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Abstract Chapter 5 has provided step-by-step guidelines on how to design self-
aware and self-expressive systems, including several architectural patterns with
different levels of self-awareness. Chapter 6 has explained important features in
self-aware and self-expressive systems, including adaptivity, robustness, multi-
objectivity and decentralisation. To allow such self-aware capabilities in each design
pattern and enable those system features, this chapter introduces the common tech-
niques that have been used and can be used in self-aware (SA) and self-expression
(SE) systems, including online learning, nature-inspired learning and socially in-
spired learning in collective systems. Online learning allows learning in real time
and thus has great flexibility and adaptivity. Nature-inspired learning provides tools
to optimise SA/SE systems that can be used to reduce system complexity and costs.
Socially inspired learning is inspired by common social behaviours to facilitate
learning, particularly in multi-agent systems that are commonly seen in SA/SE sys-
tems. How these techniques contribute to SA/SE systems is explained through sev-
eral case studies. Their potentials and limitations are widely discussed at different
self-awareness levels.
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7.1 Introduction

Chapter 5 has provided step-by-step guidelines on how to design self-aware and
self-expressive systems, including several architectural patterns with different lev-
els of self-awareness. Chapter 6 has explained important features in self-aware and
self-expressive systems, including adaptivity, robustness, multi-objectivity and de-
centralisation. To allow such self-aware capabilities in each design pattern and en-
able those system features, this chapter introduces the learning methods that are
widely applied and considered in SA/SE systems. First, online learning (Section
7.2) contains various techniques that can potentially encourage time awareness by
updating learning models with time. Some online learning methods are designed to
anticipate changes in learning data and environments, which may contribute to goal
awareness and stimulus awareness. They also maximize system adaptivity, in order
to overcome changing environments. Second, nature-inspired learning (Section 7.3)
provides important ideas for designing large and complex systems. Meanwhile, it
includes great techniques to realize multi-objectivity. Third, socially inspired learn-
ing (Section 7.4) includes a set of techniques for multi-agent systems, which can
decentralise the system and reduce system complexity.

The above learning techniques are defined and explained in the following sec-
tions. In particular, example case studies are given to illustrate how they have been
used in SA/SE systems at the levels of self-awareness. For each type of learning
techniques, related learning methods that may potentially contribute to SA/SE sys-
tems are also introduced to widen the application for future use.

7.2 Online Learning

Online learning has been extensively studied and applied in the field of machine
learning in recent years. Most machine learning methods operate in offline mode.
They first learn how to perform a particular task and then are used to perform this
task. No task can be performed during the learning phase and, after the learning
phase is completed, the system cannot further improve or change [268]. However,
a large number of real-world problems do not allow us to see all data in advance,
and they are not intrinsically static. For example, consider an information filtering
system which predicts the user’s reading preferences. It is not possible to collect all
users’ information beforehand for learning. New users can join in and old users may
leave at some point. Users can also change their preferences with time and a system
which learnt how to predict them in the past will fail if it cannot update according to
the new ones [358]. In a recommender or advertising system, customers’ behaviour
may change depending on the time of the year, on the inflation and on new prod-
ucts made available. Other examples include systems for computer security [140],
market-basket analysis [12], spam detection [289] and web pages classification [8].

Differently from offline learning algorithms, online learning is brought up to
perform a particular task at the same time as the learning occurs. Online learners
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are updated whenever a new training example is available, being able to perform
lifelong learning in the sense that they do not ever need to stop learning. So, they
can attempt to adapt to possible changes in the environment, if properly designed
[268]. In a more formal definition, online learning algorithms process each train-
ing example once “on arrival” without the need for storage and reprocessing, and
maintain a model that reflects the current concept to make a prediction at each time
step [307] [409]. The online learner is not given any process statistics for the ob-
servation sequence, and thus no statistical assumptions can be made in advance.
A closely related concept to online learning is incremental learning. Incremental
learning algorithms can also operate in changing environments, but training data
are processed in chunks [268]. From another point of view, online learning can be
viewed as a strict case of incremental learning, which processes data one by one.
It can be used to solve both online and incremental problems. Due to its low time
and memory requirements, besides being useful for applications in which training
data arrive continuously (streams of data), online learning is also useful for applica-
tions with tight time and space restrictions, such as prediction of conditional branch
outcomes in microprocessors [130].

Considering the nature and advantages of online learning, it contains useful tech-
niques for SA/SE systems, as many SA/SE applications produce data continuously
and the data may not be in a static state. For example, one of our applications is
to perform object tracking and object detection in single-camera and multi-camera
scenarios. In order to locate the object, the object detector must keep monitoring the
location of targets in consecutive video frames. Meanwhile, the object tracking/de-
tection can suffer from clutter and occlusion difficulties, as well as the execution
time issue. Therefore, a fast online object detection method is adopted, to learn the
appearance of objects in image streams and to re-detect the objects of interest after
occlusions. More details on the application and the adopted techniques will be given
in the following subsections.

7.2.1 Example Application

In object tracking, the general goal is to find the location of one or more objects of
interest in consecutive frames of a video sequence, as it is depicted in Figure 7.1.
Under some specific scenarios, training data may be available to aid the process of

Fig. 7.1 Tracking a single object of interest (in red).

recognizing objects. A learning algorithm can then be used in order to better un-
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derstand the variability in the appearance of the objects of interest. In many cases,
the object of interest is unknown beforehand and is indicated only by a single user-
defined label that is typically given in the first frame of a sequence. Although no
supervised training data is available, it is still often desirable to perform an update
of the object model in order to reflect changes in the appearance of the object of
interest. Many approaches model the problem of object tracking as binary classifi-
cation in the online learning scenario. The two classes are the object of interest and
background. We will now give a brief overview of existing techniques that fall into
this category.

Collins et al. [76] were the first to employ binary classification in a tracking
context. They employ feature selection in order to switch to the most discrimina-
tive colour space from a set of candidates and use mean-shift for finding the mode
of a likelihood surface, thereby locating the object. In a similar spirit, Grabner et
al. [146] perform online boosting and Babenko et al. [20] use multiple instance
learning in order to find the location of the object. All of these methods use a form
of reinforcement learning, meaning that the prediction of the classifier is directly
used to update the classifier. While this approach enables the use of unlabelled data
for training, it typically amplifies errors made in the prediction phase, thus leading
to a degradation of tracking performance. In [147], this problem is addressed by
casting object tracking as a semi-supervised learning problem, where only the first
appearance of the object is used for updating. Both Kalal et al. [206] and Santner et
al. [352] employ an optic-flow-based mechanism for labelling the available data in
order to reduce the errors made in the prediction phase and demonstrate superior re-
sults. All of these methods employ online learning to incorporate new appearances
of the object of interest into the object model with the aim of improving the general
tracking performance.

In the following sections we will now explain the TLD approach of Kalal et al.
in more detail. Section 7.2.1.1 gives a high-level overview of the approach. Sec-
tion 7.2.1.2 introduces the learning component of TLD, a Random Fern classifier.
Finally, Section 7.2.1.3 explains how online learning is performed in TLD.

7.2.1.1 Tracking-Learning-Detection

Kalal et al. [206] propose a solution to the tracking problem which they call
Tracking-Learning-Detection (TLD). TLD consists of two separate components.
The first component is a frame-to-frame tracker that predicts the location L j of
the object in frame I j by calculating the optical flow between frames I j�1 and I j
and transforming L j�1 accordingly. Clearly, this approach is only feasible when the
object is visible in the scene and fails otherwise. When the object is presumably
tracked correctly (according to certain criteria) the location L j is used in order to
update the second component, which is a Random Fern classifier [308]. The Ran-
dom Fern classifier is updated with positive training data from patches close to L j
and negative data from patches that exceed a certain distance. This classifier is then
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applied in a sliding-window manner (see Figure 7.2) in order to re-initialize the
frame-to-frame-tracker after failure.

Fig. 7.2 In TLD, a binary ensemble classifier is used to locate the object of interest by applying it
in a sliding-window manner. The ability for multi-scale detection is achieved by scaling the size of
the detection window. Image is from [282].

