
Concept Drift Detection for Online Class Imbalance Learning

Shuo Wang, Leandro L. Minku, Davide Ghezzi, Daniele Caltabiano, Peter Tino and Xin Yao

Abstract— Concept drift detection methods are crucial com-
ponents of many online learning approaches. Accurate drift
detections allow prompt reaction to drifts and help to maintain
high performance of online models over time. Although many
methods have been proposed, no attention has been given
to data streams with imbalanced class distributions, which
commonly exist in real-world applications, such as fault diag-
nosis of control systems and intrusion detection in computer
networks. This paper studies the concept drift problem for
online class imbalance learning. We look into the impact of
concept drift on single-class performance of online models based
on three types of classifiers, under seven different scenarios
with the presence of class imbalance. The analysis reveals that
detecting drift in imbalanced data streams is a more difficult
task than in balanced ones. Minority-class recall suffers from
a significant drop after the drift involving the minority class.
Overall accuracy is not suitable for drift detection. Based on the
findings, we propose a new detection method DDM-OCI derived
from the existing method DDM. DDM-OCI monitors minority-
class recall online to capture the drift. The results show a quick
response of the online model working with DDM-OCI to the
new concept.

I. INTRODUCTION

ONLINE learning has received growing attention in
machine learning in recent years, as more and more

data is organized in the form of data streams rather than
static databases. This type of learning aims to give timely
response to incoming data. It has contributed to various real-
world applications, such as sponsored search from web click
data [1], credit card transactions [2] and spam filtering [3].
Strictly speaking, online learning algorithms process each
training example once “on arrival” without the need for
storage and reprocessing, and maintain a model that reflects
the current concept to make a prediction at each time step [4].
The online learner is not given any process statistics for the
observation sequence, and thus no statistical assumptions can
be made in advance [5].

It is often seen that the data stream presents an imbal-
anced class distribution, such as fault diagnosis of control
monitoring systems and intrusion detection in computer
networks. In these cases, some classes of data are much
more difficult or expensive to happen than the other classes,
referred to as “class imbalance” in the literature. It can lead
to great performance degradation, since the large number of
majority-class examples overwhelms the incremental update
of the model and minority-class examples are likely to be
ignored [6] [7]. Learning from such imbalanced data streams
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is called online class imbalance (OCI) learning [8], which
poses challenging problems to existing research. Concept
drift is one of them, the phenomenon of unexpected change
in underlying data over time. It is important as data is often
nonstationary in real world. For example, new types of faults
may appear during the process in fault detection. Although
there exist methods for detecting and handling concept drift,
class imbalance exacerbates the problem that need to be
addressed.

In our previous work [8], we proposed a learning frame-
work for online class imbalance learning, including three
essential modules: a class imbalance detector used to capture
the change in the prior probabilities of classes; a concept drift
detector used to capture the changes in the class conditional
probability density function (pdf); an adaptive online learner
to handle those changes when they occur and to make a
prediction on the current example. For the module of class
imbalance detector, we have proposed an effective way to
estimate the current class percentages and a detection method
to alert the online learner to the change in class imbalance.
As a continuation of the work, this paper will focus on the
module of concept drift detector.

First, we analyse the impact of concept drift under seven
scenarios with different types of concept drift and class
imbalance change. We record the accuracy on each class
(i.e. recall) and the overall accuracy at each time step,
and observe their behavior. The ensemble algorithm Online
Bagging is used as our online model, and three types of
base classifiers are considered: decision trees, naive bayes
and neural networks. The experimental results suggest that
the minority-class recall is a better indicator than overall
accuracy for detecting drifts involving the minority class. It
presents a consistent and significant drop when a concept
drift happens; meanwhile, it is less affected by the class
imbalance change. Regarding the online model, decision
trees and naive bayes are better base classifiers than neural
networks. The neural network ensemble shows very poor
minority-class recall in some cases, which can hide the effect
of drift. Inspired by the observations, we next develop a drift
detection method for online class imbalance problems, called
DDM-OCI, based on the idea of DDM [9]. DDM-OCI makes
use of the reduction in minority-class recall to capture the
drift. It is shown to be able to sense the drift effectively. The
online model applying DDM-OCI can respond to the new
concept faster than the model applying DDM and the model
without applying any drift detection methods in most cases.

The rest of this paper is organized as follows. Section II
introduces the existing work in the field of concept drift
detection and our previous research about online class im-
balance learning. Section III studies the impact of concept



drift in imbalanced data streams generated from two artificial
data sets and one fault diagnosis data emulator. Section IV
proposes the drift detection method and evaluates its perfor-
mance through extensive experiments. Section V draws the
conclusions and points out our future work.

