
Multi-Label Transfer Learning in Non-Stationary
Data Streams

Honghui Du∗, Leandro L. Minku†, Aonghus Lawlor∗, Huiyu Zhou‡
∗Insight Centre for Data Analytics, School of Computer Science, University College Dublin, Ireland

†School of Computer Science, University of Birmingham, United Kingdom
‡School of Computing and Mathematical Sciences, University of Leicester, United Kingdom

Email: honghui.du@ucd.ie, l.l.minku@bham.ac.uk, aonghus.lawlor@ucd.ie, hz143@leicester.ac.uk

Abstract—Label concepts in multi-label data streams often
experience drift in non-stationary environments, either indepen-
dently or in relation to other labels. Transferring knowledge
between related labels can accelerate adaptation, yet research
on multi-label transfer learning for data streams remains lim-
ited. To address this, we propose two novel transfer learning
methods: BR-MARLENE leverages knowledge from different
labels in both source and target streams for multi-label clas-
sification; BRPW-MARLENE builds on this by explicitly mod-
elling and transferring pairwise label dependencies to enhance
learning performance. Comprehensive experiments show that
both methods outperform state-of-the-art multi-label stream
approaches in non-stationary environments, demonstrating the
effectiveness of inter-label knowledge transfer for improved
predictive performance. The implementation is available at
https://github.com/nino2222/MARLENE.

Index Terms—Concept drift, non-stationary environment,
multi-source, multi-label, class imbalance, transfer learning.

I. INTRODUCTION

Most research on data stream learning concentrates on
streams with single labels [1]. However, many practical data
streaming applications naturally adopt a multi-label paradigm,
where each incoming data example has more than one label
[2]. For example, a social media post could be tagged with
several descriptors, or a movie might be classified under
various predefined genres (e.g., Action, Crime, Historical),
with each tag or genre representing a unique label.

A key challenge in multi-label data stream learning within
non-stationary environments is that the stream typical contains
multiple evolving label concepts, and drifts in one label’s
concept may occur synchronously or asynchronously with
others [1], [3]. For example, a financial crisis may cause
drift in labels like ”economy”, ”employment”, and ”markets”,
while leaving ”sports” or ”entertainment” unaffected. Thus,
while it is impractical to assume all labels drift together, it is
also unrealistic to assume that drifts across labels are always
independent [2]. Moreover, in practice, multi-label stream
learning is often further complicated by class imbalance, and
it is difficult to predict whether the positive or negative class
dominates for each label [2]. Combined with evolving con-
cept drift, this makes learning in non-stationary environments
highly challenging.

This work was funded by the EU Horizon Europe SEDIMARK project
(Grant No. 101070074) and Science Foundation Ireland through the Insight
Centre for Data Analytics (Grant No. SFI/12/RC/2289 P2).

Transfer learning has shown effectiveness by reusing knowl-
edge from one learnt domain to accelerate learning in new
domains [4]. When there is a relationship between the concepts
of various labels, the knowledge learnt from one label can help
improve learning of the new concept in another. Therefore,
transferring such knowledge may be particularly beneficial
for accelerating adaptation to concept drift in multi-label data
streams. However, no research has yet investigated multi-label
transfer learning for data streams.

Therefore, our paper aims to answer the following research
questions: How can knowledge transfer enhance predictive
performance in multi-label learning under non-stationary en-
vironments? And how beneficial is it?

To answer these questions and more effectively handle
concept drift in multi-label data streams, we propose two novel
multi-label online transfer learning approaches: Binary Rele-
vance and Binary Relevance PairWise Multi-Label classifica-
tion in non-stationary environments with Multi-Source Trans-
fer Learning (BR-MARLENE and BRPW-MARLENE). We
consider a multi-source scenario where both source and target
streams may experience concept drift and class imbalance
across labels. BR-MARLENE transfers useful knowledge from
models trained on other labels to improve prediction for each
target label. BRPW-MARLENE extends this by modelling
and transferring knowledge across label pair dependencies
to further enhance prediction (e.g., using knowledge from
other label dependencies to predict the relationship between
two given labels). Experiments show that both BR/BRPW-
MARLENE outperform existing methods over time. BRPW-
MARLENE achieves higher accuracy by modelling label de-
pendencies, while BR-MARLENE offers faster execution.

The main contributions of this paper are:
• We propose two novel transfer learning approaches that

transfers knowledge across labels and dependencies to
enhance multi-label data stream prediction.

• We propose a novel weighting scheme that assigns each
sub-classifier label-specific weights, prioritising correct
predictions on minority and difficult cases to address class
imbalance and enhance label-wise accuracy.

• We identify limitations in current multi-label stream eval-
uation metrics and propose new metrics by adapting G-
Mean [5] to better reflect multi-label model performance
under class imbalance.

