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Abstract As explained in chapter 5, self-aware and self-expressive systems can be

designed based on a number of patterns and primitives. In this chapter, we dis-

cuss issues to be considered when developing such systems, specially when going

through phases 3 (selecting the best pattern) and 5 (determining primitives and alter-

natives), and possibly also phase 7 (score alternative primitives) of the methodology

for designing and implementing self-aware and self-expressive systems described in

section 5.4. Specifically, we explain several features which may be present in self-

aware and self-expressive systems, namely adaptivity, robustness, multi-objectivity

and decentralisation. We discuss their implications in terms of knowledge represen-

tation and modelling choices, including potential trade-offs among different choices.

Knowledge representation is interpreted loosely, referring to any structure used to

store knowledge, whereas knowledge modelling is considered to be the process used

to create and update such knowledge structures. The discussion raises awareness of

general issues to be considered and carefully reflected upon when developing self-

aware and self-expressive systems.
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6.1 Introduction

As explained in Chapter 5, self-aware and self-expressive systems can be designed

based on a number of patterns and primitives. In this chapter, we discuss issues

to be considered when developing such systems. Specifically, we explain different

features which may be present in self-aware and self-expressive systems, and their

implications in terms of knowledge representation and modelling choices. The fol-

lowing features are considered: adaptivity (Section 6.2), robustness (Section 6.3),

multi-objectivity (Section 6.4), and decentralisation (Section 6.5).

These features and their implications should be considered specially when go-

ing through phases 3 (selecting the best pattern) and 5 (determining primitives and

alternatives) of the methodology for designing and implementing self-aware and

self-expressive systems described in Section 5.4, and possibly also phase 7 (score

alternative primitives).

In the context of self-aware and self-expressive systems, the terms knowledge

representation and modelling are interpreted in a loose way. Knowledge representa-

tion is not restricted to formalisms such as semantic nets, frames, rules or ontologies.

Instead, it refers to any structure used to store knowledge. Knowledge modelling can

then be seen as the process used to create and update such knowledge structures /

models.

The discussion provided in this chapter highlights general choices and their trade-

offs in the specific context of self-aware and self-expressive systems, and is not in-

tended to be exhaustive and comprehensive or empirically demonstrated through ex-

periments. In particular, different applications may be affected by different choices

in different ways, and certain choices may be more relevant for some applications

than for others. It would thus be infeasible to list all possible choices and to empir-

ically analyse how these choices affect all possible applications of self-aware and

self-expressive systems. Rather than that, the discussions provided in this chapter

aim at raising awareness of general points to be considered and carefully reflected

upon when developing self-aware and self-expressive systems.

The rest of this chapter is organised as follows: Sections 6.2 to 6.5 explain the

features of self-aware and self-expressive systems and discuss their implications to

knowledge representation and modelling, and Section 6.6 provides a summary of

the chapter.

6.2 Adaptivity

In order to perform well in a given environment, systems usually need to be adapted

not only to their goals, but also to the environments where they are embedded. In

standard computing tasks, the environment where a system operates typically ex-

hibits a static behaviour. When the type of expected input is well-known, it is rela-

tively easy to devise a program to map the input to the desired output. As computing

tasks get more and more complex, this static property can no longer be relied upon,



6 Knowledge Representation and Modelling: Structures and Trade-offs 77

because the environments where these tasks must be performed are frequently dy-

namic and present uncertainties. Therefore, self-aware and self-expressive systems

usually need the ability not only to self-adapt to a given environment condition, but

also to self-adapt to (possibly unexpected) changes in the environment. In some ap-

plications, the goals of the system may also change with time, implicating on the

need for self-adaptation to new goals.

The need for adaptivity in self-aware and self-expressive systems leads to several

general knowledge representation and modelling choices, such as whether and how

to model time and what structures to use for dealing with changes. Each individual

application of self-aware and self-expressive systems also involves choices related

to whether and how to model the environment; whether and how to represent the

suitability of a solution to the environment; and what components of the system

to adapt. Section 6.2.1 explains adaptivity in self-aware and self-expressive systems

and gives some examples of applications involving adaptivity. Section 6.2.2 explains

some general implications of adaptivity to the development of such systems.

6.2.1 Definition and Examples

Two definitions of the verb adapt given by the Oxford dictionary are as follows

[305]:

• (With object) Make (something) suitable for a new use or purpose; modify.

• (No object) Become adjusted to new conditions.

In biology, adaptation can be seen as the process whereby an organism becomes

better suited to its habitat(s) [103]

1

. Similarly, in the context of self-aware and

self-expressive systems, adaptation can be seen as the process whereby a system

becomes better suited to its environment, given its purpose. If its environment or

purpose changes, the system must become adjusted to the new conditions. The term

adaptivity refers to the ability of a system to perform such adaptation automatically,

i.e., the ability of a system to self-adapt. It differs from the term adaptability, which

refers to systems that can be substantially customised by users through tailoring

activities by themselves [414].

Adaptivity can be advantageous for many self-aware and self-expressive sys-

tems. For example, let’s consider a credit card approval machine learning system

whose aim is to accurately predict whether a customer should be given credit or not

[408, 269]. Learning consists in creating a model of the relationship between cus-

tomers’ features (e.g., age, salary, gender, etc.) and a dependent variable describing

whether or not they have paid all their bills in, say, the last twelve months. This

model represents the system’s knowledge of its environment, and is created based

1

Please note that we do not intend to provide a comprehensive set of possible definitions of adap-

tivity, but focus on a couple of definitions that can help understanding the concept of adaptivity in

self-aware and self-expressive systems.
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on examples of existing customers and their payments (training examples). Predic-

tions on whether a new customer should be given credit or not are performed based

on this model. The environment where credit card approval systems operate may

change due to several factors. For example, customers who usually paid all their

bills may become less likely to pay their bills due to some economic crisis. A credit

card approval system should thus be able to adapt to such changes. This can be

achieved by monitoring how well existing models of the environment perform on

new incoming training examples, and updating such models or creating new models

to reflect new environment conditions [408, 22, 269, 139, 224, 326].

Another example of self-aware and self-expressive system where adaptivity can

be advantageous is that of distributed smart camera networks [124] (Section 7.4.1).

Such networks can be used, for example, to track objects. In order to accomplish

this goal, each smart camera must implement a handover mechanism, which refers

to finding the next camera to see the target object once it leaves the field of vision

of the current camera [120]. This mechanism could be based on a static known

vision graph whose neighbourhood structure is encoded a priori in the cameras.

However, this would require extensive manual design-time work to determine this

graph. Moreover, if a change such as the failure of a given camera or a camera

being moved to a different position happens, the cameras would need to be manually

updated to reflect the new situation. A system where cameras can automatically

learn their vision graph and adapt their handover mechanism would be desirable to

avoid heavy manual (re-)tuning of the system. This can be achieved, for example,

by using a market-based mechanism where each camera “bids” for objects with the

goal of maximising its own utility [124]. Each camera’s utility is updated with time,

and increases based on the objects it tries to track, their visibility in the camera’s

field of vision, the performance of the camera in tracking these objects, and the

payments it receives from other cameras. The utility reduces based on the amount

it pays to sell objects to other cameras. Each camera’s relative utility is then used

to automatically determine which camera the object should be handed over to. A

model of the environment (vision graph) can be automatically created and updated

based on the cameras that trade objects with each other.

An additional example of self-aware and self-expressive system where adaptiv-

ity is used is the decentralised system for synchronisation of music agents described

by Nymoen et al. [297] (Section 7.3.1). This system is designed for use in collabo-

rative active music mobile apps, where a group of non-musicians use their mobile

phones (agents) to interact with music together. This interaction could either have

the purpose of creating music or playing back pre-recorded music. The goal of the

synchronisation system is to synchronise the timing of the several agents who are

participating in the musical interaction. In order to achieve this goal, each agent

must be able to adapt its timing to the timing of other agents. For that, each agent

has knowledge of its own timing, which is represented by a state that oscillates in

cycles with a certain phase and frequency. Whenever the cycle of an agent is com-

plete, it emits a short sound that can be heard by other agents. This sound is used by

agents to update their states so that their timing becomes more similar to the timing

of the agent who emitted the sound.
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In general, the advantage of adaptivity is to enable automated reactive modifica-

tion of behaviour at run-time in order to suit (1) a given environment condition and

(2) a set of goals. Adaptivity not only avoids the need for pre-defining the system’s

behaviour for a particular environment, but also allows it to operate in possibly un-

foreseen situations. Such advantage does not come without risks. For instance, in

some systems, it may be difficult to ensure that adaptation to changing conditions is

successfully and timely achieved. Depending on the application, the result of unsuc-

cessful self-adaptation could range from slight under-performance to overall system

failure.

Adaptivity is achieved based on the capabilities possessed by an agent and/or col-

lective. In order to be able to adapt, a system must be able to monitor its own state

and/or the state of its external environment. For example, the credit card approval

system explained above is able to monitor its own state through a performance mea-

sure which is updated whenever new training examples are made available from

the environment, besides being able to maintain and update a model of its external

environment by learning such incoming training examples. In the distributed smart

camera example, cameras can monitor their own utility, besides being able to de-

tect currently visible objects given their position and acquire knowledge of their

relationship to neighbouring cameras in the network. In the music synchronisation

system, each agent has knowledge of its own timing and can listen to sounds emit-

ted by other agents in the environment. As explained in Chapter 2, a self-aware

system could be defined as a system able to obtain knowledge about its internal

state and/or knowledge about its environment. Such knowledge should be obtained

by the system on an ongoing basis throughout the system’s lifetime, rather than be-

ing programmed by a domain expert. Therefore, we could see self-awareness as an

enabler for adaptivity.

