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Abstract—Transfer learning has been used for solving multiple
optimization and dynamic multi-objective optimization problems,
since transfer learning is able to transfer useful information from
one problem to help solving another related problem. This paper
aims to investigate when and how transfer learning works or fails
in dynamic multi-objective optimization. Through computational
analyses on a number of dynamic bi- and tri-objective benchmark
problems, we show that transfer learning fails on problems with
fixed Pareto optimal solution sets and under small environmental
changes. We also show that the Gaussian kernel function used
in the existing transfer learning-based method is not always
adequate. Therefore, transfer learning should be avoided when
dealing with problems for which transfer learning fails and
other kernel functions should be used when the Gaussian kernel
is inadequate. This paper proposes novel strategies and kernel
functions that can be used in such cases. Experimental studies
have demonstrated the superiority of our proposed techniques to
state-of-the-art methods, on a number of dynamic bi- and tri-
objective test problems.

Keywords—Evolutionary Algorithms; Transfer Learning; Dy-
namic Multi-objective Optimization; Prediction-based Method

I. INTRODUCTION

Transfer learning [1] is a kind of machine learning method

that is able to transfer the knowledge from a source task to

a target task. This inherent characteristic of transfer learning

makes it intuitive to apply transfer learning to explore useful

experience that have been obtained in one task/problem to

solve another related task/problem. The reason is that some

similar or related problems/tasks may share some common

features, which help to transfer experience from one problem

to help solving another problem. As a result, computational

resources can be significantly saved when solving similar

problems later.

The first attempt at the application of transfer learning

to evolutionary computation is by Gupta et. al [2] on a

framework of evolutionary multi-tasking optimization (EMT).

Subsequently, additional work around transfer optimization for

EMT has been proposed. For instance, Da et. al [3] designed

an online learning method to seamlessly curb the negative

influence of transfer learning in EMT.

Although transfer learning has recently achieved some suc-

cesses in the field of EMT, it has seldomly been studied

in evolutionary multi-objective optimization (EMO). Gener-

ally speaking, dynamic multi-objective optimization problems

(DMOPs) [4] are a kind of multi-objective optimization prob-

lems which involve a series of problems whose objectives

change over time As we normally assume that the changing

problems are related, there are good opportunities for the

application of transfer learning in dynamic multi-objective

optimization (DMO). However, there has been so far only

one published paper on DMO, introducing transfer learning-

based dynamic multi-objective optimization algorithms (Tr-

DMOEAs) [5].

The key challenge in DMO is how to constantly trace a

changing Pareto optimal front (POF) and/or Pareto optimal set

(POS) before the next environment change [6]. Aiming at this

goal, researchers have proposed a prediction-based method [6]

[7]. This kind of method predicts what the good solutions in

the next environment are after learning the regularity of the

environment changes. In most prediction-based approaches, it

is implicitly assumed that the evolution of the solutions used to

train and test the prediction model obeys a fixed independent

and identical probability distribution. However, this is not

always true under dynamic environments in optimization, since

the environmental changes may result in different evolution

patterns over time. Consequently, the prediction model based

on the incorrect assumption may cause inaccurate prediction of

optimal solutions. Transfer learning, which does not make this

assumption, is a good candidate for solving DMOPs if it can

learn and exploit the relationship among different problems.

The main idea behind Tr-DMOEA is to transfer solutions in

the Pareto front (POF) of the previous environment to generate

an initial population for the next environment. Experimental

studies [5] have shown the superiority of Tr-DMOEAs over

the state-of-the-art in DMO. However, the results also showed

that Tr-DMOEA does not always work well. It is therefore

important to understand why and when transfer learning does

not work well. Only after understanding it can we make some

improvements regarding transfer learning in DMO.

Considering the general process of transfer learning [1],

there are three main components: (1) what to transfer; (2)

when to transfer; (3) how to transfer. In terms of the first

question, good solutions found for the previous environment

are typically aimed to be transferred to the next environment

in DMO. However, there are no straightforward answers to the

other two questions. This paper thus performs an investigation

to answer these two questions, and proposes a new method for



transfer learning in DMO, which overcomes key weaknesses

of the existing method [5].

The main contributions of this paper are as follows:

1) A comprehensive computational investigation into trans-

fer learning to find out when transfer learning does

and does not work well in DMO. We find that transfer

learning does work well on problems with fixed POS

and under small environmental changes.

2) A mathematical proof that the Gaussian kernel function

in Tr-DMOEA is not ideal; we show that a linear kernel

function overcomes the key weakness of the Gaussian

kernel function.

3) An improved method of transfer learning in DMO that

combines copied solutions from the previous environ-

ment and transferred solutions through linear kernels as

the initial population in the new environment. Experi-

mental results have shown that our proposed method is

better than the state-of-the-art methods in most cases.

The rest of this paper is organized as follows: Section II

answers the question when transfer learning works/fails in

DMO and proposes to avoid transfer learning when it fails.

In Section III, we present how transfer learning works in

DMO and propose to replace the Gaussian kernel function

with a linear one. Experimental studies of the proposal and

comparison with the existing methods are given in Section IV.

Section V states the summary and some potential future work.

II. WHEN DOES TRANSFER LEARNING WORK/FAIL IN

DMO?

This section analyzes when transfer learning works or fails

in DMO, such that some potential improvements can be put

forward.

A. Computational Investigation into Transfer Learning in

DMO

Generally, whenever a new environment change happens,

there is a population that has already been optimized to

the previous environment. To check whether transfer learning

works, we compare the quality of the following solutions

on the new environment: (1) transferred solutions and (2)

solutions copied from the previously optimized population. For

transfer learning to be considered as successful, (1) should be

of at least similar (and ideally better) quality than (2) on the

new environment.