II. RELATED WORK

In this section, we first introduce the existing approaches
for detecting concept drift, and explain why it is a difficult
issue when the data stream is imbalanced. Then, we give a
brief description of our previously proposed learning frame-
work for online class imbalance learning, and propose the
research questions studied in this paper.

A. Concept Drift Detection and Its Difficulties in Imbalanced
Data Streams

One of the main assumptions of traditional data mining
is that data is generated from a single, static and hidden
function. However, it is hard to be true for data stream
learning, where unpredictable changes are likely to eventu-
ally happen [10]. Concept drift is said to occur when the
underlying function that generates instances changes over
time. It can be formally defined as any scenario where
the joint probability p (x, ci) = p (ci) p (x | ci) changes, in
which x represents the input features and ci represents the
class label [11] [12]. So, it can manifest in the form of a
change in the prior probabilities of the classes, a change in
the class-conditional pdfs, or a change in both. A change in
the prior probabilities of the classes is related to a change of
class imbalance status. An example of such case is when a
class presenting to be the minority in the data stream turns
into the majority later on. In fault detection applications
of engineering systems, a type of faults can appear more
frequently along with time. Most existing methods aim to
tackle drifts involving class-conditional changes, because
they are considered to be more severe changes that affect
the classification boundaries.

The learners responsive to concept drifts can be either
trigger-based or evolving [10]. Trigger-based methods use
an explicit detector to indicate any need for model up-
date [13] [14] [15] [16], among which DDM (Drift Detection
Method) [9] and EDDM (Early Drift Detection Method) [17]
are two most popular ones strictly designed for online
learning scenarios. DDM monitors overall error rate to warn
the system about whether there is a drift, as it is believed
that a significant error increase suggests a change in the
class distribution in the PAC learning model. It computes
the probability of observing a fault pi for example i with
the standard deviation si during the learning process. The
algorithm issues a warning if pi + si ≥ pmin + 2smin,
and drift is confirmed if pi + si ≥ pmin + 3smin. DDM
requires waiting for at least 30 time steps after a drift is
detected. With the similar idea, EDDM uses the distances
between classification errors instead of the probability of
errors to detect drift. Once a drift is reported, the current
model is discarded or reset and a new one will be created.
Evolving methods on the contrary do not detect changes.

They usually maintain a set of models and get updated
periodically based on their performance estimation, such as
classifier ensembles [18] [19] [2]. Trigger-based methods can
have a very quick response to drifts, but suffer from “false
alarm” problems (i.e. a drift is reported when there is no
drift). Evolving methods can produce more accurate results,
but need some time to reflect the new concept.

Despite the aforementioned approaches, very little work
has discussed changes in the prior probabilities of the classes,
from which the problem of class imbalance can arise. Class
imbalance in data can lead to a great performance reduc-
tion [20] [21] and poses difficult challenges to online learning
including concept drift detection [22]. The difficulties lie in
the following aspects, especially when a drift happens to the
minority class. First, most traditional methods detect drifts
based on the drop of overall accuracy or the increase of error
made by the learner, such as EDDM and DDM. However,
these measures are not appropriate for imbalanced data as
they are sensitive to class imbalance and cannot reflect
the performance on the minority class well. The minority
class contributes too little to these performance measures
compared to the majority class. Second, too few examples
from the minority classes can make the time arbitrarily long
until the concept drift is detected, which makes it difficult
to infer the source of the error for the minority class – a
drift or merely a result of noise [22]. Third, the minority-
class performance can be very poor due to the imbalanced
distribution. It may cover the effect of concept drift for
detection. Fourth, a class can turn into minority or majority
over time, so that drift detection methods may need to be
adapted accordingly. Finally, the performance measures can
vary greatly with the chosen online learner. Any of them
could be the reason that affects the effectiveness of existing
drift detection methods.

In the following sections, we will refer to a change
affecting the class imbalance status as change in class im-
balance, and a change affecting the class-conditional pdfs
as concept drift, for brevity. Among very limited work
solving the combined issue of concept drift and class im-
balance [23] [24] [25], no drift detection methods have
been developed for imbalanced data streams to the best
of our knowledge. Our recent work first formulated online
class imbalance learning problems by proposing an online
processing learning framework [8]. More explanations about
the learning framework will be given in the next section.