6.2.2 Implications

This section describes the implications of adaptivity on knowledge representation

and modelling. Adaptivity is usually associated to a cost; a limited amount of adap-

tivity may have lower cost than a more thorough level of adaptivity [389]. There-

fore, separating different types of adaptivity into different levels of self-awareness

can help to avoid the cost associated to unnecessary adaptation. This section first

discusses implications of adaptivity in terms of choices of levels of self-awareness

(Section 6.2.2.1). Then, it discusses implications in terms of modelling states and

environments (Section 6.2.2.2), modelling time (Section 6.2.2.3) and dealing with

changing environments (Section 6.2.2.4).
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6.2.2.1 Choice of Levels of Self-Awareness

Stimulus-awareness: this type of self-awareness allows a node to adapt to static
environmental conditions. When the environment is dynamic, stimulus-awareness

is also capable of adapting to changes, even though this might be rather limited. The

efficiency and effectiveness of the adaptation would highly depend on the type and

severity of the change in the environment, given that this level of self-awareness

alone would not be able to distinguish between past, present and future stimuli.

Interaction-awareness: when a system is composed of several agents, a given agent

will frequently need to adapt not only to its external environment, but also to other

agents in this environment. Interaction-awareness allows multi-agent self-aware sys-

tems to achieve that. For example, the distributed smart camera system described in

Section 7.4.1 [124] is interaction-aware, because each smart camera can interact

with other smart cameras in the environment in order to hand objects over to them.

It is interesting to note that, when a system is composed of several agents, adaptivity

of the collective system as a whole may be achieved through the adaptivity of each

of its agents.

Time-awareness: this type of self-awareness can be very helpful for achieving

adaptivity to dynamic environments, which are environments that may suffer changes

with time. Time-awareness allows a system to distinguish between past and current

events, helping it to acquire knowledge about the current environment condition

and to adapt to any changes suffered by the environment. For example, a credit card

system able to adapt to dynamic environments such as the one mentioned in Sec-

tion 6.2.1 [408, 269] must be able to distinguish between past and current examples

while monitoring the performance of existing models, so that the monitored perfor-

mance reflects the current situation of the environment rather than being outdated.

Goal-awareness: given that adaptation is the process whereby a system becomes

better suited to its environment given its purpose, the concept of adaptation is closely

linked to the goal(s) of the system. Therefore, many self-aware systems will use ex-

plicit knowledge of their goal(s) in order to achieve adaptivity. For example, a credit

card system such as the one explained in Section 6.2.1 could explicitly try to min-

imise the error of its predictions by using a certain error measure. Some systems

are composed of several agents who are aware of their own goals, even though each

agent may not be aware of the goals of the system as a whole. For example, each

smart camera in the system explained in Section 7.4.1 [124] is unaware of the goals

of the system as a whole. Instead, each smart camera tries to maximise its own goal,

which is represented by its utility value. This allows each camera to self-adapt to

its environment and to other cameras, leading to the achievement of the goals of the

system without explicitly considering the goals of the system as a whole. A system

able to adapt to changing goals would also normally be expected to be goal-aware.

However, a system does not necessarily need to be aware of its goal(s) in order to

achieve adaptivity to changes in the environment, as long as its adjustments, which
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can possibly be made via implicit goals, make it more suitable to the environment

given its purpose.

Meta-self-awareness: self-adaptive systems do not need to be meta-self-aware.

However, meta-self-aware systems allow a more thorough level of adaptivity, where

systems are able to adapt the way in which the levels of self-awareness are realised

(e.g., by changing algorithms), or adapt the levels of self-awareness themselves

(e.g., by activating / deactivating certain levels). For instance, the active music sys-

tem described in Chapter 14 can automatically decide which strategy to adopt for

mapping between a gestural controller and sound engine in order to adapt the music

to the current user intention. Another example of meta-self-awareness would be to

to use hyper-heuristic optimisation algorithms [49] to automatically decide which

meta-heuristic optimisation algorithms to use in goal-aware systems.

While the different levels of self-awareness may help a system to achieve better

adaptivity, they also require additional computation time. This may not be relevant to

standard computing systems, but is crucial in applications requiring near-real-time

performance or in embedded devices where resources are very limited. Especially

with meta-self-awareness, the system may need to rely on multiple learning tech-

niques simultaneously. A trade-off between the level of self-awareness that a system

possesses and the amount of learning a system that it is able to perform arises.

6.2.2.2 Modelling States and Environments

In order to achieve adaptivity, self-aware and self-expressive systems will frequently

rely on learning models of the state of their nodes, or models of the environment

where they are embedded. However, the nature of the data available for learning

must be considered when deciding what type of model to build and which type of

learning algorithm to use. With respect to the nature of the data, models can be built

based on the following types of learning algorithms:

Supervised learning algorithms: data come in the form of examples with inputs

and desired outputs (labelled data). Desired outputs frequently need to be provided

by a “teacher” from outside of the computing system. While knowledge of desired

outputs may facilitate learning, providing desired outputs can be a time-consuming

and difficult task. An example of supervised learning system is a credit card sys-

tem fed with data describing the features of customers and explicit information on

whether these customers have paid their bills or not [408, 269].

Unsupervised learning algorithms: data come in the form of input attributes with

no desired outputs provided (unlabelled data). This avoids the need for a possi-

bly costly external “teacher” to provide desired outputs. However, in self-aware

and self-expressive systems, this frequently means that nodes have to learn in a

completely autonomous fashion, employing only the information present within the
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node itself or within nodes in the immediate environment. An example of unsu-

pervised learning algorithm would be a clustering algorithm to identify the charac-

teristics of different groups of customers, but without pointing out whether these

customers are good or bad payers.

Semi-supervised learning algorithms: these algorithms can be used to achieve a

compromise between the two extremes represented by supervised and unsupervised

learning. In semi-supervised learning, part of the data come labelled and part come

unlabelled. Semi-supervised algorithms can be used to find hidden structures in the

data by using unlabelled data and infer outputs based on the labelled data.

Reinforcement learning algorithms: data come in the form of feedback from the

environment representing how close the system is to achieving its goal(s), or how

well it is performing its task(s). This type of learning algorithm is adequate when

it is not possible to obtain desired outputs, but feedback from the environment is

available. For instance, a robot learning how to walk may receive feedback from the

environment in the form of how far it moved forward. An example of reinforcement

learning algorithm is the algorithm for scheduling tasks in wireless sensor networks

presented by Khan and Rinner [216], where each node in the network uses a reward

function to decide which task to perform next.

6.2.2.3 Modelling Time

Stimuli from the environment will frequently come in the form of data and be used

to learn and update a model representing the knowledge that the system has of the

environment. Therefore, the choice of how to model time can be seen as the choice

of whether and how to distinguish the time stamps in which different data points

were produced or presented to the system. There are different ways to process data

with respect to time, and the relevancy of their advantages and disadvantages can

vary considerably depending on the intended application. In general, the following

options are available:

Offline data processing algorithms: these algorithms create models with pre-

existing data sets describing the environment, and there is no distinction between the

time stamp of different data points within pre-existing data sets. Therefore, models

of the environment are built before the system is put into operation. The advantage

of that is that the designer of the system can frequently have a good idea of how well

adapted the model is to the environment before it starts to be used. The disadvan-

tage is that it is not possible to update the model with additional data incoming with

time. Therefore, the model cannot be adapted to any changes in the environment.

Traditional machine learning algorithms typically process data in offline mode, e.g.,

Backpropagation using several epochs for learning [36].
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Online data processing algorithms: these algorithms are aware of the chrono-

logical order of each data point. Each data point is processed separately and then

discarded. The advantage of that is that models can be improved over time with

incoming data. As old data points are not re-processed, these algorithms can also

be memory and time efficient, being suitable for applications with strict memory

and time constraints or for applications where large amounts of data need to be pro-

cessed. These algorithms can also be combined with strategies to adapt models to

changes in the environment (see Section 6.2.2.4). The disadvantage is that it may be

difficult to ensure beforehand how well the model will behave over time. An exam-

ple of algorithm that processes data online is the multi-objective ensemble method

for class imbalance learning [408], which has been applied to fault detection, credit

card approval and network intrusion detection. Another example is the learning al-

gorithm proposed by Fern and Givan [130], which has been applied to prediction

of conditional branch outcomes in microprocessors in order to cope with the strict

memory and time constraints of this application.

Chunk-based data processing algorithms: these algorithms process data in chunks.

There is no distinction between the time stamp of different data points within a

chunk, but the relative chronological order of the chunks themselves is known.