The IEEE CEC 2015 Benchmark problems [8] are selected

as the test problems, which have 12 bi- and tri-objective

problems with different features. For the parameters of these

problems, there are 20 changes. In order to study the ef-

fectiveness of Tr-DMOEAs in different dynamics, there are

three dynamics with different severity of change (i.e., nt =

10, 1 and 20). They represent the environment changes are

medium, large and small, respectively. Within each change,

the population is forced to run 50 generations (i.e., τt = 50),

which enables the population to converge. This corresponds

to the parameter settings of C4, C6 and C8 in Table I. At

the beginning of the algorithm, the population iterates for 50

generations, which also enables the population to converge.

The experimental setup is as follows:

1) The population size is set as 200, as in previous work

[5];

2) RMMEDA [9] as the optimization algorithm. RMMEDA

is a regularity model-based multi-objective estimation of

distribution algorithm. It is able to make the population

converge quickly before the next change, avoiding the

cases that unconverged solutions affect the results. The

state-of-the-art Tr-DMOEA [5] is adopted.

3) In DMO, the key point is to find the optimal solutions

as soon as possible before next change. In this case,

the better the generated solutions after each change, the

better the Tr-DMOEA. Therefore, if transferred solutions

are better than copied solutions from the previous envi-

ronment, we consider that transfer learning works well.

In the contrary, if transferred solutions are worse than

copied solutions, transfer learning fails.

Inverted Generational Distance (IGD) [10] is used to com-

pare the performance of two solutions sets. IGD can measure

the diversity and convergence of a solution set found by an

algorithm, so it can give us a comprehensive understanding

about the performance of compared algorithms. MIGD [11] is

a modified version of IGD, which is the average IGD values

in all changes. The smaller the MIGD the better the algorithm.

TABLE I
CONFIGURATIONS OF BENCHMARK FUNCTION PARAMETERS.

nt τt . τT

C1 10 5 150
C2 10 10 250
C3 10 25 550
C4 10 50 1050
C5 1 10 250
C6 1 50 1050
C7 20 10 250
C8 20 50 1050

nt, τt and τT are the severity of change, frequency of change and
maximum number of iterations, respectively.

Here, MIGD values for Tr-RMMEDA and RMMEDA are

compared. After each environmental change, RMMEDA gets

an initial population found in last generation of the previous

environment, while Tr-RMMEDA obtains an initial population

through transfer learning. These two initial populations are

evaluated in the new environment and then used to calcu-

late the IGD values. MIGD values for Tr-RMMEDA and

RMMEDA are the average of IGDs under 20 environments.

The comparison results are shown in Table II, in which Tr. and

Copy mean MIGD values for Tr-RMMEDA and RMMEDA

respectively.

It can be observed from the table that transferred solutions

are all worse than those from the previous environment on

problems HE2, HE7 and HE9, no matter what kinds of changes

are present in these benchmark problems. All HE problems

have fixed POS. Therefore, it can be concluded that transfer

learning fails on problems with fixed POS. For other problems,

transferred solutions are better than those copied from the

previous environment when nt = 1 (C6). Regarding other two



TABLE II
MIGD VALUES FOR TR-RMMEDA AND RMMEDA.

Prob. C4 C6 C8

Methods Tr. Copy Tr. Copy Tr. Copy

FDA4 0.082 0.129 0.098 3.987 0.081 0.081

FDA5 0.389 0.179 1.294 5.211 0.325 0.115

FDA5iso 0.280 0.079 0.708 0.597 0.294 0.077

FDA5dec 0.645 0.242 3.006 4.901 0.583 0.119

DIMP2 11.630 19.361 11.379 19.621 12.466 22.124

DMOP2 1.531 0.798 35.126 40.256 1.165 0.216

DMOP2iso 0.002 0.002 0.082 0.111 0.002 0.002

DMOP2dec 1.044 2.533 5.182 61.288 1.028 0.324

DMOP3 0.751 0.472 33.648 37.936 0.656 0.121

HE2 0.365 0.125 0.187 0.125 0.266 0.123

HE7 0.309 0.051 0.285 0.042 0.311 0.049

HE9 0.288 0.238 0.273 0.215 0.263 0.245

For each problem with each parameter, Tr-RMMEDA and RMMEDA get
initial populations after each change. MIGD is the average of IGDs of initial
populations with one run under 20 changes. The better values obtained by the
algorithm are highlighted in bold face.

kinds of changes (C4 and C8), cases that transferred solutions

are better for C8 are more than those for C4. As a result,

transfer learning works better when the environment change

is smaller. To sum up, transfer learning works on problems

with small changes and with fixed POS.

One reason for this conclusion is that optimal solutions

copied from the previous environment will not become so bad

in the new environment, when the changes are small. Fur-

thermore, for problems with fixed POS, optimal solutions will

always keep optimal. Besides, the existing transfer learning

method is not able to transfer good solutions from the source

problem to make them still good in the target problem.

B. Avoiding Transfer on Problems with Fixed POS And Small

Environmental Changes

Generally, it is unlikely that the error of transferring good

solutions from a problem to anther problem would be zero.

Even if the existing Tr-DMOEA is improved, it is unlikely

that the error would become zero. As the copied solutions from

the previous environment are very good solutions for situations

with small changes or problems with fixed POS, it would be

very difficult for transferred solutions to beat the copied ones.

Therefore, the most intuitive idea to prevent negative results

obtained by transfer learning in such cases would be to prevent

using transferred solutions.

It has been computationally shown that transfer learning

fails on problems with small changes and fixed POS in DMO.