7.2.1.2 Random Fern Classifier

The Random Fern classifier [308] operates on binary features f1 . . . fn calculated on
the raw image data. These features are randomly partitioned into groups of so-called
ferns F1 . . .Fm of size s

F1z }| {
f1 . . . fs,

F2z }| {
fs+1 . . . f2s . . .

Fmz }| {
f(m�1)s+1 . . . fms . (7.1)

Ferns essentially are non-hierarchical trees, meaning that the outcome of each fern
is independent of the order in which features are evaluated. The main reason for
favouring ferns over trees is that they can be implemented extremely efficiently, an
important property for real applications.

Suitable features for random ferns are proposed in [308], where a feature vector
of size s consists of s binary tests performed on gray-scaled image patches. Each
test compares the brightness values of two random pixels (See Figure 7.3). The
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locations of the tests are generated once at startup and remain constant throughout
the rest of the processing. The same set of tests is used with appropriate scaling for
all subwindows. Input images are smoothed with a Gaussian kernel to reduce the
effect of noise.

1 1 0 1

Fig. 7.3 Feature values depend on the brightness values of pairs of two random pixels. In this case,
the outcome is the binary string 1101. Image is from [282].

7.2.1.3 Online Learning of the Random Fern Classifier

An important property of a classifier is the amount of time it takes to re-train the
classifier as soon as new training data becomes available. In this respect, Random
Ferns are superior to other classifiers such as Random Forests, as their formulation
allows for a straightforward application in an online learning scenario. The posterior
probability for each fern is

P(y = 1|Fk) =
P(y = 1)P(Fk|y = 1)

Â1
i=0 P(y = i)P(Fk|y = i)

, (7.2)

where y= 1 refers to the event that the object of interest is present in the subwindow.
In TLD, the prior is assumed to be uniform, and the P(Fk|y = i) are modelled as the
absolute number of occurrences #pFk for positive training data and #nFk for negative
training data. Therefore, the posterior probability becomes

P(y = 1|Fk) =
#pFk

#pFk +#nFk

. (7.3)

When #pFk = #nFk = 0, then P(y = 1|Fk) is assumed to be 0 as well. The update
procedure in TLD employs all training instances (i.e. all subwindows) for updating
the classifier that are currently misclassified. A decision is obtained by employing a
threshold q on the posterior probabilities combined using the mean rule
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m

m

Â
i=1

P(y = 1|Fi)� q . (7.4)

7.2.2 Benefits and Challenges at Levels of Self-Awareness

In this section we examine TLD running on a single node with respect to the levels
of self-awareness, pointing out benefits and drawbacks. It has to be noted that TLD
runs on a single node.

7.2.2.1 Stimulus-Awareness

A stimulus causing the node to react refers to self-awareness on a very basic level.
In TLD, this level of self-awareness is present in the computation of the optic flow
that provides a predefined reaction to a certain optical stimulus provided by an im-
age sensor. The reaction is in the form of computing the appropriate displacement
vectors for the sparse motion field of the target. A very important aspect in this re-
spect is the time that the node takes to react to the stimulus.
Benefits: In TLD, the employed method for optic-flow allows to compute the re-
sponse tremendously fast.
Drawbacks: The optic flow component is unable to adapt itself.

7.2.2.2 Interaction-Awareness

While the virtual nodes of TLD in the form of ensemble members of the random
fern classifier might be seen as virtual nodes, these nodes act completely indepen-
dently, not performing any kind of interaction with the exception that their output is
combined into a single response.
Benefits: By not modelling interactions between virtual nodes, computational ef-
forts are kept low.
Drawbacks: Wrong decisions by individual virtual nodes are not identified.

7.2.2.3 Time-Awareness

Time-awareness is an enabling component for learning from experience, as errors
made in the past are remembered and individual virtual nodes are adapted in order
to prevent similar errors in the future. In TLD, time-awareness is present in the
individual virtual nodes that each remember a history of misclassified feature values.
It is however clear that this level of awareness comes at a certain computational cost.



116 Shuo Wang, Georg Nebehay, Lukas Esterle, Kristian Nymoen, and Leandro L. Minku

Benefits: Time-awareness enables adaptation in order to avoid future errors.
Drawbacks: Time-awareness increases the complexity of a node considerably.

7.2.2.4 Goal-Awareness

The single goal in TLD is to track an object of interest as long as possible. While
this goal is present implicitly in the adaptation of the posterior probabilities of the
individual ferns, there is no explicit modelling of this goal.
Benefits: N/A
Drawbacks: N/A

7.2.2.5 Meta-Self-Awareness

There is an interesting feedback loop in TLD that we consider to render TLD meta-
self-aware. This feedback loop refers to how the training examples in TLD are ob-
tained, namely by extracting them by making use of its very own stimulus-aware
component, the optic-flow-based tracker. The output of this optic flow-based tracker
serves as a mean to distinguish between positive and negative training examples in
the environment. and to adapt the behaviour of the node to improve in the future.
Benefits: Meta-self-awareness allows for the automatic extraction of training data.
Drawbacks: Absolute correctness of the extracted data is hard to verify.

7.2.3 Other Related Techniques

This section discusses other related techniques, namely ensemble learning, class
imbalance learning, techniques for dealing with concept drift, and reinforcement
learning. It does not provide a comprehensive overview of learning methods, but
focuses on techniques that we believe to be more relevant to self-awareness and
self-expression.

7.2.3.1 Ensemble Learning

Ensemble learning techniques have been given particular attention in online learn-
ing. The idea of ensemble learning is to employ multiple learners on a given prob-
lem and combine their outputs as a “committee” to make a final decision for bet-
ter accuracy. The individual committee member is sometimes called base learner.
In classification, ensemble learning is also referred to as multiple classifier sys-
tem [166], classifier fusion [229], committee of classifiers, classifier combination,
etc. The members’ prediction might be real-valued numbers, class labels, posterior
probabilities, or any other quality. To make the best use of the strengths of the indi-
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viduals and make up their weaknesses, how to combine the predictions is important
and has been studied extensively in the literature [361] [220].

Bagging [43] and AdaBoost [134] are the most popular offline ensemble algo-
rithms in the literature, based on which numerous variations have appeared for dif-
ferent learning scenarios. There also exist other popular ones, such as Random Sub-
space [165], Random Forests [44] and Negative Correlation Learning [250].

Ensemble learning methods have some desirable features, which encourage the
rapid growth of related research. For theoretical reasons [98], every single learning
model has limitations and may perform differently due to insufficient data. Averag-
ing many of them can reduce the overall risk of making a poor prediction [319]. It
is an innate behaviour to consult opinions from others before a decision is made.
Second, certain learning algorithms confront the local optima problem, such as neu-
ral networks and decision trees. Ensembles may avoid it by running local search
from different views, where a better approximation to the true function is expected.
Besides, some problems are just too difficult and complex which are beyond the
learning ability of the chosen models. Ensembles allow partition of the data space,
where each individual only learns from one of the smaller and simpler sub-problems.
Their combination can then represent the whole problem better. For practical rea-
sons [325], real-world problems can be very large or small. A large data set can
be divided into several smaller subsets, which will be processed by multiple learn-
ers in parallel. In the case of too little data, resampling techniques can be used in
ensembles for drawing overlapping subsets to emphasize the available data.

In addition to the above advantages, in the context of online learning, ensemble
learning has become a preferable solution, because it has a more flexible and robust
training framework than other single-model training methods, especially for non-
stationary online scenarios. On one hand, building and maintaining multiple learn-
ers allows model updating without forgetting previously learnt information. Online
Bagging [306] and Online Boosting [130] [306] are two successful online exten-
sions of the well-established offline Bagging and Boosting. They have been widely
used for processing static data streams. On the other hand, an ensemble model can
be expanded for future data coming from a new data concept. For example, when
processing image data streams, the image result can be affected by the machine
capturing images and the environment where the machine is placed. If any change
occurs, for a single-model learner, it has to be re-trained to learn the new data con-
cept, whereas for an ensemble learner, a new learner can be simply trained based on
the new data, which can then be added to the ensemble model considering that the
existing learners in the ensemble may still contain some useful information. Section
7.2.3.3 further explains how ensembles can be used to deal with changes in data
concept.