II. PROBLEM FORMULATION

Consider D = {(xt,yt)}∞t=0 as a potentially infinite multi-
label data stream; xt ∈ X are the input features of the example
received at time step t; X is the input space; yt = {ytq}

|L|
q=1 ∈

Y = {0, 1}|L|, where set L = {lq}|L|
q=1 contains all possible

labels of stream D, ytq = 1 if label lq is relevant to xt, and
ytq = 0 otherwise. A concept for a specific lq can be defined
as the conditional distribution P (yq|x). In non-stationary
environments, the data stream D may experience concept drift,
which occurs when the distribution changes over time (i.e.,
there exist t′ ̸= t′′ such that P t′(yq|x) ̸= P t′′(yq|x)). It’s
worth noting that drift across different labels can occur either
synchronously or asynchronously.

The objective of multi-label data stream learning is to train a
predictive model h(x) : X → Y . Unlike chunk-based learning,
this paper adopts an online paradigm that updates the model
incrementally using only the previous model ht−1 and the
current data point (xt,yt) to construct an updated model ht

at each time step t. Compared with chunk-based approaches,
online learning enables faster adaptation to drift and requires
less memory, as it avoids storing large data chunks.

The domain of D is denoted as D = {X , P (x)}, where
P (x) is the marginal probability distribution. We consider a
scenario involving n + 1 data streams from various sources.
Specifically, the data stream Di originates from the source i ∈
{S1, S2, · · · , Sn, T}, where DSn is the nth source data stream
and DT is the target stream. For a target stream label, all
other target and source stream labels are treated as sources. We
investigate inductive transfer learning: DSn

̸= DT or DSn
=

DT , while P (yq|xi) ̸= P (yq′ |xi′).

III. RELATED WORK

A. Transfer Learning in Non-stationary Environments

Existing transfer learning in non-stationary environments
mainly targets single-label data streams. Most of them are
online inductive transfer approaches. DDD [6] and OWA [7]
both transfer knowledge from previous to current concepts
within the target stream: DDD leverages a diverse ensemble,
while OWA uses ensemble weighting. Neither approach uses
external source data. Melanie [8] is the first approach to trans-
fer knowledge from multiple source streams by maintaining a
weighted ensemble. OBAL [9] aligns the feature distributions
of each source stream with that of the target stream, making
different data streams share similar feature spaces and thereby
reducing the negative impact of covariate shift on transfer
learning. MARLINE [10] projects the target domain onto
various source domains, allowing models trained on the source
data to also make predictions on the target data, thus mitigating
differences between the source and target domains.

There are also some chunk-based transfer approaches.
DTEL [11] transfers the structure of a decision tree from an
old data chunk to a new concept. CDTL [12] shares a similar
idea with Melanie but uses a chunk-based ensemble. OTL-CE
[13] addresses class evolution by identifying shared classes
between source and target domains and building ensembles

for these classes. AOMSDA [14] leverages complementary
information from multiple sources through a central moment
discrepancy regularizer and employs node weighting to ad-
dress covariate shift. However, as chunk-based methods, they
cannot dynamically detect or adapt to changes in data streams.

All these transfer learning methods are designed for single-
label data streams and cannot be directly applied to multi-label
stream learning.

B. Multi-Label Learning in Non-stationary Environments

Due to the flexibility and generality, problem transformation
methods (e.g., Binary Relevance (BR) [15], Classifier Chain
(CC) [16], Pairwise (PW) [17], Pruned Sets (PS) [18]) are the
most widely used approach for multi-label learning. Problem
transformation converts a multi-label problem into multiple
single-label problems. Ensemble methods often incorporate
these approaches as base classifiers [16], [18], [19]. However,
these methods typically assume a stationary environment.

Some methods [20], [21] have been proposed for multi-
label data stream learning in non-stationary environments,
where problem transformation and ensemble strategies are also
commonly applied. [22] proposes a max-relevance and min-
redundancy based algorithm adaptation approach to handle
high-dimensional features in non-stationary multi-label data
streams. MLHAT [23] uses a Hoeffding adaptive tree to
address these challenges by considering label relations and
co-occurrences during tree partitioning, dynamically adapting
leaf learners, and applying concept drift detection to quickly
update underperforming branches. GOOWE-ML [3], which
assigns confidence-based weights to each base classifier using
sliding windows and least squares; it can be combined with
any incremental multi-label classifier (e.g., GOBR, GOCC,
GOPS, GORT) to improve performance. ADWIN Bagging
[24] uses online bagging with ADWIN for concept drift
detection, replacing poorly performing base models when drift
is detected. For multi-label problems, it uses online multi-
label base learners (such as Hoeffding Trees) and monitors a
multi-label performance metric. Variants include EaBR, EaCC,
and EaPS [25], which use BR, CC, and PS as base learners,
respectively.