Each data chunk is processed and then discarded, but data points within a chunk

can be re-processed several times before the chunk is discarded. The advantage of

chunk-based algorithms is that models can be improved over time with incoming

data. Chunk-based algorithms can also be combined to strategies to adapt models

to changes in the environment (see Section 6.2.2.4). As data points belonging to a

given chunk can be re-processed several times before a chunk is discarded, chunk-

based algorithms may be able to achieve higher accuracy on each chunk than online

algorithms. The disadvantage is that this is less memory and time efficient than on-

line learning. In addition, chunk-based algorithms need to wait for a whole chunk

of data to arrive before the model can be updated, being unable to update the model

with continuously incoming examples. Choosing the best chunk size may also be

difficult. A too large chunk would lead to slow adaptation, whereas a too small

chunk may cause the system to perform poorly depending on the algorithm being

used. An example of algorithm that processes data in chunks is the the music syn-

chronisation algorithm [297] explained in Section 6.2.1. Rather than immediately

updating the frequency of an agent once it hears a short sound from another agent,

each agent collects the short sounds received from other agents within a whole os-

cillation cycle before updating its frequency. In this application, this can prevent

premature convergence of the system to an undesirable state [297], i.e., waiting for

chunks can help the system to adapt better.

6.2.2.4 Dealing with Changing Environments

There are different possible strategies to deal with changing environments, and each

strategy incurs different decisions in terms of knowledge representation and mod-
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elling. For instance, a system may or may not use knowledge models able to detect

changes, i.e., change detection methods:

Change detection method: in this case, explicit mechanisms are used to monitor

the environment or the suitability of the system to the current environment condi-

tion, in order to detect changes. When a change is detected, a mechanism to adapt the

system to the change is triggered. For example, in the credit card system explained

in Section 6.2.1, the accuracy of the predictive model being used could be moni-

tored and updated based on new incoming training examples. When the accuracy

suffers a significant drop, a change is detected [139]. The predictive model could

then be deleted and a new model could be created to start learning the new situation

of the environment. More advanced strategies could also incorporate mechanisms

to accelerate the learning of the new environment condition rather than having to

learn it from scratch [269]. Another example of approach using a change detection

method is the multi-objective ensemble for online class imbalance learning [408].

Class imbalance learning refers to learning algorithms able to deal with classifica-

tion problems where at least one class is under-represented in comparison to other

classes (see Section 7.2.3.2). The approach presented by Wang et al. [408] uses an

explicit method to detect whether a certain learning problem is a class imbalance

learning problem and what classes should be currently considered as minority and

majority classes. The advantage of using explicit change detection methods is that

a system can be designed to swiftly react to a change once it is detected (e.g., by

deleting old models as in the example above). The disadvantage of using change

detection methods is that they may trigger false positive drift detections, which may

hinder the system’s performance if not carefully catered for. For more details on

algorithms based on change detection, please refer to Section 7.2.3.3.

No change detection method: in this case, mechanisms to adapt the system to

changes are continuously active, without the need for being triggered by explicit

change detection methods. For example, an ensemble of learning algorithms can be

used to create a credit card system such as the one explained in Section 6.2.1. This

ensemble could maintain different models and assign a weight to each model based

on its accuracy (i.e., a weight can be used to monitor the suitability of each model).

This weight could be updated with new training examples by using a decay function

that would give higher emphasis to newer examples [224]. When the system per-

forms wrong predictions, new models could be created and added to the ensemble.

Therefore, if some change has happened and is the cause for the wrong predictions,

then the new models may be able to learn the new situation from scratch. When the

weight of a given model is below a certain threshold, this model could be deleted

for not representing the current environment well [224].

Another example of mechanism that does not use an explicit change detection is

the mechanism used by the smart camera system in Esterle et al.’ work [124]. Cam-

eras exchanging an object to be tracked should not be communicating with other

cameras that are too far away, in order to reduce the communication overhead of

the system. By keeping track of the exchanged objects, each individual camera is
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able to learn about its neighbouring cameras. Inspired by the ant foraging mecha-

nism, the cameras use artificial pheromones to depict a graph of their local neigh-

bourhood. With every exchanged object, additional pheromones are deposit on the

respective link. However, if there are no exchanges of objects between two cameras

the pheromone evaporates, allowing the system to overcome changes in topology or

cameras’ field of view over time.

The advantage of not using an explicit drift detection method is that it is not nec-

essary to decide when exactly a change occurred. Deciding when exactly a change

detection should be triggered may be particularly difficult when changes are slow

and take some time to complete. The disadvantage is that the lack of a change de-

tection method may in some cases lead to a difficult trade-off between stability and

plasticity. If the system is set to forget old knowledge quickly, it may be too unstable

to perform well. If the system is set to forget old knowledge slowly, it may take too

long to adapt to changes. For more details on algorithms without change detection,

please refer to Section 7.2.3.3.

6.3 Robustness

As described in Section 6.2, adaptivity is a property necessary for a computing sys-

tem to be able to react to changes. In contrast, robustness is necessary in order to

address changes in a proactive way, so that mechanisms can be adopted beforehand

to reduce negative effects that future events could incur to the system. The devel-

opment of robust systems involves making suitable knowledge representation and

modelling choices such as how to model anticipation mechanisms and how to main-

tain different solutions so that they can be quickly recovered if necessary. Section

6.3.1 further explains and exemplifies robustness, and Section 6.3.2 explains the

knowledge representation and modelling choices related to robustness.

6.3.1 Definitions and Examples

We define robustness as every kind of proactive behaviour with the aim of avoiding

or diminishing the detrimental effects caused by changes, dynamic events or certain

choices. This aspect of self-aware and self-expressive systems is important in many

different systems, for instance in the work of Nymoen et al. [297], where multiple

nodes strive towards the common goal of being in synchrony in order to engage in

the creation and / or playback of collaborative music as briefly described in Section

6.2.1. In order to achieve this goal, the phase and the frequency of the oscillators of

the participating nodes need to be adjusted accordingly. Adaptivity is achieved by

each node reacting to short sounds emitted by other nodes, reflecting their timing /

state. It is however not clear how this adaptation should be performed in an optimal

way. If the adaptation is too slow, it will not reach the goal of synchrony in time.
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If the adaptation is too fast, multiple nodes will try to achieve synchrony at the

same time and will not find a stable state. In order to make the system more robust,

each node can vary its degree of self-adaptation based on its anticipated value (self-

confidence) of being in synchrony.

A second example is the work of Nebehay et al. [283], which was performed

in the context of visual object tracking. We present this work more in-depth here,

because it implements robustness in different ways, anticipating not only certain

changes, but also the effect of certain choices. The goal of visual object tracking is to

follow one or more objects of interest in a video stream as long as possible. However,

several different types of change can (and frequently do) occur, making tracking

difficult. For example, there may be changes in illumination, object or camera pose,

as well as substantial changes to the object of interest itself. Achieving robustness to

such changes is thus arguably one of the most desirable properties of visual object

tracking systems.

Nebehay et al. [283] propose the keypoint-based method Consensus-based Match-

ing and Tracking (CMT) for long-term object tracking, where the idea of robustness

takes a central role. Here, a model of the object being tracked consists of multiple

keypoints on the object of interest, which are nothing more than individual nodes

working towards the common goal of tracking an object. In each new frame of the

video sequence, each keypoint in the object model aims at finding its correct location

on the object in the image, as defined by two measures of visual similarity [236, 252]

that correspond to both matching and tracking of keypoints.

In fact one single keypoint would be sufficient to localize the object of interest.

As visual information is highly ambiguous, it is however rather unlikely that each

keypoint will position itself correctly on the object of interest. This is caused for

instance by similar objects appearing in the background or by changes on the ob-

ject that disallow a correct re-identification. Inevitably, some keypoints will end up

on wrong parts of the object or even on different objects. In CMT, it is anticipated

that these kinds of errors will occur and redundancy is introduced to address them

as a form of robustness. Instead of creating a single hypothesis, each keypoint pro-

vides its own hypothesis for locating the object of interest by voting for its center, as

shown in Figure 6.1. These votes are combined robustly by means of clustering them

directly in the image space. A basic assumption here is that the relative majority of

the keypoints is able to correctly identify the object center. In Figure 6.1, the major-

ity cluster is shown in blue, while all minor clusters are shown in red, representing

keypoints that failed to establish the correct position on the object of interest. By

removing all keypoints in minority clusters, a much better object tracking result can

be obtained, for instance by averaging all votes in the majority cluster as an estimate

for the object center.

An interesting aspect about CMT is that the object model is never updated, which

is in stark contrast to the prevalent paradigm in object tracking, where the object

model is updated continuously. The problem of updating the object model contin-

uously is that it always bears the danger of introducing new errors. For instance,

when the localization is not exact, an update might lead to the incorporation of back-

ground information. From the experimental evaluation presented in [283], it appears
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that the robustness of the overall system in CMT is strong enough to make adapta-

tion of individual nodes unnecessary. While beneficial to the tracking performance,

one drawback of the proposed approach of achieving robustness lies in its relatively

high computational cost, where the communication between the individual nodes

contributes the largest share.

Fig. 6.1 Finding consensus in voting behaviour. Cast votes are clustered based on their proximity.

The consensus cluster (shown in blue) is identified based on the highest number of votes. The

minority clusters (shown in red) are not used for estimating the actual location of the object.