The aforementioned techniques can intrinsically facilitate learning tasks in on-
line SA/SE systems. With regards to the five levels of self-awareness, it is apparent
that the characteristic of real-time processing of online ensemble learning methods
allows time-awareness. The time information in data streams can be utilized for time
series modelling and/or anticipation. Furthermore, due to the flexibility and robust-
ness to dynamic environments, online ensemble learning methods may encourage
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goal-awareness. If the learning objective is changing overtime, appropriate ensem-
ble techniques can be applied to sense the change and/or adjust the learning process
correspondingly and adaptively.

7.2.3.2 Class Imbalance Learning

It is worth mentioning that there is a specific class of online ensemble learning
methods, aiming to tackle imbalanced data streams. “Class imbalance” is a type of
classification problems where some classes of data are heavily under-represented
compared to other classes. It is commonly seen in real-world applications, such as
intrusion detection in computer networks and fault diagnosis of control monitoring
systems [407]. This type of data suffers learning issues caused by the relatively or
absolutely under-represented class (minority) that cannot draw equal attention to
the learning algorithm compared to the majority class. It often leads to very specific
classification rules or missing rules for the minority class without much general-
ization ability for future prediction. This problem is aggravated when data arrive
in an online fashion. Therefore, special treatments are required to overcome class
imbalance.

When the received data become imbalanced, it is necessary for the relevant nodes
in the SA/SE systems to have the knowledge of data status (seen as a type of stimuli),
so that corresponding events can be triggered to maintain the system performance.
Among very limited research that can enable this type of stimulus-awareness, Wang
et al. developed a class imbalance detector that reports the real-time class imbalance
status online [406]. Once class imbalance occurs, it will inform the running online
ensemble learner, which can then adopt some state-of-the-art class imbalance tech-
niques to adjust the learning bias. Based on the traditional Online Bagging, several
resampling-based ensemble variations have been proposed, which apply oversam-
pling or undersampling techniques to boost the role of the minority class and give
online predictions, such as OOB, UOB [406], MOSOB [408] and WEOB [409].
Generally speaking, we expect the training framework of online class imbalance
learning to introduce certain degree of stimulus-awareness into the ensemble learn-
ing framework with time-awareness and goal-awareness.

7.2.3.3 Concept Drift Techniques

As mentioned in the beginning of Section 7.2, many SA/SE applications produce
data continuously and the data may not be in a static state, i.e., the joint probabil-
ity distribution of the data may change with time. Such changes are referred to as
concept drifts [139]. Online learning algorithms can implement strategies to deal
with concept drifts, so that the detrimental effect of changes can be diminished and
the learning models can recover from changes. As explained in Section 6.2.2.4,
such algorithms can be based either on explicit change detection methods or on
mechanisms that do not use explicit change detection. That section concentrated
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on the advantages / disadvantages of using change detection methods. The current
section concentrates on explaining existing online supervised learning algorithms
themselves1.

Algorithms with explicit change detection methods:
Change (a.k.a. drift) detection methods are usually based on the idea that the per-

formance of a model improves over time when the data concept is stable. Therefore,
such methods detect a concept drift when a considerable drop in the performance is
observed. For example, the Drift Detection Method (DDM) algorithm [139] mon-
itors the error rate and detects a concept drift if the error rate increases above the
confidence interval of the minimum error rate so far. Early Drift Detection Method
(EDDM) [22] monitors the average distance between any two misclassifications and
detects a change if the current average distance is larger than the minimum distance
so far by a pre-defined threshold. Statistical Test of Equal Proportions (STEPD)
[290] monitors the difference in accuracy on older and more recent training ex-
amples and uses a statistical test to detect changes. These algorithms maintain a
learning model which is reset upon change detection [139, 22, 290].

In order to reduce the problems caused by false positive change detections (Sec-
tion 6.2.2.4), the algorithm Two Online Classifiers for Learning and Detecting Con-
cept Drift (Todi) [289] maintains two classifiers in the learning system instead of
one. Only one of these classifiers is reset upon change detection, so that the model
representing the old data concept can still be used in the case of a false positive drift
detection. Another approach able to avoid problems with false positives is Diversity
for Dealing with Drifts (DDD) [269]. It maintains different ensembles to achieve
better robustness to different types of changes. Among them, an ensemble repre-
senting the old data concept well is kept both for dealing with slow changes and
false positive change detections. There are also algorithms to cope with recurring
concepts, i.e., with concept drifts that take the current data distribution to a previ-
ously seen state. For instance, Just-in-Time Classifiers for Recurrent Concepts [9]
keeps a representation for each concept that has been identified so far. Whenever the
concept observed after a change detection matches an existing concept representa-
tion, a model created for that representation is retrieved so that this concept does not
have to be learnt from scratch.

Algorithms with no explicit change detection method:
Most algorithms with no explicit change detection method are ensembles of

learning machines specifically designed to deal with concept drift. These algorithms
usually maintain a set of models which possibly represent different data concepts.
New models are created to represent new concepts, whereas existing models deemed
to be out-of-date can be deleted to gradually forget old concepts. Then, by empha-
sising the predictions given by the models more likely to perform well on the current
data concept, these ensembles can deal with concept drifts.

1 It is worth noting that there are also several other algorithms for dealing with concept drift in
chunk-based learning (i.e., algorithms that are not online algorithms in the strict sense) [332, 72,
377, 118].
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For example, Concept Drift Committee (CDC) [372] maintains an ensemble
whose base models are weighted based on their accuracies. A new base model is
created whenever a new training example is made available. When the maximum
ensemble size is reached, a new model is added only if an existing model can be
deleted. Models are deleted based on their current accuracy. Different from CDC,
Dynamic Weight Majority (DWM) [224] creates new base models only at every
p training examples, if the ensemble misclassifies the training example. This helps
DWM to maintain a more diverse set of base models representing different concepts.
Rather than assigning weights to base models according to their overall recent ac-
curacy, Dynamic Classifier Selection [397] assigns weights to base models based
on their local accuracy. Local accuracy is the accuracy on a subset of validation
examples most similar to the example being predicted. Even though this algorithm
may achieve better performance by tailoring weights to the specific example being
predicted, a set of validation examples must the stored.

7.2.3.4 Reinforcement Learning

In self-aware systems reinforcement learning deals with nodes that are allowed to
take certain actions in order to maximize an objective function. For instance, in the
context of people tracking, one action for a camera node might consist of “hand over
the current object to the next camera in the environment”. The objective function in
such a camera network might consider the balance between accurate tracking and
the overall computational load of the camera nodes. A camera node might therefore
decide to stop tracking the object in order to reduce the penalty imposed by its
computational load when other cameras have a better view of the object. In order
to be able to perform reinforcement learning, a node must be able to analyse its
environment using its sensors as well as to interact with the environment using its
self-expression capabilities.

The most striking difference between reinforcement learning and classical ma-
chine learning is the absence of labels. Instead of looking at examples (as in su-
pervised machine learning), reinforcement learning algorithms perform a form of
trial-error in order to explore its environment and find out which actions lead to
a long-term increase of the objective functions. An intriguing problem is that the
environment is constantly changing, possibly also due to the action of the node.
For instance, handing over an object from one camera might be a good idea if the
other camera is able to continue tracking the object. However, if the other camera
quickly loses the object, the benefit of reducing the computational load is thwarted
by the loss of tracking accuracy. Reinforcement learning algorithms usually employ
some form of probabilistic model that are commonly based on Markov Decision
Processes.