In order to improve the performance of transfer learning in

DMO, the most intuitive idea is to avoid transfer learning

when it fails. In addition, when transfer learning works well,

it should be definitely used. However, it is impossible for

algorithms to foresee which problem has fixed POS and

when the environmental changes are small. To overcome this

problem, after each change, transferred solutions and copied

ones from the previous environment are firstly combined

together. After that, nondominated sort and crowding distance

in NSGA-II [12] are used to rank the combined solutions on

the new environment. Lastly, solutions with the population

size are selected from the combined population as the initial

population.

C. Experimental Studies of the Proposed Strategy

This section analyzes the effectiveness of the strategy pro-

posed in section II-B through experiments. Firstly, all experi-

ment setups are the same as those in Section II-A. The only

difference is that we compare the proposed strategy against

the original transfer learning approach, to check whether it

can improve the MIGD values of the initial populations after

the changes.
TABLE III

MIGD OF COMBINED SOLUTIONS AND TRANSFERRED SOLUTIONS.

Prob. C4 C6 C8

Methods Tr. Comb. Tr. Comb. Tr. Comb.

FDA4 0.082 0.070 0.098 0.057 0.081 0.070

FDA5 0.389 0.185 1.294 0.226 0.325 0.181

FDA5iso 0.280 0.265 0.708 0.226 0.294 0.260

FDA5dec 0.645 0.270 3.006 0.295 0.583 0.353

DIMP2 11.630 3.514 11.379 3.793 12.466 3.807

DMOP2 1.531 0.004 35.126 18.035 1.165 0.004

DMOP2iso 0.002 0.004 0.082 0.112 0.002 0.004

DMOP2dec 1.044 0.019 5.182 0.191 1.028 0.017

DMOP3 0.751 0.003 33.648 18.022 0.656 0.003

HE2 0.365 0.069 0.187 0.056 0.266 0.061

HE7 0.309 0.040 0.285 0.036 0.311 0.040

HE9 0.288 0.226 0.273 0.199 0.263 0.237

For each problem with each parameter, combined solutions are the initial
population introduced in Section II-B, while transferred solutions are the initial
population obtained by Tr-RMMEDA in each change. MIGD is the average of
IGDs of these initial populations with one run under 20 changes. The better
values that the solution set have are highlighted in bold face.

The specific comparison results of transferred to combined

solutions are shown in Table III. The better value that the

solution set has is highlighted in bold face. Combined solutions

are termed as Comb. It is clear that combined solutions are

better than transferred ones (Tr.) on almost all test problems

under different environments. In addition, the Wilcoxon rank

sum test with the significance level 0.05 is carried out to

indicate significance between results obtained by transferred

and combined solutions. MIGD value of Tr. and Comb.

for each problem with one parameter is regarded as one

observation for the test [13]. The result with h = 1 and p =

1.2532e - 4 shows that the combined solutions are significantly

better than transferred solutions in the first generation after

change.

III. HOW DOES TRANSFER LEARNING WORK IN DMO?

A. Mathematical Proof that Gaussian Kernels Are Not Ideal

In this section, we briefly introduce the foundations of Tr-

DMOEA first. Then the weakness of using the Gaussian kernel

will be highlighted. The detailed process of Tr-DMOEA can

be found in [5].

In Domain Adaption Learning (DAL) [14], a transfer learn-

ing method, it is assumed that a transformation should be

found to a latent space where the difference between the

distributions of source and target domain is minimized. Once

this transformation is found, it can act as a bridge to connect

the source domain and the target domain. Then solutions that

have been optimized in one domain can be transferred to be

good solutions in another domain through this bridge.

The distance between the distributions of the source and

target domain can be calculated through the Maximum Mean



Discrepancy (MMD) [15], which evaluates the distance be-

tween two distributions in the Reproducing Kernel Hilbert

Space. Let p and q be two Borel probability distributions

defined on a domain X . FS = {Fs1, ..., F sm} and FT =

{Ft1, ..., F tn} are observations drawn from p and q. Let F
be a class of functions f : X → R. f can be written as

f(x) = 〈φ(x), f〉 in a RKHS, where φ(x) : X → H. The

estimated MMD in RKHS can be calculated as:

MMD(F , p, q) :=

∥

∥

∥

∥

∥

1

m

m
∑

i=1

φ(Fsi)−
1

n

n
∑

i=1

φ(Fti)

∥

∥

∥

∥

∥

2

H

(1)

In Tr-DMOEA, the distribution of the source and target

domains in consideration is the distribution of the objective

vectors of source and target solutions. Therefore, in Tr-

DMOEA, FS and FT are the objective vectors of randomly

generated solutions in the source environment s (i.e., the

problem before a change) and target environment t (i.e., the

problem after a change), respectively. The function φ is defined

as φ(F ) = WTκ(F ), where W is a transformation matrix

which maps the objective vector into the latent space, and

κ(F ) is defined as follows, where κ(·, ·) is a kernel function

[16]:

κ(F ) = [κ(Fs1, F ), ..., κ(Fsm, F ), κ(Ft1, F ), ..., κ(Ftn, F )]T

Once W is found, Tr-DMOEA will initialize the population

in the target environment with solutions whose objective

vectors are close to that of any good solution from the source

environment in the latent space. For that, it needs to find

solutions tk whose objective vector is close to that of a solution

sl from POF of the problem in the source environment

(POFs), i.e., whose ||φ(Fsl)− φ(Ftk)|| is minimal. We can

expand the distance as follows:

||φ(Fsl)− φ(Ftk)|| = ||WTκ(Fsl)−WTκ(Ftk)||

=||WT [κ(Fsl)− κ(Ftk)]|| =

d
∑

j=1

(

φj(Fsl)− φj(Ftk)
)2

=
d

∑

j=1

{

m+n
∑

i=1

Wji ×
(

κ(Fi, F sl)− κ(Fi, F tk)
)

}2

(2)

in which d is the dimension of the latent space; F = Fs when

i ∈ [1,m] and F = Ft when i ∈ [m+ 1,m+ n].
From the above we can see that the more similar κ(Fi, F sl)

and κ(Fi, F tk) are, the smaller the distance in the latent space.

