [51], we have used as default parameter settings the
values that have most often achieved better results in related literature [44,31,
43,61]. It is good and user-friendly to have models perform well using default
parameter settings. In practice, there are still cases where further parameter
tuning can bring significant predictive performance gains. There are also still
cases when new learning models are needed. We have performed a sensitivity
analysis to investigate which parameters affect DCL’s predictive performance
the most.

Construct validity was first dealt with by using MAE as a predictive perfor-
mance measure. This measure is not biased towards under or overestimations,
being adequate for revealing the potential benefit of CC data. DCL was then
compared against other approaches based on MAE, SA and ∆. So, we con-
sidered not only the predictive performance, but also the magnitude of the
differences in predictive performance and effect size. Friedman, post-hoc tests
and Wilcoxon Signed-Rank tests [17] were used to show the significance of the
differences in MAE.

We have provided an in depth understanding of DCL to handle external
validity. Among others, the analysis explains in which situations DCL is suc-
cessful, and in which situations it may fail to benefit from the best performing
underlying model. Predictions for an uncertain future will always incur some
risk and errors. This is the case for all software effort estimation approaches,
including DCL. Our analysis shows that DCL reduces this risk in comparison
to other automated approaches by learning whether changes are happening
and adjusting its weights accordingly. However, it is still impossible to adjust
the weights to unknown changes that have never occurred in the available
training data. If a practitioner expects his/her company to suffer sudden and
unknown changes frequently, then automated approaches to software effort
estimation may not be the best option. If changes are not very sudden, then
approaches such as DCL can adjust to these changes.

Our analysis is based on five datasets. Three datasets with known WC
chronological order were used. Even though the chronological order is not
known for the other two, they can still be used to simulate a WC data stream
and show (1) whether DCL would be able to identity which model is more rel-
evant and (2) whether DCL can benefit from the CC models to improve SEE.
Therefore, the use of these datasets contributes to the generalisation of our
results. The dataset Nasa60Coc81Nasa93 was used for checking whether our
analyses and approaches are successful in identifying a subset that is known
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to be very useful. Obtaining additional datasets for evaluating DCL is diffi-
cult due to our need for non-proprietary datasets with information on which
projects belong to a single company among the projects of a CC dataset. If
more datasets become available in the future, a replicated study should be
performed. Nevertheless, the datasets used in our current study can be made
available through PROMISE and ISBSG. So, researchers and companies will-
ing to use DCL could use the same CC datasets used in this study. The subsets
used in our study also covered cases where they can be potentially very helpful,
competitive against WC data and detrimental. So, the subsets were diverse.

CC data were considered as fixed CC datasets by DCL. We showed that,
even after some periods of time when certain CC models are not useful, they
can still become useful later on. Fixed CC datasets as used here can be useful
for prolonged periods of time, allowing DCL to achieve similar or better overall
MAE than WC models. This means that DCL as investigated here is applicable
in practice. However, fixed CC datasets may not be useful indefinitely. If the
weights of the CC models become very small in comparison to the WC model,
this means that the CC data are not currently helping. If this happens in
practice and the accuracy of DCL’s predictions is deemed low, additional CC
data should be acquired and DCL re-built. The fact that DCL’s MAE was
usually not higher than the WC model’s during the beginning of the learning
period suggests that resetting DCL every several years might be a good option.
CC data can also be treated as a data stream and learned online, which is an
area that we would like to investigate as future work.

12 Conclusions

This paper presents a dynamic adaptive automated approach to find out when
CC models are beneficial and use them to improve SEE. It provides answers
to the research questions as follows:

[RQ1] How can we know which model from the past best repre-
sents the current projects being estimated?

A new dynamic adaptive automated approach called DCL was proposed
to answer this question. It uses weights to dynamically and automatically
determine when CC models are more or less helpful than a WC model. These
weights are adjusted based on DCL’s predictive performance throughout time,
giving more emphasis on the most recent projects in order to track possible
changes in the company’s environment. The dynamic weighting mechanism of
DCL was successful in identifying the best base learners to be emphasized.
However, abrupt changes sometimes caused a given model to suddenly present
much better / worse predictive performance than before, without a transition
period for its weights to gradually start reflecting the new situation. In these
cases, weights had a short delay in reflecting the new situation, because they
could only start reflecting it once it became active.

[RQ2] Can that information help improving SEE?
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Yes. CC models whose weights are higher are emphasised by DCL in order
to improve SEE. This resulted in improvements in predictive performance in
comparison to corresponding WC models and existing CC approaches from the
literature. DCL’s weighting mechanism was important to improve SEE, even
though DCL’s filtering mechanism was sometimes beneficial and sometimes
detrimental.

An important practical implication of our work is that DCL frees practi-
tioners from the need for manually determining which WC or CC past models
are relevant to the present. Moreover, our results show that DCL can be used
to identify when CC data is useful to improve SEE in comparison to WC mod-
els, reducing the negative effect of small WC datasets on SEE. This means that
our approach saves the cost of collecting WC data, enabling companies with
few WC data to use SEE models. For example, these companies can use DCL
with existing CC data, e.g., from ISBSG [20] or PROMISE [54] repositories.

The SEE models provided by DCL could be used for decision-support in
several ways. For instance, if the SEE produced by DCL is similar to the SEE
given by an expert, both the company and its clients could see that as a re-
assurance that the SEE given by the expert is in line with previous relevant
past projects. If the SEEs given by DCL and an expert differ considerably,
this could be used to trigger further analysis of the project to clarify its likely
effort, as mentioned in section 1. DCL could also assist project managers with
project planning (e.g., what team expertise to use), and requirement elicita-
tors with which requirements to implement (e.g., whether it is worth lifting or
including extra memory or CPU constraints, etc) [46]. This is because practi-
tioners could get SEEs for different sets of input attribute values for a project,
gaining insights into how much the resulting effort would vary. Additionally,
DCL’s weights can be used to identify which CC or WC SEE model best re-
flects the relationship between project input attributes and required effort in a
company. When associated with transparent (readable) base learners such as
decision trees, this can provide insights into what project attributes are more
highly correlated with effort and how these attributes interact with each other.
Practitioners could potentially use that information to gain insights into how
to improve productivity.

Given the encouraging results achieved by DCL, we would like to perform
an empirical validation of DCL with industry as future work. This will allow us
to investigate not only how good DCL’s SEEs are in comparison with expert-
based SEEs, but also how well DCL can contribute with software project
planning and management in practice. Other directions for future research
include treating CC projects as a data stream in DCL; using other types of base
learners with DCL; investigating other weighting mechanisms and mechanisms
to accelerate DCL’s recovery when there are abrupt changes; investigating
other approaches to filter CC models with the aim of improving the filtering
mechanism; and performing replicated studies with more datasets, if extra
datasets become available.
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