7 Common Techniques for Self-Awareness and Self-Expression 121

7.3 Nature-Inspired Learning

The field of nature-inspired learning is an inter-disciplinary area of research con-
cerned with the problem-solving and computational capabilities of natural systems.
Nature provides great sources for inspirations to both develop intelligent systems
and gives solutions to complicated problems. For example, the analogy between
the human nervous system and computational devices has been studied and ex-
ploited comprehensively from theories to application. It leads to the development
of mathematical models of computation, such as neural networks [26]. The result-
ing techniques have contributed to substantial real-world applications successfully,
especially in pattern recognition. Taking animals for example, evolutionary pres-
sure forces them to develop highly optimised organs and skills to survive. Those
organs and skills can be well refined as optimisation algorithms, and the evolution
can be described as the process to fine-tune the parameter settings in the algorithms.
Genetic algorithm (GA) and ant colony optimisation (ACO) are popular ones, be-
longing to this category. Simply to say, nature-inspired learning, namely natural
computing, is the computational version of the process of extracting ideas from
nature to develop ‘artificial’ (computational) systems, or using natural media (e.g.
molecules) to perform computation [55].

Regarding the question of when to use nature-inspired learning approaches, some
particular situations have been concluded [55]:

• The problem to be solved is complex, i.e., involves a large number of variables
or potential solutions, is highly dynamic, non-linear, etc.

• It is not possible to guarantee that a potential solution found is optimal, but it
is possible to find a quality measure that allows the comparison of solutions
among themselves.

• The problem to be solved cannot be (suitably) modelled, such as pattern recog-
nition and classification tasks.

• A single solution is not good enough.
• Biological, physical and chemical systems and processes have to be simulated

or emulated with realism.
• Life behaviours and phenomena have to be synthesized in artificial media.
• The limits of current technology are reached or new computing materials have

to be sought.

With the behaviour of natural systems, nature-inspired learning approaches are
also shown and expected to possess greater adaptivity and resilience to applied envi-
ronments than other learning systems. According to Marrow’s work in 2000 [256],
this adaptivity and resilience arise from several aspects:

• Because of the large number of elements in each system (which may be indi-
vidual animals, cells or even macromolecules within a cell), each of them may
be interchangeable for another.
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• Because of the loose but flexible interconnections between elements, nature-
inspired learning allows transfer of tasks between entities, and communication
throughout the system.

• Because of the differences between elements in the system, nature-inspired
learning allows a diversity of responses to a changing environment.

• The resulting complex environment that all the interacting parts produce stimu-
lates diverse responses from living organisms.

The above understandings of nature-inspired learning approaches provide good
reasons to solve complex problems in SA/SE systems that are usually formed of
multiple SA/SE modules and software agents.

7.3.1 Example Application

We consider an example of a nature-inspired self-aware and self-expressive comput-
ing system within the field of active music. In an active music system computational
nodes play malleable music that may be changed by a user or by the computational
node itself (see further description and more examples of active music systems in
Chapter 14). When a group of nodes play music together, most important challenges
faced is timing. By sharing some common notion of time, the nodes may create var-
ious controlled musical patterns, such as rhythms or melodies.

In a setup where a collaborative active music system is implemented on mobile
phones, the distribution of the system on separate units of the system calls for a
mechanism for decentralised synchronisation. That is, there should not be a central
unit to which the remaining nodes synchronise. A decentralised approach would
allow nodes to leave or enter a musical performance at any time.

The example algorithm given in this section is inspired by fireflies who syn-
chronise their flashes in a decentralised manner. The phenomenon has been studied
for almost a century, and has more recently been proven useful when synchronis-
ing devices in machine-to-machine systems [37]. The algorithm allows pulse-based
communication, and thus individual musical tones may be used for communica-
tion between nodes. The algorithm presented was introduced in [297], and is based
on Mirollo and Strogatz’ firefly algorithm [272] with various changes to compen-
sate for delays in the system and faulty nodes, as will be explained in the coming
section. More examples of how nature-inspired learning may be used to obtain self-
awareness in active music systems is given in Chapter 14.

7.3.1.1 Fireflies as Inspiration for Pulse-coupled Oscillators

The phenomenon of certain species of firefly on riverbanks in Asia that synchronise
their flashes has been observed and studied for more than a decade [149]. Through-
out the 20th century John Buck proposed several explanations to the phenomenon
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[47, 48], although a satisfactory mathematical model was not proposed until the last
part of the century. Inspired by C.S. Peskin’s work on heart physiology [320], Re-
nato E. Mirollo and Steven H. Strogatz succeed in proving that the phenomenon
could be described as pulse-coupled oscillators [272]. Their proof, however, re-
quired the fire events to be infinitely short impulses, with no delay in the communi-
cation, and also required that oscillator frequencies were equal.

In our example system, the synchronising units are musical nodes, each with an
internal oscillator with a certain frequency (w) and phase (f ). To enable interac-
tion between such nodes, they must be coupled, either continuously by having each
node monitor the phase of the oscillators of the other nodes (phase-coupling), or
discretely though pulse-like communications (fire events) whenever an oscillator
node reaches a phase threshold in its cycle (pulse-coupling). While phase-coupled
systems provide continuous updates, and theoretical models show how they can be
programmed to obtain synchronisation between oscillators, these systems are diffi-
cult to implement in real-world scenarios [37]. Pulse-coupled systems, on the other
hand, are less difficult to implement in terms of inter-node communication, and as
such Mirollo and Strogatz’ firefly model is well suited for enabling synchronisation
of active music nodes.

The fundamental operation of the algorithm described by Mirollo and Strogatz, is
that the phase of an oscillator is increased by a small amount whenever a fire event
is received from another oscillator. The amount by which the phase is increased
depends on the internal phase of the receiving oscillator. It is imperative to their
model that the larger the phase of the receiving node, the larger phase jumps should
occur. The process is illustrated for two nodes in Figure 7.4.
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Fig. 7.4 Synchronisation of two firefly nodes by the Mirollo/Strogatz algorithm. The two nodes
have identical frequencies, and there is no communication delay. Fire events are indicated by black
circles, and the corresponding interaction indicated by a red arrow. Note how the size of the phase
jump depends on the current phase of the receiving node.

Since Mirollo and Strogatz’ proof, several efforts have been made towards reach-
ing a synchronised state for real systems. Specifically, the requirements of infinitely
short impulses and no communication delay is problematic in real systems. An in-
creased effort has been seen in recent years, as decentralised computing systems
have become more popular.
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Mathar and Mattfeldt showed that the problem of transmission delays and trans-
mission pulses of finite length can be tackled by implementing a refractory period
directly after firing [260]. Similarly to how neurons enter a refractory state directly
after firing, in which it is unable to receive new input, a pulse-coupled oscillator
does not respond to fire events received within the refractory period.

Babaoglu et al. addressed the challenging scenario of synchronising clock cycles
in certain types of sensor networks which lack a central reference clock to syn-
chronize with [19]. A number of efforts have been made to tackle the challenge of
“deafness” that occurs when a node is sending and receiving a fire event at the same
time. Werner-Allen et al. [412], and Leidenfrost and Elmenreich [234] suggested
the Reachback firefly algorithm for this purpose, where instead of making immedi-
ate phase jumps, the received impulses are accumulated during each period, and the
corresponding phase jump is made at the beginning of the next cycle.

Klinglmayr et al. target the problem of robustness against faulty nodes in a sys-
tem. That is, nodes that become defective, or malicious intruding nodes that may
potentially disturb the operation of the network [221, 222]. Their approach is rather
than pushing the phase of receiving nodes forward (excitatory coupling), to decrease
the phase of the receiving node (inhibitory coupling).

7.3.1.2 Decentralised Phase Synchronisation in Active Music Systems

We use as example a collaborative active music system where each node is imple-
mented on a mobile phone. The nodes communicate using audible sound. In other
words, when reaching maximum phase a node outputs a short sound through its
loudspeaker that other nodes pick up through their microphone. Node frequencies
correspond to the duration of musical notes (eight notes, quarter notes, full notes,
etc.). To exemplify, in a tempo of 120 beats per minute, a quarter note has a duration
of 500 ms, a 16th note 125 ms, and a full note 2000 ms, corresponding to 2 Hz, 8
Hz and 0.5 Hz, respectively.