B. Online Class Imbalance Learning Framework

Combining class imbalance with concept drift, online
class imbalance learning requires adaptive learning methods
that can identify minority-class data accurately and timely
without sacrificing the performance on the majority class
under nonstationary environments. Accuracy (especially on
the minority class), efficiency and adaptivity are desirable
characteristics for a good solution. To achieve the goal,
we proposed a learning framework that breaks down the
learning process into three modules – a class imbalance
detector, a concept drift detector and an adaptive online



leaner, as shown in Fig. 1 [8]. Each module handles one
major issue of online class imbalance, and communicates
with the others for the up-to-date status of data streams. The
class imbalance detector reports the class imbalance status of
data streams under nonstationary environments. The concept
drift detector captures concept drift involving classification
boundary shifts in imbalanced data streams. Based on the
information provided by these two modules, the adaptive
online learner determines when and how to respond to the
detected class imbalance and concept drift, and makes a real-
time prediction. This is a general framework for dealing with
imbalanced data streams with arbitrary number of classes.

1. Class Imbalance 
Detector

2. Concept Drift 
Detector

Data Stream

3. Online Learner

Imbalance 
Status

Drift for each 
class

Output Output

Fig. 1: Online class imbalance learning framework [8].

For the class imbalance detector within the framework, we
used time decay functions to report the current distribution
of class labels and current performance of the model on each
class, based on which an imbalance detection algorithm was
proposed to determine whether the current data stream should
be regarded as “imbalanced” in real time. The main idea
is, if there are any two classes having significantly different
sizes and the relatively large class receives much higher recall
than the small class from the model, then the small class is
regarded as the minority and the large class is regarded as
the majority. A class imbalance status will then be sent to the
online learner – resampling-based Online Bagging. It applies
either random oversampling or undersampling to adjust the
learning bias from the majority towards the minority. The
proposed methods are shown to be effective on data streams
with class imbalance changes and a static data concept.

The concept drift detector aims to detect potential changes
in the underlying distribution of data with the presence
of class imbalance. Due to the importance and learning
difficulty of minority classes, they should be given particular
attention. Using methods based on overall accuracy are
unlikely to provide accurate drift detections when the concept
drift affects mainly the minority class. Nevertheless, it is
still not clear how single-class performance behaves when
concept drift happens and whether it can help the detection.

Moreover, any change in class imbalance may disturb the
detection. Therefore, the following questions will be studied
in this paper as a part of the framework:
• How does concept drift affect the performance of each

class when data is imbalanced? Does a class imbalance
change affect the detection of concept drift?

• How to detect concept drift accurately and timely,
especially when it happens to minority classes?

III. IMPACT OF CONCEPT DRIFT IN IMBALANCED DATA
STREAMS

This section looks into the impact of concept drift on the
performance of each class in data streams with the presence
of class imbalance. The behavior of recall (i.e. single-
class accuracy) is observed under seven scenarios including
imbalanced data streams without any change, with only class
imbalance changes, with only concept drifts, and with both
class imbalance changes and concept drifts at the same time.
The analysis here will help us to recognize the different effect
of concept drift and class imbalance, and develop effective
concept drift detection methods for imbalanced data streams.

A. Data Set Descriptions

The data streams used in our experiments are generated
from two artificial data sets (SEA moving hyperplane con-
cepts [26] and STAGGER Boolean concepts [27]) and one
fault diagnosis platform iNemo. SEA and STAGGER are the
two most popular concept drift benchmarks in the literature.

SEA data consists of three attributes, where only the first
two attributes are relevant and no class noise is introduced.
All three attributes have values between 0 and 10. The class
label is determined by α1 + α2 ≤ θ, where α1 and α2

represent the first two attributes and θ is a threshold value. If
the condition is satisfied, then the example will be labelled as
class 0; otherwise, it will be labelled as class 1. θ is adjusted
for new concepts. Class 1 is chosen to be the minority class
in our work.

STAGGER concepts are boolean functions of three at-
tributes: size (small, medium and large), shape (circle, tri-
angle and rectangle) and colour (red, blue and green). New
concepts are obtained by defining different boolean functions.
Class labels can be ‘false’ (class 0) or ‘true’ (class 1). Class
1 is chosen to be the minority class in our work.

iNemo is a multi-sensing platform developed by STMicro-
electronics for numerous applications, such as virtual reality,
augmented reality, image stabilization, human machine inter-
faces and robotics. It combines accelerometers, gyroscopes
and magnetometers with pressure and temperature sensors
to provide 3-axis sensing of linear, angular and magnetic
motion in real time, complemented with temperature and
barometer/altitude readings [28]. To avoid any functional
disruption caused by signalling faults in iNemo, a fault
emulator is developed for producing and analysing different
types of faults. A fault is defined as an unpermitted deviation
of at least one characteristic property or parameter of the
system from the acceptable/usual/standard condition. It can
be introduced into any sensor of iNemo by using the emulator



TABLE I: Old and new concepts for each data set.