Another aspect in CMT that was born out of considerations for improving ro-

bustness is the question how voting is performed. As shown in Figure 6.2 on the

left side, the voting vectors are initialised in the first frame, pointing to the object

center. In later frames, these votes have to undergo a certain transformation in order

to reflect changes in the location, pose and appearance of the object of interest. If

this transformation is modelled with a degree of freedom as high as possible, this

introduces a series of problems. First, it is very difficult to estimate the correct pa-

rameters for a complex transformation as the amount of training examples is highly

limited. Second, the chances that multiple votes agree for one location get lower

for more complex transformations. Third, overly complex transformations might

further increase the computational load. In CMT, it is anticipated that the changes

in the object of interest will be composed of translation, scaling and rotation, and

the transformation of votes are restricted to these transformations, as shown on the

right side of Figure 6.2. This class of transformations nicely balances the trade-off

between robustness and expressiveness that is present in this kind of problem. In

summary, robustness is achieved by a restriction of the output space. Obviously,

one drawback of this kind of robustness is a reduction of the class of problems that

can be handled, as already for instance perspective transformations are out of scope.
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Fig. 6.2 Left: In CMT, voting vectors of keypoints are initialised in the first frame. Right: In frame

t, each keypoint casts a vote for the object center. The object transformation is anticipated to be

composed of translation, scaling and rotation.

6.3.2 Implications

6.3.2.1 Choice of Levels of Self-Awareness

Stimulus-awareness: stimulus-awareness can be used to obtain data to learn how

to behave pro-actively. However, stimulus-awareness on its own may not be enough

to learn how to anticipate changes, because it would not enable the system to dis-

tinguish between past, present and future stimuli. It is worth noting that stimulus-

aware systems do not necessarily present robustness, but could certainly benefit

from mechanisms to achieve certain types of robustness. For instance, the functional

correctness of a computing system is highly dependent on its input. Therefore, it is

important to ensure the correct functioning of its direct connection to the environ-

ment. For example, it may be desirable to achieve robustness to failure in the sensors

of the individual nodes that allow them to learn about and interact with their imme-

diate environment. Section 6.3.2.2 discusses some strategies that could be used to

achieve that.

Interaction-awareness: as shown in the object tracking examples explained in Sec-

tion 6.3.1, interaction-awareness can be used to provide a great degree of robustness

in cases where the correctness of the output of the individual nodes is not ensured.

Another example is the multi-camera object tracking application that will be pre-

sented in Chapter 13, where the use of multiple nodes makes the system robust to

failures of individual nodes, for instance when a camera loses connection to the net-

work.
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Time-awareness: time-awareness is an enabling component for designing robust

self-aware computing systems. It allows the system to learn how to anticipate

changes by making predictions about possible changes in the future based on how

changes occurred in past events. For instance, if errors made in previous actions or

decisions are recognised, then behaviour in the future can be adapted accordingly.

An exemplar application in this respect can be found in Chapter 14, where time-

awareness enables extracting a rhythmic pattern from users shaking input devices in

the SoloJam application, a process that has to be robust to changing input patterns.

Goal-awareness: In general, similar to adaptivity, robustness will frequently be

achieved with respect to certain goals, and being aware of such goals could thus

be helpful. Moreover, a goal-aware system could assess the importance of differ-

ent goals as an interesting way of establishing robustness to changes. For instance,

a self-aware node monitoring its battery status might decide that now is the time

to pause striving towards its current goal of high priority and rather find a way of

recharging itself in order to avoid running out of battery in the future. Note that this

way of reasoning is different from adaptivity – in this case, anticipation about one’s

own state and the consequences of (not performing) actions is of utmost importance.

Goal-aware systems could also establish certain objectives to evaluate how well a

system is likely to perform in the future and in the event of changes, rather than

only evaluating its current suitability to the present environment [136]. It is clear

that, even though achieving robustness through this level of self-awareness can be

beneficial, it requires a substantial amount of knowledge about oneself and its im-

mediate environment, which might be difficult to obtain for certain systems. In Solo-

Jam (Chapter 14), goal-awareness is also present. The concrete goal of a node in this

application is represented by the hamming distance between the leader’s rhythmic

patterns and its own pattern. A change in the activity of a user then directly has an

influence on its goal.

Meta-self-awareness: achieving robustness on a meta-self-awareness level can be

considered the holy grail of achieving robustness in a computing system. A self-

aware computing node might reason based on the outcome of its self-awareness

components to decide what kind of robustness is actually important, and then take

action to establish it. On a positive side, the computing system might discover as-

pects of its task during run-time that have not been under consideration at design-

time and that lack a sufficient degree of robustness. On the negative side, this kind

of robustness is very difficult to achieve as it requires a very abstract understanding

of the environment consequences of actions, goals and oneself. In the multi-camera

object tracking application (see Chapter 13), one form of meta-self-awareness is

achieved by dynamically deciding on the strategy for handing over objects from one

camera to another camera. This increases the robustness of the system compared to

a static strategy selection mechanism.

Similar to what has been discussed in Section 6.2.2.1, while the different levels

of self-awareness may help a system to achieve better robustness, they also require
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additional computation time, which can be particularly concerning in applications

requiring near-real-time performance or in embedded devices where resources are

very limited.

6.3.2.2 Robustness through Redundancy of Components

Redundancy of components can be a very useful way to achieve robustness in self-

aware and self-expressive systems. In general, redundancy could be employed in

two different ways:

Deployment of multiple identical components: this could be used, e.g., to achieve

robustness to failure of a given type of component. For example, it might be reason-

able to employ multiple identical sensors to account for malfunctioning hardware

components. This way, correctness of the input is ensured even during changes to

the proper functioning of individual system components. Another example are the

multiple keypoints used by the object tracking system explained in Section 6.3.1

in order to achieve robustness to wrong votes given by single keypoints. In [410] a

memetic algorithm is presented that finds a solution to the Redundancy Allocation

Problem (RAP), aiming at optimally allocating redundancy to components under

some resource constraints.

Deployment of multiple different components: In [357] a system is presented that

improves the fault-tolerance of electronic circuits. Here, robustness is achieved by

creating multiple circuits exhibiting different error patterns that are then combined

into a single strong circuit. However, failure of a component to function well may

be caused not only by an error in the component, but also by changes in the envi-

ronment which may cause a given component to be unsuitable. For example, one

type of sensor might work well during daytime (such as standard cameras), while

other sensors work well only at night time (for instance infra-red cameras). It there-

fore makes sense to combine multiple types of sensors to account for changes in the

environment. Another example is the use of a set of different models representing

different environment conditions in anticipation of possible changes in the environ-

ment [269, 181]. Even though a certain model may not be appropriate for the current

environment condition, it may be appropriate for future conditions.

When employing multiple components, there are also different choices in terms

of how to use the outputs produced by these components. For example, one could

use one or more of the following:

Combining nodes’ outputs: the output of multiple nodes is combined into a single

output. In this case, there is the question on how to combine the outputs. If one node

has to be designated as a coordinating node, this introduces a potential single point

of failure. This is related to the issue of decentralisation, further explained in Sec-

tion 6.5. Alternatively, one may wish to have no central node. In this case, nodes can
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either all contribute equally to the combined output, or they could be given different

emphases, depending on how suitable they are to the environment.

Selecting nodes: erroneous nodes might be detected and actions might be taken to

prevent these nodes from participating in future actions. Care has to be taken about

the quality of the failure: a hardware error might be easy to recognize (for instance

by measuring the component temperature), while it is difficult to assess the cor-

rectness of the high-level self-expression of individual nodes. For instance, in the

multi-camera object tracking application (Chapter 13), a node is given full control

when its confidence about having localized the object correctly is high enough, as it

can be assumed that it is well adapted to its environment.

Node communication: multiple nodes might be used in parallel and communicate

with each other to account for potential defects in hardware or software.

The positive side of redundancy of components is that it could enable robustness

to certain events or changes. However, it is clear that employing multiple nodes can

also lead to unwanted side-effects, such as increased power-consumption, increased

processing time, and conflicting nodes data.

6.3.2.3 Learning How to Anticipate Events or Changes

Anticipation can either be incorporated in the system at design time (e.g., the ob-

ject tracking example given in Section 6.3.1), or learnt during the system’s lifetime.

Learning models able to anticipate events or changes can provide a much higher

level of autonomy to a self-aware and self-expressive system. However, the nature

and availability of the data that can be used for learning must be considered. This

issue is also relevant to adaptivity of models of the environment, and has been dis-

cussed in Sections 6.2.2.2 and 6.2.2.3.

6.4 Multi-Objectivity

Self-aware and self-expressive systems are built with one or more goals/objectives

to be accomplished. These goals/objectives can be either explicit or implicitly im-

plemented in the system. The process of finding a best possible solution given a set

of objectives and a set of limitations is referred to as optimisation process. The tradi-

tional optimisation problem aims to minimise/maximise a specific objective (usually

in the form of a function). This type of problem is called Single-objective Optimisa-

tion Problem (SOP). However, only optimizing one objective cannot satisfy actual

demands in several cases, because most of the real-world optimisation problems

need to achieve a balance among multiple objectives, which are frequently in con-

flict with each other. Hence, optimizing one objective with respect to an SOP often
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results in unacceptable results in the other objectives. For example, when buying

a new laptop, we want it as cheap as possible but with the best quality. Or, when

scheduling tasks on a chip [61], we want to improve the performance while keeping

the chip cool. Obviously these objectives conflict their counterparts. We may not

be able to buy a laptop which is both cheap and powerful. Similarly, we may not

be able to obtain very high performance when scheduling tasks at the same time as

keeping the chip cool. SOPs cannot handle this type of balance well. In this case, we

extend the SOPs to Multi-objective Optimisation Problems (MOPs). Instead of min-

imizing/maximizing one objective, MOPs aim to achieve a balance among several

objectives. As mentioned above, it is difficult to achieve a perfect multi-objective so-

lution to minimise/maximise every objective. Therefore, we need to use some other

method to find a reasonable solution which satisfies the objectives at an acceptable

level.