In the existing Tr-DMOEA, the used kernel function is the

Gaussian kernel:

κ(F, F tk) = e−(F−Ftk)
T (F−Ftk) (3)

Here, we consider bi-objective problems: Fsl = (Fs1l , F s2l );
Ftk = (Ft1k, F t2k); F = (f1, f2); therefore:

κ(Fi, F sl)− κ(Fi, F tk)

=e−(Fs1
l
−F 1

i
)2−(Fs2

l
−F 2

i
)2 − e−(Ft1

k
−F 1

i
)2−(Ft2

k
−F 2

i
)2

(4)

Then, the difference between κ(Fi, F sl) and κ(Fi, F tk) is

the difference between their exponent:

∣

∣

∣

(
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i )

2
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−
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2
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i )

2
)∣

∣

∣

(6)

To make eq. (5) minimal, both terms of eq (6) should be

minimal. To simplify the analysis, only the first term is

considered here. When the first term is equal to 0, it can be

re-written as follows:

∣

∣

∣
Fs1l − F 1

i

∣

∣

∣
=

∣

∣

∣
Ft1k − F 1

i

∣

∣

∣

⇒ Fs1l − F 1
i =Ft1k − F 1

i OR Fs1l − F 1
i = F 1

i − Ft1k
(7)

Therefore, solutions for Ft1k are (Ft2k is the similar as Ft1k):

Ft1k = Fs1l OR Ft1k = 2F 1
i − Fs1l (8)

Therefore, objective values of found solutions are close to

either those of the solution Fsl from POFs or twice over those

of randomly generated solutions (Fi). The original intention

of Tr-DMOEA was to find a solution in the target environment

whose objective vector Ft1k is similar to that of a POFs

solution in the latent space (i.e., the first solution in Eq. (8)).

However, there is no reason to believe that a solution in the

target domain whose objective vector is similar to a random

solution from the source domain in the latent space (i.e., the

second solution in Eq. (8)) is going to be a good solution.

In this case, the Gaussian kernel function is not the ideal in

present version of Tr-DMOEA.

B. Replacing Gaussian Kernel with Linear Kernel

After reviewing present common kernel functions, we find

that the linear kernel functions [17] [18] [19] overcome the

problem presented by the Gaussian kernel function explained

in section III-A. In the following, the details why the linear

kernel overcomes this problem are explained.

Here, the simplest linear kernel is used:

κ(F, F tk) = FTFtk (9)

Therefore,

κ(Fi, F sl)− κ(Fi, F tk) = F 1
i (Fs1l −Ft1k)+F 2

i (Fs2l −Ft2k)
(10)

It can be seen from eq (2) when the distance is minimal,

κ(Fi, F sl) − κ(Fi, F tk) would be close to 0. In this case,

Fs1l = Ft1k and Fs2l = Ft2k. Therefore, the searched

solution Ftk = (Ft1k, F t2k) will be close to the solution

Fsl = (Fs1l , F s2l ) in last POFs, being a potentially good

solution to initialize the population in the target domain.



C. Experimental Evaluation of Different Kernels

In section III-B, it has been mathematically proved that

the linear kernel function overcomes the problem of the

Gaussian kernel. In order to verify the effectiveness of it

from the perspective of experiment, specific experiment will

be conducted.

In this experiment, two algorithms will be compared. One

is Tr-DMOEA with the Gaussian kernel function. Another

is Tr-DMOEA with the linear kernel function. For each

algorithm, all the experiment setups are the same as those in

Section II-A, including used benchmark problems, algorithm

parameter setting, dynamics for changes, performance metric

and so on. The comparison results of the Gaussian and linear

kernel based Tr-DMOEA are shown in Table IV. In the Table,

Gauss. and Lin. represent the Gaussian and linear kernel

based Tr-DMOEA, respectively.

TABLE IV
MIGD VALUES FOR GAUSSIAN KERNEL-BASED AND LINEAR

KERNEL-BASED TR-RMMEDA.
Prob. C4 C6 C8

Methods Lin. Gauss. Lin. Gauss. Lin. Gauss.

FDA4 0.052 0.082 0.048 0.098 0.052 0.081

FDA5 0.238 0.390 0.825 1.295 0.163 0.325

FDA5iso 0.204 0.280 0.628 0.708 0.185 0.294

FDA5dec 0.464 0.645 0.641 3.006 0.265 0.583

DIMP2 10.909 11.630 10.527 11.379 12.076 12.466

DMOP2 0.006 1.5313 33.085 35.126 0.003 1.166

DMOP2iso 0.002 0.002 0.087 0.082 0.002 0.002

DMOP2dec 0.053 1.044 9.107 5.182 0.070 1.028

DMOP3 0.003 0.751 35.076 33.648 0.003 0.656

HE2 0.115 0.365 0.096 0.187 0.071 0.266

HE7 0.301 0.308 0.265 0.285 0.300 0.311

HE9 0.303 0.288 0.297 0.273 0.294 0.263

For each problem with each parameter, Gaussian kernel-based and linear
kernel-based Tr-RMMEDA get initial populations after each change. MIGD
is the average of IGDs of these initial populations with one run under 20
changes. The better values that the method gets are highlighted in bold face.