Concept SEA STAGGER iNemo
Old θ = 13 size=small ∩ color=red θ = 500

New Low Severity θ = 10 (size=small ∩ color=red) || (color=green ∪ shape=square) θ = 500 || θ = −500
New High Severity θ = 7 color=green ∪ shape=square θ = −500

given the real data sequence coming from the sensors. In our
study, we generate offset faults for the feature of gyroscope x-
axis. Specifically, the erroneous signal is produced by adding
an offset θ to the normal signal. The task of this data is to
build and maintain an effective online learner to detect faults.
Due to the rarity and importance of faults, fault detection in
engineering systems is a typical problem of learning from
imbalanced data streams. There are two classes in the data
stream – nonfaulty (class 0) and faulty (class 1). The faulty
class is the minority as it is much less likely to happen than
the nonfaulty class. θ is adjusted for new concepts.

We generated seven types of data streams for each of
the three data generators. Each type contains 1000 data
examples. During the first half of the examples (1-500 time
steps), the true size ratio between minority and majority
classes is fixed to 1:9 without any concept drift. In other
words, pc1 = 0.1, pc0 = 0.9, pold = 1 and pnew = 0,
where pc1 and pc0 denote the probabilities of examples
belonging to class 1 and class 0, and pold and pnew denote
the probabilities of examples generated from old and new
concepts. The class imbalance change or concept drift can
happen abruptly at the 501 time step with either high or
low severity. An abrupt concept drift means that from time
step 501 onwards pold = 0 and pnew = 1. An abrupt class
imbalance change means that the class size ratio switches
to another value right away. A change with high severity
means that the new concept or class imbalance status is very
different from the old one, whereas low severity means that
the change is less severe than the high severity one, as defined
in Tables I and II.

TABLE II: Old and new class imbalance status.

pc0 pc1
Old 0.9 0.1

New Low Severity 0.5 0.5
New High Severity 0.1 0.9

The seven data stream scenarios with different severity
of class imbalance change and concept drift are described
in Table III. Each data stream contains one concept drift
and one class imbalance change at the most. For all these
data streams, we assume that the minority class is known
at the beginning, which can be actually obtained from the
class imbalance detector in the learning framework; concept
drift always affects the classification rules of the minority
class. Currently, we only consider two-class data with abrupt
concept drifts or class imbalance changes. More complicated
cases will be included in our next stage investigation.

TABLE III: Data stream scenarios – severity of changes. The
symbol “–” indicates no change.

Case Class imbalance Concept drift
Case 1 – –
Case 2 High –
Case 3 Low –
Case 4 – High
Case 5 – Low
Case 6 High High
Case 7 Low Low

B. Experimental Settings

Online Bagging (OB) [4] is adopted as our online learner,
because it successfully extends the well-known offline en-
semble algorithm Bagging [29] to online cases and does
not present any specific behavior to handle concept drift.
So, it can be used to analyse the effect of changes and
give insight on how to detect them. In our experiments,
each OB ensemble is formed by 50 base classifiers. Three
types of classifiers are considered, including neural networks
(NN), decision trees (DT) and naive bayes (NB). Particularly,
Hoeffding tree [30] is used as a fast decision tree induction
algorithm that is capable of learning from massive data
streams. It is proved by the authors that a Hoeffding tree is
‘very close’ to classic decision tree learning schemes [31],
such as C4.5 and CART. The neural network is a single per-
ceptron classifier using the sigmoid function as the activation
function. The implementation was provided by the Massive
Online Analysis (MOA) tool with its default settings [32].
The OB algorithm is run 100 times on every data stream
and outputs the average performance at each time step.

In order to observe how the performance of each class
is affected by different types of changes, we monitor the
current recall Rk of the online model for each class ck,
defined by n+k /nk, where n+k denotes the number of correctly
classified examples with true label ck and nk denotes the
total number of examples with true label ck received so far.
Following the definition in the class imbalance detector [8],
Rk will be updated by R(t)

k = η′R
(t−1)
k + (1− η′) [x← ck]

at time step t if the current input x has true label ck, where
η′ (0 < η′ < 1) is a time decay factor for emphasizing the
learner’s performance at the current moment, and [x← ck]
is equal to 1 if x is correctly classified and 0 otherwise.
We choose time decayed Rk here rather than the traditional
prequential recall without applying the time decay factor,
because the former has been shown to be able to better reflect
the current performance of the online model in non-stationary
environments without forgetting its past performance too
much. It is expected to be more sensitive to concept drift,



and thus could be a better indicator for concept drift de-
tection. Besides, it has been used to detect class imbalance
successfully [8]. η′ is set to 0.9 in our experiments.