Given the low frequencies of the nodes in the application, the problem of trans-
mission delay and finite duration of the sounds may easily be solved by implement-
ing pulse-coupled oscillators with a refractory period. As descried by Klinglmayr
et al. [221], the refractory period tre f has a corresponding refractory phase interval
[0,fre f ] within which no phase jumps occur. Thus, when a node i not in a refractory
state perceives a fire event from a node j, it immediately increases its own phase
according to the phase update function, P(fi(t)). More precisely:

f j(t) = 1 )

8
><

>:

f j(t+) = 0
fi(t+) = fi(t+) if f j(t) 2 [0,fre f ] 8i 6= j
fi(t+) = P(fi(t)) if f j(t) /2 [0,fre f ] 8i 6= j

, (7.5)

where t+ is the time step immediately after t. The phase update function is given by:

P(f) = (1+a)f , (7.6)
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where the pulse coupling constant, a , denotes the coupling strength between nodes.
One example of a musical system with the above implementation has been im-

plemented on mobile phones using Mobmuplat [191] and Pd [328] at the University
of Oslo.2 In the example, each node has a fixed frequency of one hertz, phase cou-
pling constant a = 0.1, and the refractory period is set to 40 ms. The source code is
available online.3

7.3.1.3 Obtaining Frequency Synchronisation Through Self-awareness

The section above discussed a well-known solution to the problem of synchronis-
ing decentralised musical nodes with equal frequencies. Synchronisation of nodes
with different starting frequencies however, is a much more challenging task. In
this section we will show how nodes are able to synchronise when higher levels of
self-awareness are implemented.

To reflect that periodic patterns in a musical system may occur at multiple simul-
taneous levels (quarternotes, 16ths etc.) we define a new target state for the system:
harmonic synchrony. Harmonic is borrowed from the concept of harmonics in vari-
ous waveforms, where the frequency of every harmonic is an integer multiple of the
lowest (fundamental) frequency. Correspondingly, harmonic synchrony is a state
where the frequency of each node is element of wlow ·2N+

0 , where wlow is the lowest
frequency of all nodes in the group. As an example, please refer to the illustration in
Figure 7.5, where the most suitable adaptation would be if Node 1 adjusts to twice
the frequency of Node 2, and Node 3 to four times the frequency of Node 2.

Fig. 7.5 Illustration of how harmonic synchrony may be beneficial in a collaborative active music
system. The nodes may converge to integer-ratio frequencies, rather than equal frequencies.

In order to obtain synchrony, each node must be able to reason about its own
level of synchrony with the rest of the group. A node calculates an error measure,
e 2 [0,1], whenever a fire event is received. e is at its highest value when f = 0.5,
and lowest value when f is equal to 0 or 1.

2 http://vimeo.com/67205605
3 http://fourms.uio.no/downloads/software/musicalfireflies
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e = sin(pf(t))2 (7.7)

with the special case that e = 0 if a fire event is received within the refractory period.
The sequence of error measures calculated by a node make up a discrete function
e(n) describing the error measures at the n-th received fire event. Goal-awareness
is realised by applying a running median filter to e(n):

s = median{e(n),e(n�1), ...,e(n�m)}, (7.8)

where s is the self-assessed degree of synchrony within the node, and m� 1 is the
length of the median filter. Thus, s takes a high value when the node is out of phase
with the past received fire events, and a low value when the node is in phase with
the past perceived fire events. A node uses this self-assessment of synchrony to scale
the impact of received fire events from other nodes upon its own frequency adjust-
ments, and as such the goal awareness is the base of the node’s meta-self-awareness.
This self-awareness mechanism aids in giving less influence to occasional erroneous
firings from other nodes or environmental noise.

Frequency adjustment is done as follows: Upon receiving a fire event from an
external node, the receiving node calculates r , indicating whether frequency should
be increased or decreased.

r = sin(2pf(t)) (7.9)

r is positive when f < 0.5 and negative when f > 0.5, meaning that if a node is
less than half-way through its cycle when a fire event is received, it increases its
frequency to “catch up” with the firing node.

Both r and s are factors in the frequency update function, where r indicates the
direction and amount of change in frequency and s indicates the degree to which a
node listens to or ignores incoming fire events. As such, s embodies the meta-self-
awareness of firefly nodes.

To illustrate the operation of the algorithm, we look closer at a short excerpt
from a single run. The example uses a Matlab simulation, showing a short excerpt
from a run of 6 fireflies. Figure 7.6 shows how the phase coupling immediately
pulls the phase of the oscillators closer together, for instance in the fire event of
node 6 (yellow) after approximately 6.4 seconds. The phases of nodes 1, 2 and 4 are
increased to maximum, causing them to reset, while node 5 is pulled back towards
(but not fully down to) 0. Node 3 is approximately half-way through its cycle, and
only a very small phase adjustment is made. The frequency coupling effect is shown
between 7 and 8 seconds, where upon the firing of node 4 at 7 seconds, the phase
of node 6 is being reset back to 0. In node 6, this is interpreted as being too early,
and a negative frequency adjustment does take place the next time node 6 reaches
its peak value (after ⇠7.6 seconds). After approximately 12 seconds, the system
reaches a close-to-synchronised state. That is, the oscillator frequencies are not quite
in harmonic relation to each other, but due to the phase coupling, the fire events
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occur as they should. A video showing the evolution of phases and frequencies of
the fireflies is available online.4
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Fig. 7.6 A short excerpt from a Matlab simulation of 6 fireflies. The top plot shows the phases (f )
of all the nodes and the bottom plot shows the internal oscillator frequencies (w). The fire events
are shown in the middle plot which also acts as colour legend for the phase and frequency plots.

The chapter on active music systems presents several examples of how nature-
inspired learning may be used to obtain self-awareness in active music systems.
Please refer to Chapter 14 for examples of how the principle of pheromone trails of
ants may be exploited to develop efficient gesture recognition algorithms and paths
between musical sections.

7.3.2 Benefits and Challenges at Levels of Self-Awareness

The firefly algorithm could operate with different levels of computational self-
awareness. In this section we analyse the behaviour of the algorithm given a certain
level of self-awareness.

7.3.2.1 Stimulus-Awareness

A stimulus-aware firefly node is only aware of simple stimuli. The sender of fire
events or the size of the group is unknown to each node. Each node in the example
given above will react immediately to incoming stimuli (phase adjustment), and
phase synchronisation may be realised at this level for nodes with equal frequencies.
Benefits: Simple and efficient implementation. No handshaking between nodes in
a potentially large group.

4 http://vimeo.com/72493268
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Drawbacks: Nodes are unaware of their goal state and thus no self-assessment of
synchrony is possible.

7.3.2.2 Interaction-Awareness

An interaction-aware firefly node is aware of the neighbouring nodes from which
it receives fire events. For this to be possible, nodes must be identified using for
instance a networking protocol.
Benefits: The sender of incoming fire events could be identified.
Drawbacks: Networking protocol required, which makes entering and leaving a
musical interaction more difficult, especially if acoustic musical instruments are
involved in the group.

7.3.2.3 Time-Awareness

Time-aware firefly nodes possess knowledge of previous events. Nodes are allowed
to monitor a sequence of incoming fire events rather than only reacting immediately
to a received fire event.
Benefits: Time-awareness enables the reachback firefly algorithm.
Drawbacks: Goal-awareness required for time filtering of error measure.

7.3.2.4 Goal-Awareness

A goal-aware firefly node is able to assess its own level of synchrony. This enables
calculation of error measures for each received fire event, and in combination with
time awareness becomes important in order to obtain meta-self-awareness.
Benefits: Reasoning about current degree of synchrony.
Drawbacks: Meta-self-awareness needed in order to change behaviour.