It can be seen from the table that when change is small (C8)

and medium (C4), Tr-DMOEA with linear kernel function is

better than that with Gaussian kernel function except HE9

problem. Plus, when changes are large (C6), there are only

4 out of 12 cases that linear kernel-based Tr-DMOEA is

worse than Gaussian kernel-based Tr-DMOEA. As a whole,

the linear kernel greatly improves the performance of solution

quality after change in the first generation, compared with

the Gaussian kernel one. In addition, the Wilcoxon rank

sum test with the significance level 0.05 is carried out to

indicate significance between results obtained by transferred

and combined solutions. MIGD value of Lin. and Gauss.

for each problem with one parameter is regarded as one

observation data for the test. The result with h = 1 and p =

0.0132 shows that transferred solutions with the linear kernel

are significantly better than those with the Gaussian one in the

first generation after change.

IV. IMPROVED TRANSFER LEARNING IN DMO

It has been mathematically and experimentally shown that

when and how to transfer is vitally important in DOM.

Transfer learning fails on problems with stationary POS and

when changes are small. The kernel function also matters

in Tr-DMOEA, which contributes the idea of replacing the

Gaussian kernel with a linear one. Therefore, in order to make

improvements on present Tr-DMOEA, this section proposes

novel method for Tr-DMOEA.

A. Proposed Method to Generate An Initial Population

Algorithm 2: Responding strategy based on improved

transfer learning. (The highlighted text corresponds to

the differences between the original and improved Tr-

DMOEA.)

Input: Two DMOPs Fs(·) and Ft(·) in the source and

target environments; POSs and POFs of the

DMOP in the source environment; linear kernel

function κ

Output: The responding initial population Pini.

1 Initialization;

2 Randomly sample two solution sets in the search space

of problems Fs(·) and Ft(·), as Xs and Yt;

3 Evaluate Xs and Yt on their own objective functions to

get their objective vectors Fs and Ft;

4 Use Fs and Ft as well as the linear kernel function to

get the transformation matrix W [5] ;

5 Determine target domain solutions XTr whose fitness is

similar to that of the POFs solutions in the latent space.

the linear kernel function is used here to map solutions

to the latent space;

6 Calculate the objective values of XTr and POSs on

problem Ft(·);
7 Sort on the combined populations XTr and POSs

through nondominated sort and crowding distance;

8 Select the top N solutions from the combined population

as Pini, where N is the population size;

9 Return Pini.

The main idea in a DMOEA is to generate an initial

population such that the population can quickly reach the new

optimum after a change. Therefore, in Tr-DMOEA, an initial

population is produced through transferring good solutions

from the previous environment. In this section, we present a

TABLE V
MIGD VALUES FOR THE ORIGINAL AND IMPROVED TR-RMMEDA
Prob. C4 C6 C8

Methods Tr. ImTr. Tr. ImTr. Tr. ImTr.

FDA4 0.082 0.070 0.098 0.058 0.081 0.071

FDA5 0.389 0.285 1.294 0.822 0.325 0.249

FDA5iso 0.280 0.344 0.708 0.633 0.294 0.336

FDA5dec 0.645 0.327 3.006 0.507 0.583 0.254

DIMP2 11.630 12.093 11.379 12.163 12.466 11.860

DMOP2 1.531 0.006 35.126 32.984 1.165 0.003

DMOP2iso 0.002 0.004 0.082 0.102 0.002 0.004

DMOP2dec 1.044 0.052 5.182 10.026 1.028 0.024

DMOP3 0.751 0.004 33.648 33.219 0.656 0.004

HE2 0.365 0.115 0.187 0.136 0.266 0.112

HE7 0.309 0.309 0.285 0.292 0.311 0.319

HE9 0.288 0.255 0.273 0.275 0.263 0.254

For each problem with each parameter, the original and improved Tr-
RMMEDA get initial populations after each change. MIGD is the average
of IGDs of these initial populations with one run under 20 changes. The
better values that the method gets are highlighted in bold face.



TABLE VI
MIGD VALUES OF FOUR DMOEAS WITH THE OPTIMIZATION ALGORITHM RMMEDA ON ALL BENCHMARK PROBLEMS.

Prob. C1 C2 C3 C4

Methods RND COPY Trans. ImTr. RND COPY Tran. ImTr. RND COPY Trans. ImTr. RND COPY Trans. ImTr.

FDA4 0.434 0.105 0.052 0.059 0.300 0.080 0.052 0.062 0.103 0.065 0.056 0.065 0.068 0.060 0.057 0.070

FDA5 0.905 0.263 0.705 0.191 0.725 0.164 0.567 0.188 0.369 0.099 0.273 0.175 0.164 0.087 0.137 0.165

FDA5iso 0.315 0.066 0.267 0.227 0.177 0.066 0.170 0.192 0.093 0.068 0.080 0.276 0.066 0.066 0.066 0.263

FDA5dec 2.010 0.968 1.186 0.313 1.656 0.314 0.865 0.267 0.963 0.201 0.780 0.234 0.649 0.122 0.494 0.232

DIMP2 9.063 16.351 8.471 8.746 7.824 12.310 6.968 7.269 5.153 7.916 5.097 5.087 4.115 5.381 3.980 4.129

DMOP2 1.961 20.295 0.465 0.003 0.956 5.994 0.220 0.003 0.091 0.143 0.040 0.003 0.004 0.009 0.003 0.003

DMOP2iso 0.002 0.002 0.002 0.004 0.002 0.002 0.002 0.004 0.002 0.002 0.002 0.004 0.002 0.002 0.002 0.004

DMOP2dec 2.266 2.148 0.538 0.079 1.084 2.390 0.420 0.045 0.374 0.154 0.147 0.051 0.105 0.069 0.061 0.038

DMOP3 1.453 13.041 0.243 0.003 0.603 3.677 0.095 0.003 0.056 0.141 0.015 0.003 0.003 0.008 0.004 0.003

HE2 2.779 0.451 0.527 0.140 2.397 0.268 0.476 0.110 1.581 0.116 0.293 0.068 0.885 0.085 0.146 0.063

HE7 0.172 0.049 0.166 0.045 0.129 0.048 0.125 0.041 0.076 0.050 0.077 0.038 0.053 0.051 0.052 0.039

HE9 0.342 0.244 0.294 0.241 0.313 0.243 0.273 0.237 0.283 0.250 0.254 0.233 0.264 0.239 0.244 0.229

Prob. C5 C6 C7 C8

Methods RND COPY Trans. ImTr. RND COPY Tran. ImTr. RND COPY Trans. ImTr. RND COPY Trans. ImTr.