C. Results and Analysis

We plot Rk curves of each class produced from the seven
cases along with the time step, which are split into two
groups for comparison. Cases 1, 2, 4 and 6 are compared
in one plot to show the impact of high severity changes;
cases 1, 3, 5 and 7 are grouped to show the impact of low
severity changes.

Recall curves of class 1 are presented in Figs. 2–4 for SEA,
STAGGER and iNemo respectively, which is the original
minority class during the first 500 time steps. Each figure
shows the changing behavior of recall produced by OB with
different base learners. As we can see, all the models have
very poor recall on class 1 at first due to class imbalance.
DT and NB are more appropriate base learners than NN,
because their recall of class 1 gets better more quickly as
more data arrive, whereas NN struggles in particular for SEA
and iNemo.

We also observe that cases 4, 5, 6 and 7, which are the
cases containing the concept drift, present a significant drop
right after the 500 time step in DT-based OB and NB-based
OB in both high and low severity comparisons. That does
not happen to the other cases significantly. Cases 1, 2 and 3
show some performance fluctuation during the latter half of
training, but it is not a consistent performance reduction like
what happens in the concept drift ones. This is an important
observation, as it may be used to discriminate concept drift
from class imbalance change for drift detection.

Another interesting observation in DT-based OB and NB-
based OB is, the case with both concept drift and class
imbalance change produces a faster drop in recall than the
case with only concept drift when the drift happens. The
former then presents a faster performance recovery than the
latter for high severity changes. This is because more class
1 examples with the new concept arrive, thus affecting recall
more quickly. The performance drop is not observed in NN-
based OB in concept drift cases of SEA and iNemo, because
its recall on class 1 remains very low. This suggests that if
the model has very poor performance on the minority class,
it would be very difficult to detect the drift that happens to
this class.

The recall of class 0, on the other hand, does not change
much through all the time steps in most cases, which remains
very high (nearly 1), regardless of the base classifiers, types
of data streams, the changing severity and data generators,
according to our observations.

Generally speaking, minority-class recall can be a useful
measure for detecting concept drifts that involve the minority
class in imbalanced data streams, and a good indicator to dis-
criminate concept drifts involving the class-conditional pdfs
from class imbalance changes. In our cases, the “minority
class” we should monitor is the minority before any change
happens. The changing severity did not influence our results
much. The choice of online learners was more important.

Online Bagging ensembles based on decision trees and naive
bayes obtained better performance than the ensembles based
on neural networks for SEA and iNemo. Poor performance
on the minority class can cover the effect of concept drift
and increase the difficulty in locating the drift.

To explain why overall accuracy is not appropriate for
detecting drift in imbalanced data streams, Fig. 5 shows
how overall accuracy produced by DT-based OB behaves in
SEA data streams with high severity changes. For the fair
comparison, the time decay factor 0.9 is also applied for
calculating the overall accuracy.
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Fig. 5: SEA: time-decayed overall accuracy under the sce-
narios of high severity changes produced by DT-based OB.

According to Fig. 5, during the first 500 time steps,
the overall accuracy presents to be very high; in fact, the
performance on the minority class is actually quite low based
on our previous observations. From the 501 time step, a
severe drop can be observed in the case containing only
the class imbalance change (case 2), which is even more
significant than the case containing only the concept drift
(case 4). This is because overall accuracy is more sensitive
to the number of examples in classes. Even though there is
no concept drift in case 2, an abrupt increase in the number
of minority-class examples still causes a great accuracy
reduction. So, we would not recommend overall accuracy
as a reliable indicator for concept drift in imbalanced data
streams. It is important to emphasize here that the strategy to
deal with changes in class imbalance status (e.g., resampling)
should be different from the strategy to deal with drifts (e.g.,
resetting the model). For example, if the model is reset to
deal with a change in class imbalance where a majority class
becomes minority, useful information learnt when the class
was majority would be lost [8]. Thus, the inadequacy of the
overall accurate to distinguish between these two types of
change is problematic.