Besides being relevant for optimisation tasks, multi-objectivity can also be rel-

evant for machine learning tasks. For example, when learning how to detect faults

in some machinery, one may wish to minimise both false positive and false nega-

tive fault detections. The issue of multi-objectivity has been investigated more in

depth in the optimisation than in the machine learning literature. This section will

thus concentrate mainly on multi-objectivity in optimisation. However, works on

multi-objectivity in machine learning can also exist [408, 270, 58].

Section 6.4.1 further explains multi-objectivity, whereas Section 6.4.2 explains

the implications of multi-objectivity to knowledge representation and modelling

choices.

6.4.1 Definition and Examples

The general multi-objective optimisation problem can be defined as:

minimise F(x) = (F
1

(x),F
2

(x), ...,Fk(x))T

s.t. gi(x) = 0, i = 1,2, ...,a
h j(x)< 0, j = 1,2, ...,b

(6.1)

where k is the number of objectives, a is the number of equality constraints, b is

the number of inequality constraints, x 2 X is a vector of decision variables, X is

the search space (set of all candidate solutions), and F(x) is the vector of objective

functions Fi(x), F(x) : X !Rk
. Objective functions can also be called goal functions,

payoff functions, cost functions or fitness functions. Please note that functions to be

maximised can be easily converted to functions to be minimised. Therefore, without

loss of generality, the MOP can be defined as a minimisation problem as above.

In the example of buying new laptops, we have two conflicting objectives:

lower price and higher performance. Consider that there are n alternative laptops

X = {x1,x2, ...,xn} available for purchase, and that their costs are c
1

,c
2

, ...,cn and

performances are p
1

, p
2

, ..., pn. A solution x 2 X to this problem is a vector of size

one representing a single laptop to be purchased. The objectives of this MOP can
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be described as: minimise ci for lower prices and minimise 1/(pk + e) for higher

performance, where e is a small constant to avoid division by zero.

In the chip scheduling example, X represents all the possible schedules of tasks

on the chip. If we have n cores and m tasks, then |X | = Cn
m. We can use a vector

to stand for a given scheduling of tasks to cores: x = (u
1

,u
2

, ...,un), where ui 2
(1,m)[ {�1}. If ui 2 (1,m), then that means that core i runs task ui; otherwise

it means that nothing is running on core i. It is worth noting that other structures

could be used to represent a solution for the same problem. For example, having

a vector with n+m entries instead of n could be used to allow certain tasks to be

assigned to no core, while still enforcing all tasks to be mentioned at least once in

the vector. This could be desirable, for example, to allow tasks that are unscheduled

in two solutions to be scheduled in a new solution created by crossing-over these

two solutions in evolutionary algorithms [61]. The objectives can be described as:

• Maximise the overall performance of chip:

F
1

= min(�
m

Â
j=1

p j(x))

• The average temperature of chip:

F
2

= min(
m

Â
j=1

q j(x))/m

where p j(x) and q j(x) are the performance and temperature of core j under schedul-

ing x, respectively.

As the objectives in a MOP are frequently conflicting, it is impossible to find a

single solution that optimises all objectives simultaneously. Instead, we are usually

interested in obtaining a set containing the best trade-off solutions, which are called

Pareto optimal solutions. Pareto optimal solutions are solutions non-dominated by

any other solution. The definition of a solution x being dominated by another solu-

tion y ( x � y ) is as follows:

x � y () 8i,Fi(x) Fi(y)^9 j,Fj(x)< Fj(y) (6.2)

Given the set of Pareto optimal solutions (Pareto set) for a given MOP, the decision-

maker would be able to select his/her desired solution with his/her preferred trade-

off among all optimal solutions in the Pareto set.

In order to find the Pareto set, we need optimisation algorithms specifically de-

signed for MOPs. Alternatively, it is not uncommon to convert MOPs to SOPs and

then use existing SOP algorithms to solve them. For instance, most current research

on temperature control of multi-cores converts this MOP to a SOP by using linear

weight methods. Nevertheless, SOP algorithms aim at finding a single optimal so-

lution. Converting MOPs to SOPs leads to some additional problems to be tackled,

e.g.:

1. How to set the relative importance of different objectives
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Given that SOPs will attempt to find a single optimal solution, approaches to

convert MOP to SOP usually require some method to set the relative impor-

tance of the different objectives beforehand. The algorithm will then look for

a single best solution considering this particular relative importance. However,

it may not be straightforward to chose values to represent relative importance,

and a wrong choice will lead the algorithm to miss useful trade-offs among the

objectives. Moreover, in certain problems, the relative importance of different

objectives should ideally not be constant, making it difficult to choose ideal val-

ues manually. This is the case, for example, of the chip task scheduling problem.

When the current temperature of the chip is already too high, we should give

higher importance for temperature in order to cool down the chip more quickly.

When the current temperature is low, we do not need to pay too much notice

on increasing temperature. So, the relative importance of these objectives can

change with time.

2. How to normalize the objective functions

The objective functions Fi, 1  i  k, are the values which will stand for the

quality of the solution. However, these values can be incomparable. For in-

stance, it is hard to say which unit is larger in the chip scheduling problem –

one unit of performance or one unit of temperature. We need methods to nor-

malize these values into comparable ones. For instance, we can normalize them

by:

fi(x) =
maxx12X Fi(x1)�Fi(x)

maxx12X Fi(x1)�minx22X Fi(x2)
,1  i  k

where k is the number of objective functions. Or we can normalize them by:

fi(x) =
Fi(x)

maxx12X Fi(x1)
,1  i  k

The two methods above both can normalize the objective values but will lead to

different results, and it is unclear which of them to adopt.

Given the problems of converting MOPs to SOPs, methods specifically designed

for solving MOPs are desirable. For more details on MOPs, we recommend Deb’s

book [90].

6.4.2 Implications

6.4.2.1 Choice of Levels of Self-Awareness

The issue of multi-objectivity can be relevant to systems with any level of self-

awareness. This is because any self-aware system will be designed with a purpose

in mind. This purpose can only be achieved if there is some “force” pushing the

system towards eventually achieving this goal. In systems that are not goal-aware,
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this “force” can be viewed as one or more implicit goals. If the system is goal-

aware, then the goal(s) will be explicit in such a way that the system can reason

about it(them). Therefore, multi-objectivity could be tackled by any level of self-

awareness.

Stimulus-awareness: the ability to perceive stimuli is essential to evaluate how well

a system performs in a given environment, or to decide which actions to take so as

to perform well in a given environment. Stimuli can be used directly or indirectly to

compute objective functions, no matter if these functions are explicit or implicit.

Interaction-awareness: systems to deal with multiple objectives do not necessarily

need to be interaction-aware. However, interaction among nodes could be benefi-

cial if different nodes are responsible for different objectives. Interaction-awareness

could also be used by a node to acquire information for evaluating its objectives.

For instance, each node in the smart camera system [124] explained in Section 7.4.1

uses payments made to and received from other cameras in order to compute its

utility function, as mentioned in Section 6.2.1.

Time-awareness: given that this type of self-awareness allows a system to distin-

guish between past, current and future events, it can help to compute different ob-

jectives for reflecting the suitability of the system to situations encountered in the

past, to the current situation, and to possible future situations. The multi-objective

ensemble approach presented by Wang et al. [408] makes use of time-awareness by

computing each objective based on a time-decayed function, reflecting the suitabil-

ity of the system to the current situation of the environment.

Goal-awareness: this type of self-awareness is the most relevant for multi-objectivity.

Goal-awareness would allow a system to explicitly consider its objectives and rea-

son about them. This could facilitate dealing with multiple objectives by making

it easier to consider different trade-offs among objectives, and by allowing objec-

tives to be added/removed over time. Therefore, goal-awareness could make it eas-

ier to design a system to cope with multiple conflicting objectives. An example

of system that benefits from goal-awareness to deal with multiple objectives is the

multi-objective ensemble approach for class imbalance learning presented by Wang

et al. [408]. The system is designed to perform classification tasks and its learning

procedure explicitly considers classification performance in terms of recall on each

existing class separately.

Meta-self-awareness: meta-self-awareness is not essential for a system to be able

to deal with multi-objectivity. However, multiple objectives could be designed in

order to represent how beneficial different levels of self-awareness are in order to

develop a meta-self-aware system.

Similar to what has been discussed in Section 6.2.2.1, while the different levels

of self-awareness may help a system to better handle multi-objectivity, they also
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require additional computation time, which can be particularly concerning in ap-

plications requiring near-real-time performance or in embedded devices where re-

sources are very limited. These issues must be considered when deciding what level

of self-awareness to adopt.