7.3.2.5 Meta-Self-Awareness

Meta-self-aware firefly nodes change their behaviour based on the knowledge from
the other levels of self-awareness. Firefly nodes adjust their own sensitivity to fire
events from other nodes based on their self-assessed degree of synchrony. Further-
more, nodes may use other frequency update mechanisms if they get “stuck” at a
frequency where they never reach maximum phase [297].
Benefits: “Insecure” nodes make larger changes to oscillator frequency, keeping
nodes in sync.
Drawbacks: Nodes are still only self-aware and not aware of internal parameters
of other nodes.
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7.3.3 Other Related Techniques

This section focuses on related techniques that we believe to be more relevant to
self-awareness and self-expression, without meaning to be comprehensive.

Nature-inspired systems take inspiration from a natural process in order to ob-
tain some goal. In our example above, the goal was to reach a certain system-wide
state, which is often the case in such systems. Nature-inspired systems may take in-
spiration from how collective behaviour in certain species of animal reach a global
goal. In the example above, the global goal of fireflies would be flashing in syn-
chrony in order to enhance the light beyond that which each individual firefly is
able to produce on its own. Variants of the firefly algorithm have been applied in
a number of reports in order to synchronise devices in various types of self-aware
and self-expressive system [412, 19, 70, 234]. A related algorithm has been used for
a similar purpose, inspired by Japanese tree frogs [163]. The mating call of male
Japanese tree frogs are not simultaneous, but rather spread out over time such that
female frogs can locate the individual males.

Ant Colony Optimisation (ACO) is another type of nature-inspired learning use-
ful for optimisation [106]. ACO takes inspiration from the way in which ants forage
for food. In their search for food, ants lay behind a trail of pheromone for other ants
to follow. When more ants pick the same trail, more pheromone is deposited, attract-
ing even more ants. As such, trails to food sources become “ant highways” between
the food source and the ant hill. When the food source runs out, the pheromone even-
tually evaporates, and new food sources are located. Dorigo et al. [107] showed how
the use of a group of agents (ants) often would result in optimal solutions to prob-
lems without getting stuck at local optima. Examples of exploiting the pheromone
mechanism from ACO in self-aware and self-expressive systems are given in Chap-
ters 13 (multi-camera networks) and 14 (gait recognition in active music systems).

In optimisation, the field of Evolutionary Computing should also be mentioned in
the context of nature-inspired methods. While several types of Evolutionary Algo-
rithms (EA) exist, the common denominator is to search for a solution to a problem
using mechanisms inspired by natural evolution [112]. An optimisation process is
typically started by initialising a population of solutions to a problem. The indi-
viduals in the population are selected for reproduction through recombination and
mutation, resulting in a offspring of which some survive and other perish based
on some criterion. The process is repeated until some termination condition is met
(e.g. if a satisfactory candidate has been evolved). Certain Evolutionary Comput-
ing techniques can also be used to deal with dynamic optimisation, i.e., when the
environment, including the objective function, the decision variables, the problem
instance, constraints and so on, may vary over time [427]. Techniques from Evo-
lutionary Computing have been used for dynamic and multi-objective optimisation
in SA/SE systems. Specifically, Chen et al. [61] applied a dynamic multi-objective
evolutionary algorithm in a self-adaptive system for temperature management in
multi-core FPGAs.
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7.4 Socially Inspired Learning in Collective Systems

In multi-agent systems, the research on simulating societies in interaction with their
environment has been taking shape, particularly the modelling of collective deci-
sions. Collective (or distributed) learning is referred to as learning that is carried out
by a group of agents instead of a single agent on its own, e.g. by exchanging knowl-
edge or by observing other agents. It is an important concept in decentralising the
system and reducing system complexity. It can be viewed as a social behaviour of the
individual nodes in the collective. Having social behaviour allows to create a social
network. This furthermore enables each individual to focus its efforts in making a
collective decision towards this smaller set of entities in the collective. This reduces
the complexity in a collective decision making process when resources are limited.
This section will give a thorough explanation of socially inspired learning tech-
niques in collective systems, through our SA/SE system example – the distributed
smart camera network.

7.4.1 Example Application

In recent years ‘dumb’ cameras have evolved into embedded smart cameras [417,
343], combining a processing unit with an image sensor on a single platform. These
processing capabilities, even though limited, allow the smart cameras to pre-process
video data on-site and transmit only aggregated information, or a complete analysis
of a scene, instead of plain images. Modern smart cameras are even capable of ac-
complishing processing intensive tasks, such as object tracking. In object tracking,
a description of the object of interest is initially provided to the camera. The camera
thereafter attempts to re-identify this object in consecutive frames of its own field of
view (FOV). There are various tracking algorithms to locate objects in each frame
matching the given description with the highest probability. While we employ track-
ing algorithms to identify and locate moving objects, we do not elaborate on these
fundamental tracking techniques in this thesis.

Soon enough, single smart cameras have been connected to distributed smart
camera systems [344, 338]. Tracking objects in multi-camera systems can be ap-
proached in two different ways. The first approach uses all cameras to track various
objects and the gathered information is fused at a central control. When tracking
objects within multiple cameras concurrently, cameras need to align their FOVs to
ensure the gathered data is coherent. To do so, a calibration process is employed to
remove geometric distortions caused by the camera lens. This calibration process
requires additional work before the system can go online. This extra effort might be
feasible with small numbers of cameras but could be highly problematic in larger
systems with tens, hundreds or even thousands of cameras. Furthermore, in case
one of the cameras’ parameters is changed, new cameras are added or cameras are
removed from the network, cameras might need to be re-calibrated to ensure proper
functionality. While this might result in a very high network-wide utility, visual
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object tracking is a resource intensive task and our facilitated cameras are rather
resource constraint. We refer to the second approach as distributed tracking, where
each object is only tracked by a single camera at any given time. This means, the
collective of cameras has to know where each object currently is located—given
it is visible within the field of view of any of the cameras. Therefore the network
needs to decide which camera is responsible to keep track of a specific object at any
time. Furthermore, the tracking camera has to decide when and to which camera it
should transfer the tracking responsibility to. This process of transferring a tracking
responsibility is know as handover. Each camera is self-aware, acts autonomously
and tries to maximise its own utility. Nevertheless, every single camera is influenced
and affected by the other cameras in the network and as a collective system all cam-
eras share a common goal: keeping track of an object of interest with a certain
utility. This utility is generated locally by each camera by tracking objects of inter-
est. We consider the size as well as the confidence of the employed tracking algo-
rithm as a common measurement of utility among all cameras. Inspired by market-
mechanisms, tracking responsibilities are treated as goods and our cameras act as
independent merchants able to buy and sell tracking responsibilities autonomously.
This distributed handover process is depicted in Figure 7.7. This handover process
has first been introduced by Esterle et. al [124]. Whenever a camera decides to sell
an object, it initiates an auction by transmitting an object description to the other
cameras in the network (cp. Figure 7(b)). Thereafter, the receiving cameras, gen-
erally willing to participate in such an auction, try to value this possible tracking
responsibility (cp. Figure 7(c)). This valuation is based on an instantaneous utility
of the corresponding object. To allow for a equivalent evaluation among all cameras,
all cameras have to apply the same approach to calculate this instantaneous utility
for the observed objects. The auctioneering cameras transfers the tracking respon-
sibility at the end of the auction to the highest bidder (cp. Figure 7(d)). Instead of
requesting the highest bidders valuation, only the second highest bid has to be paid.
This Vickrey auction mechanism makes truthful bidding the dominant strategy for
all participants and hence less vulnerable to malicious cameras. Additionally, this
distributed approach allows continuous tracking of objects without any central com-
ponent, analysing all data and coordinating tracking responsibilities.

This distributed handover approach gives rise to two important questions:

1. Which cameras should be invited for an auction in order to maximise the suc-
cess of the auction while minimising the marketing effort?