IV. CONCEPT DRIFT DETECTOR

In this section, we propose a new method, called Drift
Detection Method for Online Class Imbalance (DDM-OCI),
to locate concept drifts actively for imbalanced data streams.
Time decayed recall of the minority class is used as the



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

C
la

ss
 1

 T
im

e 
D

ec
ay

 R
ec

al
l

Data Streams without and with High Severity Changes

 

 

No changes
Percentage change
Concept drift
Both changes

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

C
la

ss
 1

 T
im

e 
D

ec
ay

 R
ec

al
l

Data Streams without and with High Severity Changes

 

 

No changes
Percentage change
Concept drift
Both changes

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Steps

C
la

ss
 1

 T
im

e 
D

ec
ay

 R
ec

al
l

Data Streams without and with High Severity Changes

 

 

No changes
Percentage change
Concept drift
Both changes

(a) Class 1 high severity changes (cases 1,2,4,6)
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(b) Class 1 low severity changes (cases 1,3,5,7)

Fig. 2: SEA: time-decayed recall curves of class 1 under the seven scenarios produced by OB based on DT, NB and NN
respectively (left: DT; middle: NB; right: NN).
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(a) Class 1 high severity changes (cases 1,2,4,6)
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(b) Class 1 low severity changes (cases 1,3,5,7)

Fig. 3: STAGGER: time-decayed recall curves of class 1 under the seven scenarios produced by OB based on DT, NB and
NN respectively (left: DT; middle: NB; right: NN).
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(a) Class 1 high severity changes (cases 1,2,4,6)
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(b) Class 1 low severity changes (cases 1,3,5,7)

Fig. 4: iNemo: time-decayed recall curves of class 1 under the seven scenarios produced by OB based on DT, NB and NN
respectively (left: DT; middle: NB; right: NN).

drift indicator based on the results so far. The method
will be integrated into the online class imbalance learning
framework, which processes data one at a time on arrival.
It can be easily extended to situations where data comes
in batches. We assume that the minority class is known
in current data for now. In the near future, we will apply
the class imbalance detector to provide the information in
real time and examine how well it can collaborate with the
concept drift detector.

A. Drift Detection Method for Online Class Imbalance

DDM-OCI modifies the traditional detection method
DDM [9] for online class imbalance scenarios. Instead of
monitoring the overall error rate in DDM, DDM-OCI tracks
the recall on the minority class. A significant drop in the
recall suggests a drift in this class. The existing decision
model thus needs to be updated. Given the class label
ck we should focus on, the method stores two values pi
and si, updated whenever the current example xi belongs
to ck, where pi is the probability of correctly classifying
examples having the true label ck, with standard deviation
si =

√
pi (1− pi) /i. pi is estimated by time-decayed recall

defined in the previous section. pmax and smax are recorded
to remember when pi + si reaches its maximum value, and
the following conditions are checked during the process:
• pi − si ≤ pmax − 2smax for the warning level. When

this level is reached, a potential drift is considered to
start from this moment tw. Examples coming after tw
are stored.

• pi − si ≤ pmax − 3smax for the drift level. When
this level is reached, the concept drift is confirmed at
this moment td. The online model and all the recorded
values including pi, si, pmax and smax are reset. A new
model is induced using the examples stored between tw
and td.

The coefficients of smax for warning and drift levels reflect
the confidence levels used to detect a significant drop in
recall. In the inequations above, the confidence levels are
95% and 99%, respectively [9]. DDM-OCI is not allowed to
perform new drift detections for 50 time steps after any drift
is detected, following the setting of larger than 30 examples
in the original paper. According to our observations in the
previous section, DDM-OCI might trigger false positive drift
detections (false alarms) due to the variance of recall on
the minority class throughout the learning. How DDM-OCI
performs in imbalanced data with the presence of concept
drift and whether false alarms can happen and affect its
performance will be examined next.

B. Performance Evaluation

DDM-OCI is evaluated through the online learning algo-
rithm – Online Bagging based on decision trees (DT-based
OB) and Online Bagging based on naive bayes (NB-based
OB), following the same settings as in Section III. Their
performance is compared to those using the traditional DDM
and those without applying any drift detection methods.
Online Bagging based on neural networks (NN-based OB) is
not discussed here, because of its very poor minority-class



performance. For the space consideration, the results from
NB-based OB are not shown in this section. Its outputs are
very similar to those produced by DT-based OB. Tested data
streams used in the following experiments are cases 4-7 of
SEA, STAGGER and iNemo, containing one concept drift.