FDA4 0.547 0.547 0.051 0.053 0.069 0.068 0.051 0.057 0.277 0.069 0.052 0.063 0.066 0.058 0.057 0.071

FDA5 1.061 2.166 0.558 0.345 0.271 0.457 0.195 0.179 0.675 0.123 0.386 0.183 0.183 0.084 0.114 0.164

FDA5iso 0.243 0.212 0.176 0.186 0.061 0.061 0.062 0.180 0.171 0.066 0.164 0.192 0.065 0.066 0.065 0.258

FDA5dec 1.127 2.049 0.948 0.426 0.328 0.472 0.270 0.206 1.566 0.219 0.945 0.127 0.609 0.098 0.537 0.144

DIMP2 7.845 13.596 7.338 7.230 4.341 7.575 4.202 4.289 8.176 15.904 7.218 7.281 4.126 7.204 4.097 3.929

DMOP2 26.944 37.821 23.744 18.039 18.308 28.273 18.899 18.008 0.874 1.528 0.295 0.003 0.004 0.005 0.003 0.003

DMOP2iso 0.110 0.110 0.110 0.090 0.110 0.110 0.110 0.112 0.002 0.002 0.002 0.004 0.002 0.002 0.002 0.004

DMOP2dec 2.742 59.767 1.116 0.797 0.232 36.583 0.238 0.224 1.325 0.300 0.402 0.015 0.143 0.020 0.050 0.012

DMOP3 25.957 35.728 22.625 18.016 18.280 27.185 18.654 18.011 0.459 0.269 0.120 0.003 0.003 0.003 0.003 0.003

HE2 1.807 0.258 0.281 0.071 0.726 0.084 0.085 0.061 2.342 0.279 0.432 0.094 0.907 0.085 0.123 0.061

HE7 0.116 0.042 0.114 0.035 0.047 0.041 0.048 0.035 0.131 0.052 0.130 0.042 0.053 0.046 0.051 0.040

HE9 0.287 0.214 0.249 0.203 0.234 0.221 0.219 0.201 0.316 0.247 0.275 0.234 0.264 0.248 0.243 0.228

For each problem with each parameter, all algorithms get optimized populations by RMMEDA in the last generation of each change. MIGD is the average
of IGDs of these populations with one run under 20 changes. The best values that the algorithm obtains are highlighted in bold face.

method that makes use of the strategies proposed in sections

II-B and III-B to improve Tr-DMOEA’s solutions in the initial

population after the changes. Firstly, in the process of transfer

learning, the Gaussian kernel will be replaced with a linear

one, as described in section II-B. Secondly, considering that it

is difficult to judge when changes are small and which prob-

lem has fixed POS for a DMOEA, transferred solutions and

solutions copied from the previous environment are combined

together, as described in section III-B. The initial population

is selected from the combined populations and then regarded

as the initial population for the problem in next environment.

The detailed procedures of improved Tr-DMOEA are shown

in Algorithm 1. The differences with regarding to the original

Tr-DMOEA are highlighted in the pseudocode. This algorithm

can be embedded into any population based evolutionary

algorithms.

B. Evaluation through Computational Studies

In order to evaluate the effectiveness of the proposed

improved Tr-DMOEA, computational studies are conducted

in this section. Firstly, we compare the performance of initial

population produced by the original transfer learning and

improved one in DMO following a similar procedure to

that used in Sections II-C and III-C. Then, the performance

of populations obtained by several compared methods after

optimization is stated. The reason why we are now also

comparing the results after optimization is to verify whether

the improved Tr-DMOEA helps to solve DMOPs, compared

with other state-of-the-arts.

1) Solutions Quality Comparison in the First Generation:

Similar to previous experiments, comparison results of solu-

tions after the change produced by the original and improved

Tr-RMMEDA are shown in Table V. Experimental setup is

the same as those in Section II-A. It can be observed from the

table that results of the improved Tr-RMMEDA are better than

the original one on most of investigated problems. In addition,

the Wilcoxon rank sum test with the significance level 0.05

is carried out to indicate significance between results obtained

by transferred and combined solutions. MIGD value of Tr.

and ImTr. for each problem with one parameter is regarded

as one observation data for the test. The result with h = 1 and

p = 0.0269 shows that the transferred solutions through the

original Tr-DMOEA are significantly better than those through

the improved Tr-DMOEA in the first generation after change.
2) Solutions Quality Comparison after Optimization: Here,

the experiment is conducted to verify the effect of the pro-

posed method at the final generation after the changes. The

CEC 2015 Benchmark problems [8] are selected as the test

problems. For the parameters regarding the dynamics of these

problems, all parameters shown in Table I are used. It aims

to show the performance of all compared methods under

different dynamics. There are 20 environmental changes. The

population is force to run 50 generations at the beginning of

the algorithm, which enables the population to converge.