2. At what time should the auctioneering camera try to sell the object of interest?

7.4.1.1 Building and Exploiting the Neighbourhood Relations

While cameras could offer their objects to all cameras in the network, only those
cameras having a neighbouring field of view would actually have a chance to ‘see’
and hence valuate the object. To optimise their marketing efforts, cameras build up
a knowledge about their neighbourhood by reasoning about the received bids af-
ter initiating an auction. Those neighbours having the object in their field of view
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Fig. 7.7 Illustration of the market-based handover approach: an object of interest is tracked by
camera c2 in Illustration (a) indicated by the dashed green line and the shaded area representing the
FOV. c2 initiates an auction for an object as it is about to leave the FOV in Figure (b). Bids for taking
over tracking responsibility are sent by camera c3 and c4 in Illustration (c) which have the object
within their FOV as indicated by the orange dashed lines and the hatched area representing their
FOV. c3 wins the auction and the tracking responsibility is transferred from c2 to c3 in Illustration
(d). A link in the vision graph is created (indicated as red line between c2 and c3).

will most likely have a field of view quite close to their own. As cameras might
misidentify objects and hence mistakenly submit a bid with an valuation for the
wrong object, but also due to possible changes in the network topology, we require
a technique capable of forgetting about previously or incorrectly learnt neighbour-
hood relations. Inspired by the ant foraging process, we use artificial pheromones
to build up a local neighbourhood graph on each camera. With every trade a selling
camera i completes, it increases the strength of the link tix to the respective neigh-
bouring camera x by the value D . At the same time links evaporate continuously,
ensuring cameras are able to forget now invalid information. The update rule for the
artificial pheromones is shown in Equation 7.10.

tix =

(
(1�r) · tix if no trade occurs on the edge
(1�r) · tix +D if trade occurs on the edge

(7.10)

As in ant colony optimisation, r is the evaporation rate parameter, which can be
understood as a forgetting factor; higher values lead the pheromone to evaporate
faster, enabling the system to adapt to changes quicker, but at a penalty of losing
more historical vision graph information. However, our approach here is not ant
colony optimisation, since pheromone information is not used to find optimal routes
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through the network, but instead to represent a social environment of cameras with
adjacent fields of view.

Learning about their local, social network, each camera is able to focus its mar-
keting effort to those cameras with the highest probability of successfully partic-
ipating in auctions. To ensure, new cameras can be included, cameras with a low
or no link in the neighbourhood graph receive an auction invitation with a smaller
probability.

As the vision graph is built up, the initial communication behaviour can be
adapted. Specifically, when advertising an object that other cameras may wish to
buy, a camera i sends a message to camera x with probability P(i,x), otherwise it
does not communicate with camera i at that time. We consider three different poli-
cies of determining these communication probabilities:

1. BROADCAST, which communicates with all available cameras in the network.
This approach does not miss any camera but also generates a high overhead
since it includes cameras which are not likely to respond.

2. STEP, in which an advertisement is sent to a camera if the strength of the link
to that camera is above a certain threshold, otherwise the camera communicates
with the other camera with a very low probability.

3. SMOOTH, in which the probability of communicating with another camera is
based on the ratio between its link strength and that of the strongest link in its
graph.

More formally, when employing a policy, the probability of camera i communi-
cating with another camera x is given by

PBROADCAST(i,x) = 1 (7.11)

when using the BROADCAST policy. For STEP, the probability is given by

PSTEP(i,x) =

(
1 if (tix > e)_ (tim = 0)
h otherwise

(7.12)

where e = 0.1 and m is the camera with the highest strength value, i.e.,

m = argmax
y

tiy,8y.

For the SMOOTH policy, the communication probability is given by

PSMOOTH(i,x) =
1+ tix

1+ tim
(7.13)

where m is again the camera with the highest strength value.
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7.4.1.2 When to Handover

The timing of initiating auctions in a system observing an highly dynamic envi-
ronment can be quite crucial. In a very straightforward approach, we enable our
cameras to initiate auction in very short intervals, trying only to maximise the util-
ity for each object without considering the possible processing overhead for other
cameras in the network. We call this an ACTIVE auctioning schedule.

In contrast, cameras could only initiate auctions whenever the object is about to
leave the field of view of a camera. In this approach, the camera would only try to
sell the object when its own utility is very low. On one hand, the camera might have
been better off selling the object earlier. On the other hand, this results in a possibly
lower processing overhead for the other cameras in the network. This approach is
called PASSIVE auctioning schedule.

Combining these two auction initiation schedules with the three previously dis-
cussed communication policies results in six different strategies. An operator, trying
to balance the trade-off between communication overhead and tracking performance
in the system, can select one of these six strategies. To start our distributed tracking
application, objects of interest have to be defined. In our system, this basic mecha-
nism is accomplished by a human operator who has to connect to a remote camera
and select the object or person to be tracked in a user interface. This user interface is
only required to initiate the tracking process and does not act as a central component
or is not needed in any way besides initialisation, to support our approach.

In addition to the two proposed approaches, the cameras could also learn their
individual timings for handover. Starting with an ACTIVE approach, each camera
tries to sell an object in very short intervals. Whenever an object has been sold
to a neighbouring camera, the selling camera can keep track of this information.
As objects are unlikely to always use the exact same trajectory, the camera has to
approximate the time of sending out an action invitation for each object based on its
current trajectory and speed. This introduces an exploration-exploitation-dilemma
in order to find the optimal timings. We propose to use a probability for exploration
and reduce this value over time given the sale for the respective object is successful.
With non-successful trades, the camera can assume a change in the network and
increase the probability. This increase in exploration allows the camera to adapt
faster to changed topology conditions.

7.4.1.3 Dynamic Strategy Selection

As discussed in the previous section, there are six different behavioural strategies
available for our smart camera system. Each of this strategies gives rise to one out
of two conflicting objectives: minimising network-wide communication or max-
imising system-wide tracking performance. In Lewis et al. [242] we compare the
performance of a system where all cameras employ the same strategy and one where
the cameras may use strategies differing from the other cameras in the network. A
system is called to have a homogeneous configuration when all cameras apply the
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same strategy. Alternatively, a camera network has a heterogeneous configuration
when at least two cameras use differing strategies.

Permitting this heterogeneity in the network enables nodes to specialise to their
local situation and hence allows for a wider range of global outcomes when com-
pared to the homogeneous case. We speculate that optimal heterogeneous assign-
ment of strategies can lead to the global performance of the network being strictly
better in terms of both of the considered objectives. This would extend the previous
Pareto efficient frontier with respect to the network-wide observed trade-off between
communication overhead and achieved tracking performance. However, heterogene-
ity itself does not necessarily lead to better outcomes. It is also possible that nodes
specialise wrongly, leading to a strictly worse global outcome when compared to any
homogeneous case. Indeed, when considering all possible heterogeneous configu-
rations for a given network, the number of possible configurations increases greatly
compared to the homogeneous-only case. Having g different strategies and n cam-
eras in the network, an operator has to pick one configuration out of gn possible
configurations.

The selection of an appropriate configuration, using a variety of strategies in the
smart camera network, turns out to require knowledge of the camera setup, the en-
vironment as well as the movement patterns of the objects of interest. To neglect
a priori knowledge of these parameters, we implemented multi-armed bandit prob-
lem solvers in every camera of the network [18]. This problem is analogous to being
faced with n slot machine arms, where each pull of an arm returns a random reward
drawn from an unknown distribution associated with that arm. Given m total arm
pulls, the task is to select which arms to pull such that the total reward obtained
is maximised. If the player were to know the distributions behind each arm, then
the player could simply select the best arm for every pull. However, since the dis-
tributions are unknown, the player must sample from each arm in order to gain
some knowledge of each arm’s reward distribution. The multi-armed bandit prob-
lem therefore encapsulates another classic exploration vs. exploitation dilemma.

We consider three well-known bandit solvers from the literature: the simple
EPSILON-GREEDY [400], UCB1, which is known to perform well in static prob-
lems [18], and SOFTMAX [382]. EPSILON-GREEDY requires an e value to deter-
mine the amount of exploration. A low e value (e ! 0) results in random selection
of algorithms while a high value (e ! 1) selects greedily the best algorithm, based
on the previous rewards. UCB1 requires no parameters. SOFTMAX uses a temper-
ature value t to steer the probability of selecting an arm based on the expected
reward. This means, that high temperatures (t ! 1) result in a random selection
where each arm has nearly the same probability while lower temperatures (t ! 0)
tend to select the arm based purely on the expected reward.