None of the above approaches leverage transfer learning to
improve adaptation to new concepts, which could be especially
valuable for multi-label data stream learning as discussed in
Section I.

IV. PROPOSED METHODS

A. BR-MARLENE

BR-MARLENE takes one or more multi-label data streams
as input (e.g., one target and others as sources), which may
come from the same or different domains. Each data stream
is processed label-wise. For each label, an independent binary
sub-classifier is trained to learn its distribution and predict
whether the label is relevant for a given instance. Concept
drift is monitored for each label using drift detectors. When
drift occurs, a new sub-classifier is trained for the updated
concept and added to the ensemble, retaining both old and

new classifiers. Our approaches are designed without hyper-
parameters to avoid both the need for tuning and the variability
in performance. Only the base classifier and the drift detector
need to be specified prior to training.

The core idea of BR-MARLENE is to improve predictive
performance for a target stream by leveraging sub-classifiers
trained on both source and target streams via transfer learn-
ing. It maintains an ensemble classifier comprising all sub-
classifiers trained on different labels across different streams.
For each target label, a unique set of weights is assigned to
these sub-classifiers based on their performance on that label.
Whenever a new target instance is available, BR-MARLENE
allows all sub-classifiers to make predictions and applies
different label-specific weight combinations to aggregate these
predictions for each label, producing accurate results.

1) Learning Process: BR-MARLENE’s learning process is
shown in Algorithm 1. M denotes all received source and
target streams. Following the binary relevance setting, upon
receiving an example from stream Di, BR-MARLENE creates
|Li| sub-classifiers and adds them to the ensemble H, each
trained with a specific label distribution. Any single-label
binary classification method can serve as the sub-classifier
(e.g., Hoeffding Tree [26]). For each target stream label, every
sub-classifier initialises and maintains a set of performance
indicators (detailed in Section IV-A2) to record its perfor-
mance on this label, assess how well it matches the label’s
distribution, and update its weights in various label-specific
weight sets (line 2 to 6).

Since concept drifts may occur on each label, we use a drift
detection method (e.g., DDM-OCI [27]) to monitor changes
per label. If a concept drift is detected for a label, BR-
MARLENE generates a new sub-classifier to learn the upcom-
ing new concept of that label and adds it to the ensemble (line
8 to 10), so the ensemble includes sub-classifiers representing
various concepts for each label. The most recent sub-classifier
for each label is used for drift monitoring. If drift occurs in
a target stream label, all sub-classifiers in the ensemble reset
their performance indicators for that label (line 11 to 12).

As mentioned, class imbalance is likely to occur for each
label in multi-label data streams. Therefore, an integrated
resampling strategy is adopted to increase the sampling rate of
minority-class examples. For each sub-classifier, we record the
number of positive and negative examples learnt (n+ and n−).
When a training sub-example (xt, yt) is available, the training
rate k (i.e., the number of times the classifier is trained on this
sub-example) is sampled from a Poisson distribution based on
the ratio of majority to minority class counts as follows:

k ∼

{
Poisson(max(n+,n−)

n−), y = 0

Poisson(max(n+,n−)
n+), y = 1

(1)

This ensures that minority-class examples are sampled more
frequently during training (lines 14).

If the new training example is from the target stream, the
weighting scheme in Section IV-A2 is used to update each
sub-classifier’s performance indicators and weights (line 16).

Algorithm 1: Learning Procedure of BR-MARLENE.
Input: (xt

i,y
t
i) ∈ Di i ∈ {S1, S2, · · · , Sn, T}

1 while Receive a new example (xt
i,y

t
i) do

2 if i /∈M then
3 M←M∪ i
4 for lq ∈ Li do
5 Initialise a sub-classifier h for the label.
6 H ← H∪ h

7 for lq ∈ Li do
8 if DriftDetectioni,q(x

t
i, y

t
i,q) = True then

9 Initialise a new sub-classifier h for the
label.

10 H ← H∪ h
11 if i = T then
12 Reset performance indicators of all

sub-classifiers.

13 for lq ∈ Li do
14 Train the model as shown in Section IV-A1

15 if i = T then
16 Update sub-classifiers’ weights as shown in

Section IV-A2

2) Sub-classifiers’ Weighting: Each sub-classifier is as-
signed |LT | weights to reflect its match with the distri-
butions of different labels in the target stream, helping to
avoid negative transfer and deal with concept drift. Stan-
dard ensemble weighting schemes often assign weights based
on overall accuracy. In imbalanced environments, majority-
class dominance allows sub-classifiers to earn high weights
by performing well only on majority classes, even if they
fail on minority classes. This leads the ensemble to neglect
performance on minority-class predictions. Therefore, to better
allocate each sub-classifier’s contribution to the prediction, we
propose a novel weighting scheme that rewards higher weights
for correctly predicting difficult or minority class examples and
assigns lower weights for easy or majority class cases.