We conduct the prequential test on recall of the minority
class, which is “class 1” for the three data sets. Prequential
test is an evaluation technique [33], in which each individual
example is used to test the model before it is used for
training, and from this the performance measures can be
incrementally updated. The model is always being tested on
examples it has not seen. In our experiments, the minority-
class recall is recorded at each time step, and a performance
curve can be produced. Each point on the curve is the
average of 100 runs. Because concept drift happens right
in the middle of the data stream, we separate the prequential
performance into two stages for the evaluation of each model
by resetting the performance results to 0 at the 500th time
step. This ensures that the performance observed after the
drift is not affected by the performance before the drift,
allowing us to analyse the behaviour of the models before
and after the drift adequately.
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(a) Case 4: concept drift with high sever-
ity
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(b) Case 5: concept drift with low sever-
ity
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(c) Case 6: concept drift and class imbal-
ance change with high severity
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(d) Case 7: concept drift and class imbal-
ance change with low severity

Fig. 6: SEA: prequential recall curves of class 1 produced
by DT-based OB for cases 4-7.

Figs. 6 - 8 present the prequential recall curves for each
data set. Each plot compares the online models with different
drift detection strategies. For the two artificial data SEA and
STAGGER, both DDM and DDM-OCI models outperform
the model without drift detection during the latter half of the
learning, which shows the usefulness of applying explicit
drift detecting techniques. DDM-OCI responds to the new
concept earlier than DDM in most cases, even though false
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(a) Case 4: concept drift with high sever-
ity
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(b) Case 5: concept drift with low sever-
ity
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(c) Case 6: concept drift and class imbal-
ance change with high severity
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(d) Case 7: concept drift and class imbal-
ance change with low severity

Fig. 7: STAGGER: prequential recall curves of class 1
produced by DT-based OB for cases 4-7.

alarms can cause DDM to surpass DDM-OCI in some cases
after the initial swift response (case 7 of SEA and case 4 of
STAGGER). Table IV shows the average number of detected
drifts.

TABLE IV: Number of drifts detected by DDM and DDM-
OCI in DT-based OB.

SEA STAGGER iNemo
Case 4 5 6 7 4 5 6 7 4 5 6 7
DDM 1 0 2 1 1 2 1 1 1 0 1 1

DDM-OCI 2 2 2 6 2 2 1 4 1 2 1 2

In case 6 of SEA, the number of false alarms was the same
for DDM and DDM-OCI. However, in this case, the moment
of the false alarms affected DDM-OCI’s performance more
badly than DDM’s. DDM-OCI gives a false alarm at around
time step 434 in most runs. This will cause a delay in the
detection of the real drift, because the model is reset and the
new smax and pmax are smaller than they would be if the
model had not been reset. DDM-OCI’s true drift detection
thus occurs around time step 541, which is later than DDM’s
detection at around time step 511. This will affect DDM-
OCI’s prequential recall badly. DDM’s false alarm, on the
other hand, occurs at time step 575. This false alarm is not
very detrimental to DDM’s prequential recall because in case
6 the percentage of examples from class 1 is very large, and
a decision tree learnt from a single example of class 1 is able
to provide very good class 1 recall.

When comparing high severity drifting cases (cases 4 and
6) and low severity drifting cases (cases 5 and 7), it seems
that low severity negatively affects DDM more than DDM-
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(a) Case 4: concept drift with high sever-
ity
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(b) Case 5: concept drift with low sever-
ity
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(c) Case 6: concept drift and class imbal-
ance change with high severity
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(d) Case 7: concept drift and class imbal-
ance change with low severity

Fig. 8: iNemo: prequential recall curves of class 1 produced
by DT-based OB for cases 4-7.

OCI, based on the observation that DDM models start to
react to the drift even later in low severity cases than in
high severity cases, sometimes even not providing a drift
detection. The reason could be that high severity drifts in the
minority class affect the overall accuracy more significantly,
and are easier to be detected by DDM. Therefore, DDM
tends to be less effective in detecting low severity drifts,
while DDM-OCI seems to be more robust to changing
severity from the point of view of early drift detection. When
comparing the cases without class imbalance change (cases
4 and 5) and those with class imbalance change (cases 6
and 7), both DDM and DDM-OCI recover faster from the
drift in cases 6 and 7, because more frequent occurrence of
examples from class 1 facilitates the learning.