6.4.2.2 Searching for Solutions with a Particular Trade-Off Among Objectives

Weighted methods: Classical methods for solving MOPs usually convert MOPs

into SOPs, and then use a single objective optimisation algorithm to find a best

solution. The simplest method to do that is to multiply objectives by a manually set

weight and then sum them up [428, 225, 17, 255]. Therefore, the MOP is redefined

as a SOP as follows:

minimise F(x) = Âk
i=1

wiFi(x)
s.t. gi(x) = 0, i = 1,2, ...,a

h j(x)< 0, j = 1,2, ...,b
(6.3)

Another method is to use the weighted distance between the value of each objec-

tive for a given solution x to the best achievable value z⇤:

minimise F(x) = (Âk
i=1

wi(|Fi(x)� z⇤i |p))1/p

s.t. gi(x) = 0, i = 1,2, ...,a
h j(x)< 0, j = 1,2, ...,b

(6.4)

where p can be any value from 1 to •. This method will be the same as the previous

one when p = 1.

A similar method [111] uses the objective values z0

of a feasible non-Pareto-

optimal solution rather than the ideal z⇤:

maximise F(x) = (Âk
i=1

wi(|Fi(x)� z0

i |p))1/p

s.t. z0

i < Fi(x), i = 1,2, ...,k
g j(x) = 0, j = 1,2, ...,a
hl(x)< 0, l = 1,2, ...,b

(6.5)

Likewise, we can also multiply all the objectives instead of adding them up, as

follows:

minimise F(x) = ’k
i=1

(Fi(x))wi

s.t. gi(x) = 0, i = 1,2, ...,a
h j(x)< 0, j = 1,2, ...,b

(6.6)

The advantage for this type of method is that, once the weights are set, SOP algo-

rithms can be used to find a solution with the trade-off represented by these weights.

However, finding a suitable weight vector may not be easy, especially when the

number of objectives is larger than three. The weight vector will strongly affect the

results obtained by the SOP algorithms.



6 Knowledge Representation and Modelling: Structures and Trade-offs 97

Interactive methods: The main idea of these methods is to guide the search direc-

tion according to the information provided by the decision-maker during the runtime

of the optimisation algorithm, rather than having all information on preferences set

beforehand. The main process is as follows:

1. Initialise the algorithm and generate a starting point for the search.

2. Ask the decision-maker for preference information, e.g., desirable objective

function values, or number of new solutions to be generated.

3. Generate new solutions according to the preference and show them to the

decision-maker.

4. Ask the decision-maker to select the best solution so far and adjust the prefer-

ence according to the selection.

5. Stop if decision-maker wishes to; otherwise return to step 2.

Popular methods include Interactive Tchebycheff Metric approach[374], NIMBUS[267]

and Guess Methods[46]. The advantage of interactive methods is that they require

less prior information than the weighted methods. However, they may cause user

fatigue, as the decision-maker may need to provide inputs several times throughout

the optimisation process.

6.4.2.3 Searching for a Set of Solutions with Different Trade-Offs

There are different frameworks for optimisation algorithms specifically designed

to search for the Pareto optimal set of solutions for MOPs [433]. One of the main

choices in terms of knowledge representation and modelling in these frameworks is

how to model the relative quality of the solutions. This section will briefly explain

some different strategies that can be used to compare different solutions in MOP

algorithms.

Pareto dominance-based comparisons: most optimisation algorithms for solving

MOPs are evolutionary algorithms based directly on the concept of Pareto dom-

inance explained in Section 6.4.1 [371, 179, 437, 436, 91]. These algorithms con-

sider that a solution that dominates another solution is better than this other solution.

They also frequently use some strategy to maintain the diversity of the search, given

that concentrating on dominance on its own could lead to lack of diversity and thus

early convergence to local optima. For instance, mechanisms such as fitness sharing

and crowding distance have been proposed [179, 436, 91] to prioritise solutions that

will lead to higher diversity. A drawback of these algorithms is that they may strug-

gle to cope with large numbers of objective functions (e.g., larger than three).

Indicator-based comparisons: another way to compare solutions is to use a scalar

quality indicator/metric to compare solutions [110, 27, 45]. The indicator can be

used to compare pairs of solutions [110]. However, a very popular approach is

to use scalar quality indicators to evaluate sets of solutions to guide the search.

For instance, several algorithms based on the hypervolume have been proposed
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[33, 45, 21]. These algorithms can perform better than algorithms such as the

ones based on Pareto dominance especially when the number of objectives is large

[21, 33]. Depending on how the indicator is defined, it is also possible to avoid the

need for separate mechanisms to preserve diversity. However, care must be taken

when choosing an indicator or designing an algorithm to use indicators, as some

indicators can be expensive to compute [33]. Section 6.4.2.4 further explains indi-

cators/metrics.

MOP decomposition: the strategy adopted by the multi-objective evolutionary al-

gorithms based on decomposition (MOEA/D) [433] is to decompose the MOP into a

number of SOPs, where each SOP is a weighted aggregation of the individual objec-

tives. A neighbourhood between SOPs is modelled based on the distances between

their weight vectors [433] or some other neighbourhood structure [246]. Each SOP

is then optimised simultaneously by using information from its neighbours. The ad-

vantage of MOP decomposition is that solutions for a given SOP can be compared

against each other based on the scalar corresponding to their single objective, elim-

inating the need to decide how to compare solutions based on multiple objectives.

However, care must be taken to design effective neighbourhood structures.

Algorithms for MOPs usually work efficiently when dealing with two and three-

objectives. When the number of objectives increases, i.e., when we have many-

objective problems, Pareto dominance-based algorithms’ performance deteriorates

[217]. One of the possible reasons is that nearly all solutions are non-dominated

when the number of objectives increases. For instance, Ishibuchi et al. [196] showed

that 200 random solutions can be all non-dominated when the number of objectives

is over 16. Indicator-based algorithms take indicator function as the only objec-

tive, avoiding this problem. However, calculating indicators such as hypervolume is

usually a significantly time-consuming process. For methods based on MOP decom-

position, it is difficult to decide on a good balance among all the objectives when

dealing with many-objective problems. Currently, there is plenty of works trying to

solve the problems caused by many-objectives. For example, Narukawa et al. [280]

incorporated the preference of a decision maker with a dominance-based algorithm,

Ishibuchi et al. [195] proposed an iterative indicator-based approach which attempts

to decrease the cost of computing the indicator, and Wang et al. [244] proposed

an improved version of the Two-Archive Algorithm to try to incorporate a ranking

mechanism for updating the convergence of the archive.

It is worth noting that it is possible to hybridise algorithms in order to combine

their advantages. For instance, the memetic multi-objective evolutionary algorithms

proposed by Ishibuchi and Murata [194] randomly draw a scalar function to evaluate

solutions in the evolutionary search process and then use a local search method to

further improve solutions.
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6.4.2.4 Metrics for Comparing Sets of Solutions

Algorithms for SOPs generally aim at finding a single best solution to the problem.

However, as explained in Section 6.4.1, we are frequently interested in finding the

Pareto set. The Pareto set is frequently too large and it could be even infeasible to

find the whole set. As a result, many algorithms will find a set of non-dominated

solutions expected to be a good approximation of the Pareto set. Therefore, we may

need to compare sets of non-dominated solutions, specially when comparing the ef-

fectiveness of different algorithms. There are mainly two types of quality metrics:

Unary quality metrics: unary quality metrics give a quality value to each set of

solutions. The advantage of such measures is that they provide a scalar indication of

the quality of a set of solutions with respect to a reference point, where the reference

point should ideally be the quality of the best or worst possible solution. However,

the disadvantage of this type of metric is that it is not always possible in real world

applications to determine the ideal reference point. Moreover, these measures need

to consider not only the quality of the solutions in terms of convergence with respect

to the reference point, but also how diverse the solutions in the set are. This is

because it is desirable to have a diverse set so that the decision-maker can choose

his/her desired trade-off among objectives. However, it has been argued that both

aspects of convergence and diversity cannot be properly measured by a single unary

metric [438]. Examples of unary metrics are [284]:

• Generational distance – this measure represents how far a set of solutions is

from the Pareto set on the objective space:

GD =

q
Ân

i=1

d2

i

n
(6.7)

where n is is the number of solutions in the set of non-dominated solutions

found and di is the Euclidean distance (measured in objective space) between

each of these solutions and the nearest member of the Pareto set. It is clear that

GD = 0 indicates that all the generated solutions are in the Pareto set. In order

to get reliable results, objective values are normalized before calculating this

metric.

• Hypervolume – this measure calculates the volume (in the objective space) cov-

ered by the solutions in the non-dominated set M being evaluated with respect

to a reference point xre f representing the worst possible point. This is done by

calculating the volume L of the union of the hypercubes ai defined by each

non-dominated solution mi 2 M and the reference point xre f :

S(M) = L({[iai|mi 2 M}) = L({x|m � x � xre f }) (6.8)

Larger hypervolume values represent better values. As this measure is also de-

pendent on the scale of the objectives, objectives should be normalised before

computing it.
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Binary quality metrics: binary quality measures assign a quality value not to a sin-

gle set of solutions, but to the relation between two sets. It can overcome the draw-

backs of unary quality measures mentioned above, as they do not consider conver-

gence and do not need an ideal reference point to be set. However, its disadvantage

is obvious: for k solutions, we have k(k�1) values for every pair of solutions, while

in unary quality measures, there are only k values. This makes it harder to analyse

the results. Examples of metrics are:

• Coverage of two sets [435] – given sets of solutions A and B, this measure is

defined as:

CS(A,B) =
|{b 2 B|9a 2 A,a ⌫ b}|

|B| (6.9)

The value C(A,B) = 1 means that all solutions in B are dominated by or equal

to solutions in A. The value C(A,B) = 0 means that none of the solutions in

B are covered by the set A. Both C(A,B) and C(B,A) should be considered, as

C(B,A) is not necessarily the same as 1�C(A,B).
• Ie metric [438] – in order to define this metric, we first need to define a new

relation called e dominance (�e ). Given two solutions a and b, this relation is

defined as follows:

a �e b () Fi(a) eFi(b), i 2 1, ...,k (6.10)

The metric Ie for two sets of solutions A and B is then defined as:

Ie(A,B) = inf

e2R
{8b 2 B 9a 2 A : a �e b} (6.11)

Therefore, Ie(A,B) equals the minimum factor e such that any objective vector

in B is e-dominated by at least one objective vector in A. In the single-objective

case, Ie(A,B) is simply the ratio between the two objective values represented

by A and B.