Experimental setup is as follows:

1) Population size N is set as 200, as in previous work [5];

2) Three investigated population-based algorithms, the fast

and elitist multi-objective genetic algorithm (NSGA-

II) [12], multi-objective particle swarm optimization

algorithm (MOPSO) [20] and regularity model-based

multi-objective estimation of distribution algorithm

(RMMEDA) [9], are regarded as the optimization algo-

rithms. The DMOEAs with the original transfer learning

are termed as Tr-DMOEAs. Similarly, DMOEAs with

proposed method are written as ImTr-DMOEAs.

3) Compared algorithms: For each ImTr-DMOEA, there

are three compared DMOEAs: the original Tr-DMOEA,

the static MOEA (COPY-DMOEA) and one with ran-



dom response strategy (RND-DMOEA). The reason for

using three different optimization algorithms is to test

the performance sensitivity of transfer learning based

method in three different type of algorithms.

4) Parameters of different algorithms are set as the same

in their original papers [5] [7] [12] [20].

Inverted Generation Distance (IGD) is used to assess the

performance of two solutions sets, which can measure the

convergence and diversity of a solution set, while from dif-

ferent aspects. At the last generation of each change, every

algorithm will get a Pareto optimal front on each problem.

The POF is used to calculate the IGD values. MIGD is

the average of IGD values under 20 changes. Therefore,

MIGD results of four compared DMOEAs with RMMEDA

and NSGA-II on all test problems are shown in Tables

VI-VII. Due to space limitations, the table showing MIGD

results of four compared DMOEAs with MOPSO is omitted

here and put in a supplementary material, which can be

found in http://www.escience.cn/people/gruan/index.html. The

results obtained by four DMOEAs with MOPSO are similar

to those with RMMEDA.

Additionally, in order to show the significant superiority

of the proposed method to other algorithms, Friedman and

Nemenyi statistical tests are conducted on all benchmark

problems regarding MIGD of 12 algorithms (4 responding

strategies with 3 EAs). The MIGD value obtained by a

given algorithm on one problem with one parameter setting is

regarded as an observation to compose that algorithm’s group

for the test, following Demsar’s guidelines [13]. Therefore,

there are 96 (12 problems and 8 parameters) observations in

each group. Friedman detects significant differences in average

accuracy with a p-value of 1.3726e-55. The Nemenyi post-

tests are shown in Figure 1, and are discussed over the next

sub-sections. According to the test, average accuracy of the

ImTr-RMMEDA is significantly better than that of the other

approaches except Tr-RMMEDA and ImTr-MOPSO.

a) Impact of EAs on Different DMOEAs: Some

DMOEAs with different EAs have different performance,

while others have the similar performance, which can be seen

from Figure. 1. As a whole, MIGD values that RMMEDA

obtains are better than those from MOPSO in most cases

regarding all problems and different dynamics, while NSGA-II

gets the worst MIGD results. For example, for problem FDA4

with the parameter setting C2, each DMOEA with RMMEDA

has better MIGD than that of NSGA-II, no matter what the

MIGD order of different DMOEAs with the same EA. This

shows that RMMEDA are more suitable to solve these DMOPs

than other two EAs. The above observations are confirmed by

the Friedman and Nemenyi tests in Figure 1.

When transferred solutions are not converged, solutions with

Gaussian kernel-based transfer have better diversity, enabling

better results to be achieved after the change than when using

linear kernel. That is why the improved Tr-NSGA-II is worse

than the original Tr-NSGA-II.

b) Performance of DMOEAs on Different Benchmarks:

In general, it is clear from Tables VI-VII that transfer learn-
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Fig. 1. Friedman ranking among all DMOEAs from left to right, 4 responding
strategies with respect to 3 EAs including RMMEDA, NSGA-II and MOPSO
(referred as RM, NS and MO for simplicity). Any pair of approaches whose
distance between them is larger than CD are considered to be different.

ing based DMOEAs are all better than static MOEAs and

DMOEAs with random initial population. This shows that

transferred solutions can maintain the balance of convergence

and diversity to some degree, compared with static MOEAs

and random DMOEAs. When comparing the performance of

Tr-DMOEAs and ImTr-DMOEAs, ImTr-DMOEAs are basi-

cally better than Tr-DMOEAs. Specifically, for HEs problems,

ImTr-DMOEAs are all better than Tr-DMOEAs except HE2

and HE7 when the EA is NSGA-II. This shows that transfer

learning based DMOEA with the linear kernel and combined

solutions is more capable of solving DMOPs with fixed POS.

Regarding tri-objective optimization problems, ImTr-

DMOEAs performs better than Tr-DMOEAs on FDA5iso and

FDA5dec while worse than Tr-DMOEAs on FDA4 and FDA5.

This implies that the improved Tr-DMOEAs can solve tri-

objective problems with complex property such as isolated

or deceptive POF. For DIMP2 whose decision variable has

its own rate of change, it is difficult for any algorithm

to solve, compared with other problems. The original Tr-

DMOEA shows its superiority on this problem. In terms

of other bi-objective problems, the Tr-DMOEAs with linear

kernel function are all superior to those with the Gaussian

kernel. This demonstrates that the improved Tr-DMOEA is

better capable of solving tri-objective problems except the

one with very complicated features like DIMP2, for which

all algorithms struggle.

c) Influence of Dynamics on Tr-DMOEAs: Overall, it

is clear from Tables VI-VII that MIGD values obtained by

all DMOEAs become better with the increase of changing

frequency, when they are under same changing severity. The

reason is obvious, which is that the more the iterations within

each change, the better the performance. Additionally, no

matter what kind of changing sizes are, two kinds of Tr-

DMOEAs are all better than the random and static ones.

The only difference between the original and the improved

Tr-DMOEAs is their performance with different EAs, which

has been introduced in section IV-B2a. Therefore, it can be

concluded that the improved Tr-DMOEA can address most

investigated problems no matter what kinds of dynamics are,

as long as solutions before the change have been converged.