For iNemo, DDM-OCI does not show much benefit. The
model without drift detection gives very good recall on the
new concept already, which may imply that the new concept
is quite easy to learn or related to the old concept. However,
we notice that DDM-OCI detects the drift correctly and
timely in these cases, which turns out to be detrimental
to the performance in cases 4 and 5. The model resetting
slows down the recall recovery from the old concept to the
new concept, probably because it is easier to adapt a model
that learnt the old concept to the new concept in this case
than learning the new concept from scratch. Nevertheless, an
increase in the percentage of examples from class 1 seems to
make the new concept easier to learn from scratch. In cases
6 and 7, DDM-OCI becomes useful again, and provides even
better performance than the approach with no drift detection.
So, performing early drift detections can still be useful for a

drift where the old model can itself adapt to the new concept.
In general, DDM-OCI is helpful for dealing with drifts

in the minority class. It detects drifts in the minority class
more quickly when using the same parameters (significance
level) for the algorithm as in DDM. It also responds to the
new concept better right after the drift in most cases. By
mapping the result into real-world applications such as fault
detection, it means that more new types of faults can be
detected in time, showing the practical value of this work.

The drawback of DDM-OCI is that it is sometimes too
sensitive, and thus can cause more false alarms. DDM is
more conservative, and may miss the drift when it happens
to the minority class. The sensitivity to the drift can be
actually tuned to some extent by adjusting the two threshold
parameters in the warning and drift levels. Currently, they
are set to 2 and 3 in both DDM and DDM-OCI. In order
to check whether DDM is able respond faster to the drift
and achieve more competitive results against DDM-OCI, we
tested it with several reduced parameters (0.5 and 1.5; 1
and 2; 1.5 and 2.5) and compared it to DDM-OCI with
the original setting. This test was performed for case 4 of
SEA and case 5 of STAGGER, in which DDM-OCI shows
significantly better recall than DDM after the drift based on
figures 6 and 7. Even though DDM with smaller parameters
did detect the drift earlier and allowed the online model to
recover its performance faster after the drift, minority-class
recall was considerably reduced before the drift, because
more false alarms happened to DDM than to DDM-OCI.
From this point of view, using single-class recall for drift
detection in DDM-OCI is more robust to the performance
disruption from other classes, and is thus more suitable for
imbalanced data.

The results here suggest that there is still room for us to
further improve DDM-OCI by getting rid of the false alarms.
Strategies to deal with false alarms such as the ones used
in [11] could be used not only to deal with false alarms, but
also to identify when an old model can recover faster than a
new model can learn. The investigation on that is proposed
as future work.

V. CONCLUSIONS

As it is rather impractical to assume that class prevalence
of each class in data remains equivalent and the data concept
remains static in streaming data applications, concept drift
detection in imbalanced data streams becomes necessary and
important, but hasn’t been studied by any of the existing work
so far. New challenges arise when both class imbalance and
concept drift can happen during online processing. This paper
looks into this problem, as a crucial component of online
class imbalance learning framework.

First, we analyse the impact of concept drift on the
performance of each class, especially the minority class, by
observing the changing behavior of the recall measure up-
dated incrementally with a time decay factor. Online Bagging
ensembles based on three types of classifiers are examined
and compared in seven learning scenarios generated from
three data sets. Minority-class recall presents a consistent and



significant drop when a concept drift happens; meanwhile,
it is less affected by the class imbalance change. Overall
accuracy is interrupted by both class imbalance change and
concept drift. This is undesirable if we use overall accuracy
to detect the drift, because adopted mechanisms to deal with
concept drift could be detrimental to the performance when
there is only a change in class imbalance. Regarding the
online model, decision trees and naive bayes are better base
classifiers than neural networks. The results suggest that
minority-class recall could be a good indicator for detecting
drifts.

Based on the first part of work, we develop an explicit
drift detection method, called DDM-OCI. It measures the
reduction in minority-class recall to capture the drift. It is
shown to be able to sense the drift effectively, but false alarms
exist and disturb its performance. The online model applying
DDM-OCI can respond to the new concept faster than the
model applying DDM and the model without applying any
drift detection methods in most cases.

In our future work, there is still much room to further
improve our method and experiments. First, it would be
necessary to reduce the impact of false alarms of detected
concept drift from DDM-OCI. It might be worth to explore
other types of detection methods. Second, we assume that the
minority class is known in this paper. This information can
be obtained in real time from the class imbalance detector
in the learning framework. We would like to examine the
performance when the class imbalance detector and concept
drift detector work together. Third, it would be interesting
to further investigate the impacts of class imbalance degree
and the corresponding class imbalance techniques on concept
drift detection. Currently, only two changing degrees have
been discussed. Besides, we would like to extend this work
to data streams with arbitrary number of classes.
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