6.5 Decentralisation

Self-aware and self-expressive applications are frequently composed of multiple

agents without a central unit to control them. While this might not be true for all

applications, decentralised approaches generally have various advantages over cen-

tralised applications. For instance, distributed agents may interact with each other

to acquire knowledge and perform certain tasks. As each agent performs its task

independently, tasks can be processed concurrently. Due to this autonomy of each

agent, the robustness of the entire system is increased. While acquired knowledge

can be exchanged among the independent agents, it is not mandatory. This reduces

the communication overhead in comparison to centralised systems. Section 6.5.1

explains what is meant by decentralisation and provides examples of applications

using decentralisation, and Section 6.5.2 explains the implications of decentralisa-
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tion in terms of the capability primitives introduced in Section 5.3.2, knowledge

representation and modelling choices.

6.5.1 Definitions and Examples

In a centralised computing system, all information is collected at and all resources

are coordinated by a central node. While central / networked nodes may be able to

make their own computations, only the central node will be able to make the de-

cisions for the entire network. Furthermore, besides being responsible for making

decisions for the entire network, this central node is usually also responsible for

coordinating tasks among all participating nodes. A typical example of centralised

systems are Automated Teller Machines (ATMs) where the ATM receives informa-

tion about the clients’ current balance from a central component. The key fact here

is that the relevant information about the current balance is not defined by the in-

dividual teller machine, but provided by the central component. There are various

advantages and disadvantages of a centralised system.

• Advantages:

+ Coordination: all information is gathered at a single entity. This single com-

puting node only submits processed information to the requesting compo-

nents. A coordination of which node does what at what time is not neces-

sary.

+ Maintenance: as there is only a single entity responsible for performing

the different tasks, there is only one single entity to maintained. Also, lo-

calisation of problems is much easier in a centralised system.

• Disadvantages:

– Bottlenecks: in a large system, the centralised node might receive a lot of

different requests simultaneously. This creates bottlenecks on two different

fronts: the processor and the network. Having the different entities sending

requests for processing their raw data to the server might lead to congestion

when it comes to the server receiving this data. Furthermore, the server

might be overwhelmed by the amount of work. Finally, storing the raw data

on site for further processing might become problematic.

– Single point of failures: even though a single centralised node responsible

for processing all data can have advantages when it comes to maintenance

and localisation of errors, it is highly disadvantageous when it comes to ro-

bustness, reliability and availability. If the central node fails, the other nodes

in the system are paralysed and cannot perform any further operations.

In comparison to centralised computing systems, decentralised or distributed

computing systems compile a set of autonomous computers. In the absence of a

central node, the computers in the network have to coordinate their required tasks

autonomously. This means that each node in a decentralized computing system has
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to be able to make its own decisions. These decisions can be based on its very own

information, on interactions with or on information from other nodes. While in such

a distributed approach, the autonomous computing nodes share their information

about their own state, desired goals and required tasks among each other, a complete

exchange of information might be infeasible. Especially larger systems containing

nodes which change their state frequently will inevitably congest their own network

by only transmitting such updates. Hence, a single machine has virtually no chance

of having complete information about the state of all nodes in the network. This

also means that having a single machine failing does not bring the entire system

to a halt. In a centralised system, if the central server crashes the other nodes of

the system will not be able to perform any further tasks. An example in the area of

decentralised systems is the telephone network or the well known Peer-to-Peer net-

works, where upon connection of two or more participants no central component is

required for exchanging information between the participants. The advantages and

disadvantages of decentralised systems are as follows:

• Advantages:

+ Concurrency: a single node is not responsible for processing all tasks. This

allows the system to distribute the workload and process multiple tasks

concurrently on different nodes.

+ Reliability: having multiple entities capable of performing the same tasks

makes failing of single entities have less impact than in centralised systems.

While failing of single entities might slow down the system or require it to

repeat tasks, it does not paralyse it completely. This is related to robustness

by redundancy of components explained in Section 6.3.2.2.

+ Scalability: in a decentralised system, each node is independent. New nodes

can be added to the system without need for them to be registered at a

central component. This allows new nodes to join at any time without prior

notice to prepare the system. Additionally, new nodes will be integrated

autonomously and they can take over tasks immediately.

+ Shared resources: resources such as processing power or memory can be

shared among the different nodes in the network. This allows nodes with

less hardware capabilities to transfer unneeded data and workload to other

nodes with sufficient resources available.

• Disadvantages:

– Coordination: in order to ensure tasks are not unnecessarily performed

twice, the system has to coordinate tasks among the nodes. This coordi-

nation requires additional effort from the system.

– Security: having multiple nodes interacting with each other opens up vari-

ous security risks. In sensitive applications, transmissions between the dif-

ferent nodes have to be protected, requiring a secure network communica-

tion. Furthermore, malicious entities have to be detected and neutralised in

order to protect the system’s original purpose.
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– Error localisation: in case of failures in the system, the error has to be

localised among all participating nodes. This can be very hard especially

when interdependent tasks are distributed among multiple nodes.

– Replicated data: to allow for reliability but also robustness of a decen-

tralised system, often data has to be replicated multiple times on different

nodes. This replication consumes unnecessary resources from a system-

level point of view, but allows for concurrent processing of information,

increased reliability and robustness.

In the following, two examples of self-aware and self-expressive systems that

can benefit from decentralisation will be explained. The first one is a multi camera

system, where a set of deployed cameras pursue a common goal. This goal could

be tracking of objects, as in the example given in Section 6.2.1, or monitoring a

specific area or detecting and identifying certain behaviour. Using standard cameras

requires a centralized approach, where all cameras send their information to a cen-

tral server for further analysis. Not only will the large amount of video data congest

the network, but also video analysis is a resource intensive task. A central server

will require a lot of computational power in order to deal with the video streams of

multiple cameras consecutively and in near real-time. Alternatively, standard cam-

eras could be replaced with the so-called smart cameras [343, 338]. Smart cameras

combine the image sensor with a processing unit and a network interface. Here, the

data can be preprocessed and only relevant or even aggregated data is transmitted to

a central control. This reduces the workload for the central server tremendously and

distributes the work among the nodes of the network. However, in such a scenario,

the server still collects and coordinates information and assigns tasks to the cameras

as necessary. While this approach is in general much more scalable than a com-

pletely centralized approach, in the case of a server failure, the system is still halted.

Only if the decision making capability is given to the individual cameras a central

coordination can be omitted and a completely decentralised system developed. In

this case, each camera still may have to collect various information from other cam-

eras. However, the whole system becomes more robust against camera failures, i.e.,

if a camera fails, the entire system will not be paralysed [123].

The second example of self-aware and self-expressive system that can benefit

from decentralisation is the hypermusic system. Hypermusic allows non-musicians

to participate in a music oriented activity using hand-held devices (e.g. a mobile

phone) for interaction. A synchronisation mechanism that can be used in this system

has been briefly discussed in Sections 6.2.1 and 6.3.1, but the system itself will

be briefly discussed in this section from the perspective of decentralisation. The

self-aware and self-expressive Hypermusic system recognises the interactions of

the person with a device and interprets it as music. In a group, multiple persons can

join together in a bigger ensemble to create music. A central server would be able

to collect all information from the different nodes and synthesise music, but might

face limitations on the network as well as with respect to its own processing power.

Simple coordination based on data aggregated by a server poses a risk to robustness

in case the server fails. Only when decisions are being made by the individual nodes
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and music generated by the collective behaviour of the nodes, workload can be

distributed accordingly among the network and failure of individual nodes does not

stop the system from producing music.

6.5.2 Implications

When designing a decentralised or distributed system, a system designer has to make

various choices. In this section we focus on important choices to be made for self-

aware and self-expressive systems, focusing on choices of levels of self-awareness

and structures to be used.

6.5.2.1 Choice of Levels of Self-Awareness

Stimulus-awareness: the individual nodes of a stimulus-aware, decentralised sys-

tem are only able to interact with each other by reacting to stimuli and triggering

new external stimuli in return. An excellent example in nature is the frequency syn-

chronisation of fireflies. Only by perceiving the stimulus of the blink of a light,

unaware of its origin or exact time of blink, the firefly reacts by blinking itself.

An example in the context of self-aware self-expressive systems is the synchroni-

sation mechanism [297] that can be used in systems such as Hypermusic. It uses a

stimulus-aware approach in order to synchronise musical patches, as explained in

Section 6.2.1. Section 7.3.1.3 gives a more detailed explanation of a computational

self-aware approach for frequency synchronisation.