While we aim to achieve global, network-wide objectives in terms of communi-
cation overhead and tracking utility, we only rely on corresponding local metrics in
order to avoid exchange of information among the cameras. On one hand we use
the number of messages sent by a camera at a given time step and denote this by
communication. On the other hand, we have utility which is the sum of the obtained
tracking performance over all objects tracked by this camera in the current time step,
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plus its balance of payments from all trading activity during this time step. We use
these two local measurements in a linear combination as a reward function for the
bandit solvers on each camera:

reward = a ⇥utility� (1�a)⇥ communication. (7.14)

Here the value a allows an network operator to balance the trade-off between re-
quired communication and achieved tracking utility.

The use of bandit solvers on the camera level allows the individual cameras to
learn on their own which strategy fits them best, given a priority on either minimis-
ing communication or maximising tracking performance.

7.4.2 Benefits and Challenges at Levels of Self-Awareness

In this subsection we analyse our socially inspired learning techniques based on
the different levels of computational self-awareness, targeting at the application ex-
plained in Section 7.4.1. A detailed discussion of the different levels of computa-
tional self-awareness is given in Chapter 4.

7.4.2.1 Stimulus-Awareness

In a stimulus aware system, a node has only knowledge of single stimuli. The node is
not able to identify the source of a stimuli. Furthermore, does the node not have any
knowledge about previous stimuli and hence can not infer possible future stimuli.
For the discussed smart camera system, in a stimuli aware system only a single
camera would be responsible for tracking objects as handover interactions would
not be possible.
Benefits: No Benefits.
Drawbacks: A stimulus-aware smart camera system corresponds to a camera sys-
tem with only a single camera. A tracking coordination is not possible.

7.4.2.2 Interaction-Awareness

An interaction-aware node knows that its actions trigger specific reactions from the
local environment. In the smart camera system, ACTIVE and PASSIVE BROADCAST
represent a simple interaction-aware system. Each camera triggers auction invita-
tions based on the applied strategy expecting response from neighbouring cameras.
Conversely, upon receiving such an invitation, a neighbouring camera will try to
identify the object and submit a bid, again expecting the initiating camera to assign
the tracking responsibility. Building up knowledge about its local communities, each
camera could also facilitate an approach in order to focus marketing efforts. Nev-
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ertheless, as an interaction-aware system does not possess knowledge about histor-
ical or future phenomena. Therefore, the system is not able to use an ant-inspired
approach to build up the local neighbourhood graph nor to facilitate the STEP or
SMOOTH communication policy.
Benefits: Possible coordination of tracking responsibilities.
Drawbacks: No focussed marketing efforts. No robustness towards changes in the
topology. Only fixed strategy assignment.

7.4.2.3 Time-Awareness

With the introduction of time-awareness, a system gains knowledge about past and
future events. In the smart camera system this relates to the ant-inspired neigh-
bourhood graph and the evaporation of artificial pheromones allowing the net-
work to ‘forget’ about changed environmental or social conditions. Only with time-
awareness, a system can take full advantage of the proposed communication policies
STEP and SMOOTH.
Benefits: Focussed marketing efforts possible when coordinating tracking respon-
sibilities. Robustness towards changes in the network topology.
Drawbacks: Only fixed strategy assignments. No reasoning about current perfor-
mance.

7.4.2.4 Goal-Awareness

Goal-awareness requires a node to possess knowledge about current goals and ob-
jectives but also about preferences and constraints. Having a local performance
function combining the required communication effort and achieved tracking utility
enables the nodes of our smart camera system to reason about their current perfor-
mance.
Benefits: Reasoning about current performance allowing to optimize local be-
haviour.
Drawbacks: Reasoning possible but not changing of behaviour.

7.4.2.5 Meta-Self-Awareness

Having a node change its own level of computational self-awareness is considered
meta-self-awareness. While our example of a smart camera system does not change
these levels explicitly, we can reason about the performance of the different strat-
egy representing different levels of self-awareness. The exploration of the differ-
ent strategies and the dynamic selection of a specific strategy during runtime by
means of a multi-armed bandit problem solver is an implementation of meta-self-
awareness.
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Benefits: Cameras can reason about the currently applied strategy and explore oth-
ers possibly more beneficial.
Drawbacks: Cameras only observe their very own performance measurements and
do not consider possible impacts on cameras in their neighbourhood.

7.4.3 Other Related Techniques

This section focuses on related techniques that we believe to be more relevant to
self-awareness and self-expression, without meaning to be comprehensive.

Socially inspired learning in collective systems tries to enable individuals to learn
about their social background and exploit this knowledge for their future actions and
decisions. We focussed on the building up a social community on each individual
node and the interactions within this community. While this allows exchange of in-
formation to a focussed group within the collective, it does not necessarily require
consensus about certain states among all nodes of this group. As with dynamic en-
vironments, these individual social networks can change over time and strategies
are needed to keep track of these changes. In our example, we induce our cameras
with social behaviour by using market-mechanisms. Furthermore, we learn the so-
cial network of each individual camera online using an ant-inspired approach which
also allows us to forget about these physical neighbourhoods again in case the envi-
ronment changes. Nevertheless, the individual nodes do only learn from each other
passively rather than actively exchanging knowledge. A probably obvious example
for active knowledge exchange are consensus mechanisms where nodes exchange
information to achieve a common knowledge base. Olfati-Saber [301] propose a dis-
tributed Kalman-filter [207] in order to exchange information and achieve a common
knowledge base among nodes with different observation matrices. The approach al-
lows to reduce disagreement of the estimates among nodes in a target tracking task.

An alternative has been introduced by Michalski [266] known as inductive learn-
ing technique which is also known as transfer learning. Here, an explicit teacher or
even the environment provides examples, observations or facts about some phe-
nomenon to nodes in the collective. The nodes make an inductive inference to
achieve an accurate generalisation from multiple scattered facts and observations.
Shaw and Sikora [360] introduce a distributed take on inductive learning. They
break up the samples and use inductive learning on each single one of them in
a distributed fashion. Using a genetic algorithm, they synthesise the results from
each learning program into a final concept. Ontañón and Plaza [304] present an
augmentation-based approach on multi-agent inductive learning in order to improve
the individual learning capabilities of each node in the collective.

Stone [375] uses a layered learning approach in a multi-agent system. His re-
inforcement learning approach, called Team-Partitioned, Opaque-Transition Rein-
forcement Learning (TPOT-RL), deals with collaborating agents not necessarily
able to observe the actions of another agent in the collective. By observing the long-
term effects of their actions, agents can simultaneously learn collaborative policies.
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In order to learn how multiple agents should coordinate their actions Claus and
Boutilier [74] extend Q-learning to multi-agent setting. Here the Q-value function
valuates the agents taking certain joint actions at a given state. Therefore, these
learners are also known as joint action learners. In our smart camera example this
would allow each social group to perform certain actions in a given situation in order
to optimise the performance of the entire group. Transitively this would benefit the
entire network. Nevertheless, joint action learners are incapable of applying mixed
policies—where they select an action out of a set of available actions based on a
certain distribution for a given situation.
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304. Ontañón, S., Plaza, E.: Multiagent Inductive Learning: An Argumentation-based Approach.
In: J. Fürnkranz, T. Joachims (eds.) Proceedings of the 27th International Conference on
Machine Learning (ICML), pp. 839–846. Omnipress, Haifa, Israel (2010)

305. Oxford: Oxford dictionaries – adapt. http://www.oxforddictionaries.com/
definition/english/adapt (Accessed in December 2014)

306. Oza, N.C.: Online bagging and boosting. In: Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics, pp. 2340–2345 (2005)

307. Oza, N.C., Russell, S.: Experimental comparisons of online and batch versions of bagging
and boosting. In: Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 359–364. ACM (2001)
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