V. CONCLUSION

This paper studies transfer learning in DMO, analyzing

when and how transfer learning works in DMO. It has been

computationally observed that transfer learning works poorly

on problems with fixed POS and when environmental changes



TABLE VII
MIGD VALUES OF FOUR DMOEAS WITH THE OPTIMIZATION ALGORITHM NSGA-II ON ALL BENCHMARK PROBLEMS.

Prob. C1 C2 C3 C4

Methods RND COPY Trans. ImTr. RND COPY Tran. ImTr. RND COPY Trans. ImTr. RND COPY Trans. ImTr.

FDA4 0.676 2.329 0.314 0.365 0.657 2.376 0.237 0.391 0.429 2.134 0.152 0.293 0.280 0.777 0.118 0.263

FDA5 1.039 1.888 0.362 0.812 0.947 2.147 0.318 0.733 0.693 1.812 0.321 0.519 0.419 1.106 0.291 0.327

FDA5iso 0.279 0.197 0.790 0.290 0.176 0.133 0.416 0.141 0.099 0.113 0.229 0.095 0.098 0.100 0.135 0.098

FDA5dec 1.671 2.536 0.501 1.075 1.428 2.415 0.409 0.966 0.877 1.250 0.380 0.696 0.722 0.636 0.300 0.409

DIMP2 9.683 12.735 5.990 9.502 7.685 10.792 4.233 7.111 4.780 8.172 3.312 4.394 3.976 5.292 2.404 3.724

DMOP2 2.492 29.246 0.744 1.618 2.214 24.647 0.560 1.730 0.476 5.311 0.147 0.572 0.164 0.099 0.047 0.130

DMOP2iso 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

DMOP2dec 2.806 5.644 0.825 1.043 2.071 5.083 0.640 1.263 0.858 1.053 0.367 0.664 0.486 0.615 0.244 0.384

DMOP3 2.267 24.577 0.619 1.102 1.769 26.646 0.338 1.030 0.463 3.987 0.128 0.510 0.083 0.153 0.056 0.100

HE2 2.821 1.834 0.312 2.409 2.557 1.296 0.264 1.982 1.155 0.784 0.211 1.247 0.464 0.367 0.172 0.401

HE7 0.228 0.086 0.073 0.163 0.194 0.075 0.074 0.104 0.138 0.088 0.096 0.093 0.090 0.072 0.077 0.070

HE9 0.363 0.296 0.398 0.344 0.351 0.298 0.371 0.333 0.328 0.295 0.324 0.316 0.303 0.287 0.302 0.311

Prob. C5 C6 C7 C8

Methods RND COPY Trans. ImTr. RND COPY Tran. ImTr. RND COPY Trans. ImTr. RND COPY Trans. ImTr.

FDA4 1.027 0.559 0.243 0.894 0.617 0.593 0.101 0.478 0.644 1.966 0.258 0.362 0.283 0.592 0.102 0.227

FDA5 1.185 0.542 0.419 0.711 0.709 0.490 0.337 0.368 0.896 1.176 0.227 0.806 0.325 0.798 0.243 0.421

FDA5iso 0.258 0.173 0.251 0.284 0.125 0.140 0.173 0.166 0.205 0.173 0.217 0.138 0.096 0.100 0.248 0.096

FDA5dec 1.399 1.730 1.021 0.485 1.181 0.921 0.774 0.369 1.596 2.046 0.390 0.575 0.426 0.773 0.323 0.272

DIMP2 7.634 6.109 4.049 7.088 3.737 4.046 2.297 4.075 8.105 9.614 4.430 7.385 4.241 6.098 2.645 3.254

DMOP2 6.296 3.114 3.465 7.669 0.702 0.237 0.507 0.426 2.168 21.833 0.389 1.312 0.108 0.078 0.043 0.099

DMOP2iso 0.119 0.122 0.137 0.097 0.119 0.117 0.140 0.129 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

DMOP2dec 8.249 10.087 2.993 8.118 1.368 13.831 0.898 1.463 1.970 1.172 0.459 1.205 0.246 0.280 0.178 0.310

DMOP3 10.584 0.293 1.978 5.253 0.308 0.298 3.350 3.979 1.360 25.525 0.270 1.087 0.127 0.156 0.029 0.064

HE2 1.735 0.340 0.094 0.362 1.087 0.249 0.073 0.184 2.655 0.461 0.247 1.572 0.926 0.295 0.172 0.355

HE7 0.174 0.075 0.068 0.090 0.079 0.051 0.042 0.041 0.197 0.079 0.099 0.128 0.101 0.055 0.056 0.065

HE9 0.319 0.243 0.296 0.280 0.271 0.242 0.259 0.251 0.350 0.270 0.361 0.341 0.302 0.293 0.308 0.289

For each problem with each parameter, all algorithms get optimized populations by NSGA-II in the last generation of each change. MIGD is the average of
IGDs of these populations with one run under 20 changes. The best values that the algorithm obtains are highlighted in bold face.

are small. It has also been shown that the Gaussian kernel

function in the existing method Tr-DMOEA [5] is inadequate

for DMO. Based on these two observations, a new method

has been proposed regarding avoiding transfer learning when

it fails and replacing the Gaussian kernel with a linear one.

Experimental results have shown that our proposed method is

effective in solving DMOPs, compared with other state-of-the-

art algorithms.

In the future, a potential work is to find another kernel

function that can achieve non-linear transfers and does not

have the weakness of the Gaussian kernel. In addition, other

transfer learning methods in the field of machine learning

can also be studied to solve DMOPs. At last, it is important

to explore real-world applications of transfer learning based

DMO, e.g., in smart manufacturing and smart logistics.
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