Interaction-awareness: typical decentralised systems are expected to implement

inter-action-aware behaviour. Here the individual nodes can not only distinguish be-

tween the different stimuli but are also able to differentiate between the same stimuli

from different nodes. Furthermore, the individual nodes can select a specific subset

of nodes in the system for interaction. This allows them to not only improve the per-

formance of the entire system, but also make collective decisions and exploit local

behaviour. For example, the smart camera system [124] uses an economy-inspired

interaction-aware approach in order to coordinate tracking responsibilities.

Time-awareness: time-awareness allows a system not only to adapt to and antici-

pate changes in the environment as discussed in Sections 6.2 and 6.3, but also in the

behaviour of other nodes. Additionally, the system is enabled to ‘forget’ previously

learnt information which has become obsolete. An example for such time-awareness

is the pheromone-based foraging process of ants. Pheromones are strengthened

while the food source lasts, but evaporates over time, when the food source is de-

pleted and ants do not deploy pheromones anymore. Artificial pheromones can be

seen as a way for nodes in decentralised systems to interact with each other in a

time-aware fashion. Two different computational time-aware approaches employ-
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ing artificial pheromones are used in the smart camera system and the Hypermusic

system. They are discussed in Section 7.4.1.1 and Section 14.3.1

Goal-awareness: in the absence of a central component, goals are defined and rep-

resented by the individual nodes and are based on their individual capabilities. This

abstraction enables the system to deal with heterogeneous nodes and scale better.

Additionally, each node is focused on its own capabilities and goals, allowing the

system to distribute load more equally among all nodes and execute tasks concur-

rently. In the smart camera system the individual cameras are aware about their own

goals without having a central control steering them.

Meta-self-awareness: while meta-self-awareness is not essential to a decentralised

system, it allows the system to improve its own performance based on the environ-

ment it has been deployed in. Additionally, each individual node can reason about

its own behaviour in the dynamic environment and the actions and reactions of its

neighbouring nodes. An example of computational meta-self-awareness in the smart

camera system is given in Section 7.4.1.3 and by Lewis et. al [242], where each node

learns about the performance of a set of actions and over time selects the best for its

given situation.

Similar to what has been discussed in Section 6.2.2.1, while the different levels of

self-awareness may help a system to better handle decentralisation, they also require

additional computation time, which can be particularly concerning in applications

requiring near-real-time performance or in embedded devices where resources are

very limited.

6.5.2.2 Choice of Neighbourhood

In a distributed system, each node is able to build up its social neighbourhood, i.e.,

those nodes it is interacting with during its lifetime. Essentially, a designer of a self-

aware and self-expressive system has to make a choice regarding the neighbourhood

to be limited or unbound in terms of the number of neighbours.

Limited neighbourhood: in a limited neighbourhood, each node is only able to in-

teract with a limited number of other nodes from the network. This limit can either

be fixed or relative to the system size, but is defined by a system designer before

deployment. A limit to the neighbourhood size allows the system designer to con-

trol the resource consumption to some extent. On the other hand, it also limits the

possible capabilities of the system when it comes to requesting new resources or

processing capabilities from other nodes.

Unbound neighbourhood: in contrast to a limited neighbourhood, in an unbound

neighbourhood the node itself decides the number of neighbouring nodes it wants

to interact with. An unbound neighbourhood allows each individual node to adapt
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its own neighbourhood during runtime by adding new nodes or removing unneeded

ones. This allows the individual node to access more resources through other nodes

or reduce its communication overhead by removing nodes from its network. Never-

theless, even unbound neighbourhoods are limited by the communication and sens-

ing capabilities of the respective node. For example, a node will not be able to

communicate with all nodes in a wide-area network with single-hop communica-

tion over a wireless network interface (e.g. in the hypermusic system). In the smart

camera system, the field of view of the individual cameras naturally limits the size

of the neighbourhood.

6.5.2.3 Choice of Information Accessibility

In a distributed system, resources as well as information is shared among all nodes

in the network. This means a node can access resources and information locally or

remotely. Local information is based on the experiences a node makes by itself. In

contrast, with remote information nodes explicitly exchange knowledge about their

own experiences (e.g. sensor data or available resources). While accessing remote

resources allows to distribute workload, information from remote nodes may have

benefits as well drawbacks for a node in comparison to using only local information.

We will briefly discuss the benefits and drawbacks of limiting the access of a node.

Local information: a node only relies on its very own experiments made. Only

local information is used in order to make decisions and continue towards a global,

system-wide goal. While this may limit the capabilities of the entire network in

terms of possible performance, nodes may not rely on possibly incorrect information

from other nodes. Additionally, it avoids nodes exchanging irrelevant information

among each other, which would otherwise increase the network traffic unnecessar-

ily. For example, the smart camera networks, where each node only values objects it

is able to ‘see’, are based on local information. This means a camera ignores objects

in neighbouring fields of view, even if they might enter its own field of view in the

near future.

Remote information: in contrast to limiting a node to only local information, re-

mote information enables each entity to draw from experiences other nodes have

already made. This allows faster transition of knowledge but requires clear struc-

tures on how knowledge is represented. If facts in a given situation are omitted,

a seemingly similar situation for another node might result in worse performance

when drawing from another node’s experiences. Taking the smart camera system as

an example, when one camera omits its available resources when representing their

knowledge and experience, another node might use a similar behaviour but may per-

form worse if it has less resources at its disposal.

Mixed information: while information from remote nodes might be insufficient to

be applied at a given node, they can also be very helpful. In a mixed approach each



6 Knowledge Representation and Modelling: Structures and Trade-offs 107

node could individually learn how much remote information it wants in addition to

local information. Furthermore, nodes could even learn which remote node provided

what kind of information to what degree of usefulness to them. This would allow

them to distinguish between information from different nodes, filter noise from use-

ful information and learn faster in their environment. Various learning methods will

be discussed in the following Chapter 7.

6.6 Summary

This chapter discussed different features that may be present in self-aware and self-

expressive system from the perspective of knowledge representation and modelling.

The features discussed were adaptivity, robustness, multi-objectivity and decentrali-

sation. A common theme in the discussion of these features was that different levels

of self-awareness can be helpful for successfully implementing these features. How-

ever, trade-offs in terms of the benefit that such levels of self-awareness can provide

and computation time must be carefully considered, especially in systems that must

operate in near real-time or in embedded systems. Besides the choice of the level of

self-awareness, several other knowledge representation and modelling choices must

also be made to decide how exactly each of these levels of self-awareness should

be implemented. These choices include, but are not limited to, how and whether

to model states and environments, model time, deal with changing environments,

use redundancy of components, anticipate changes, formulate multiple objectives,

compare solutions with different objectives, implement nodes’ neighbourhoods, and

exchange information among nodes. Different options must be carefully considered

when developing a self-aware and self-expressive systems. The best choice will de-

pend on the application to be developed and the type of environment where it will

be embedded.
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253. Lübbers, E., Platzner, M.: Cooperative multithreading in dynamically reconfigurable sys-
tems. In: Proc. Int. Conf. on Field Programmable Logic and Applications (FPL), pp. 1–4.
IEEE (2009)

254. Makris, D., Ellis, T., Black, J.: Bridging the Gaps between Cameras. In: Proceedings of
Conference on Computer Vision and Pattern Recognition, vol. 2 (2004)

255. Marler, R.T., Arora, J.S.: Function-transformation methods for multi-objective optimization.
Engineering Optimization 37(6), 551–570 (2005)

256. Marrow, P.: Nature-inspired computing technology and applications. BT Technology Journal
18(4), 13–23 (2000)

257. Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM
Review 6(3), 260–264 (1964)

258. Masahiro, N., Takaesu, H., Demachi, H., Oono, M., Saito, H.: Development of an automatic
music selection system based on runner’s step frequency. In: Proc. of 2008 International
Conf. on Music Information Retrieval, pp. 193–8 (2008)

259. Massie, M.L., b, B.N.C., Culler, D.E.: The Ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing 30, 817–840 (2004)

260. Mathar, R., Mattfeldt, J.: Pulse-coupled decentral synchronization. SIAM Journal on Applied
Mathematics 56(4), 1094–1106 (1996)

261. Max [computer software]. URL \url{http://cycling74.com}
262. Mckay, M.D., et al.: A comparison of three methods for selecting values of input variables

in the analysis of output from a computer code. Technometrics pp. 55—-61 (2000)
263. Mehta, N.R., Medvidovic, N.: Composing architectural styles from architectural primi-

tives. In: ESEC / SIGSOFT FSE, pp. 347–350. ACM (2003). URL http://dblp.
uni-trier.de/db/conf/sigsoft/fse2003.html\#MehtaM03

264. Menasce, D.A., Sousa, J.a.P., Malek, S., Gomaa, H.: Qos architectural patterns for self-
architecting software systems. In: Proceedings of the 7th International Conference on Au-
tonomic Computing, ICAC ’10, pp. 195–204. ACM, New York, NY, USA (2010). DOI
10.1145/1809049.1809084

265. Metcalfe, J., Shimamura, A.P. (eds.): Metacognition: Knowing about knowing. MIT Press,
Cambridge, MA, USA (1994)

266. Michalski, R.S.: A Theory and Methodology of Inductive Learning. In: Machine Learning,
Symbolic Computation, pp. 83–134. Springer Berlin Heidelberg (1983)



312 References
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