For each sub-classifier, its binary classification results on
a given target label is recorded using true positives (TP),
false positives (FP), true negatives (TN), and false negatives
(FN), which are updated incrementally as new examples
arrive. Unlike offline learning, the full dataset is unavailable
in advance; a class that appears to be the majority early on
may later become the minority, making it impossible to foresee
which classes are majority or minority. Consequently, we use
dynamic correction factors (e.g., κ+ and κ−) to balance the
impact of positive and negative examples. The contributions
of positive and negative examples should be equal (n+×κ+ =
n− × κ−), and their sum should match the total number of
examples (e.g., n+× κ+ +n−× κ− = n+ +n−). Given this,
the correction factors are defined as follows:

κ+ ← n+ + n−

2 · n+
, κ− ← n+ + n−

2 · n− (2)

Each sub-classifier’s performance on a given label is mea-
sured by Positive Predictive Value (PPV) and Negative Pre-
dictive Value (NPV). By incorporating κ+ and κ− into PPV
and NPV , we ensure each example’s impact is balanced by
class. The PPV and NPV can be formulated as follows:

PPV ← TP · κ+

TP · κ+ + FP · κ− (3)

NPV ← TN · κ−

TN · κ− + FN · κ+
(4)

Through PPV and NPV , we obtain the statistical proba-
bility that a sub-classifier’s positive or negative prediction is
correct. These serve as reliability measures for predictions and
are used to calibrate the sub-classifier’s output:

P̂+ ← P+ · PPV + P− · (1−NPV) (5)

P̂− ← P− ·NPV + P+ · (1− PPV) (6)

where P̂+ aggregates the probability of a positive prediction
(P+ = P (h(xT) = 1)) weighted by its reliability (PPV) and
the probability of a negative prediction (P− = P (h(xT) = 0))
when the true class is actually positive (1−NPV); similarly,
P̂− aggregates correct negative predictions (P− ·NPV) and
false positives (P+ · (1 − PPV)). By combining prediction
reliability (e.g., PPV and NPV) and correction factors (e.g.,
κ+ and κ+), the calibrated probabilities (P̂+ and P̂−) correct
potential overconfidence in sub-classifier predictions under
class imbalance and helps prevent predictions from being
biased toward the majority class.

For a given label, an example is considered harder to classify
(e.g., minority class example), the more the probability of
an incorrect prediction exceeds that of a correct prediction.
The weight λSW

λSC
for an example on the given label reflects

the ensemble’s classification difficulty for that example and is
computed as follows:

λSC ←
∑
h∈H

P̂ y(h(xT)), λSW ←
∑
h∈H

P̂ y(h(xT)) (7)

where P̂ y(h(xT)) is the calibrated probability that sub-
classifier h predicts the true class y; P̂ y(h(xT)) is the cali-
brated probability that it predicts the incorrect class. The easier
the ensemble classifies an example, the smaller its weight; the
harder, the larger its weight.

For a given label, each sub-classifier is weighted by its
performance on that label. SC and SW are the sub-classifier’s
correct and incorrect prediction scores, each consisting of the
example’s weight (reflecting classification difficulty) and the
sub-classifier’s relative contribution to the ensemble’s predic-
tion. SC and SW are updated incrementally as new examples
arrive. The weight α is computed for each sub-classifier as

follows:

SCt ← SCt−1 +
λSW

λSC
· P̂

y(h(xT))

λSC
(8)

SW t ← SW t−1 +
λSW

λSC
· P̂

y(h(xT))

λSW
(9)

α← SC

SC + SW
(10)

where P̂y(h(xT))
λSC

and P̂y(h(xT)
λSW

quantify the sub-classifier’s
proportion among all correct and incorrect predictions, re-
spectively, for the current example in the ensemble. Thus,
when a sub-classifier predicts correctly while most others are
incorrect, it receives a higher SC and a lower SW .

3) Voting Procedure: BR-MARLENE uses the same set of
sub-classifiers for all labels, but assigns a different weight
combination for each label. The ensemble H’s vote for in-
stance xT on a given target label lT,q is computed as follows:

Pq(H(xT)) =
∑
h∈H

αq
h · P̂ (h(xT)) (11)

ŷT,q = arg max
y∈{0,1}

Pq(H(xT)) (12)

B. BRPW-MARLENE

While Binary Relevance (BR) is effective and widely used,
its assumption of label independence overlooks potential de-
pendencies between labels [28]. It may yield less accurate
predictions when labels are correlated, as valuable label co-
occurrence information is ignored. To address the limitations
of BR, we propose BRPW-MARLENE, which enhances BR-
MARLENE’s predictive performance by modelling pairwise
label dependencies and enabling transfer learning between
PW-classifiers for dependency prediction. For clarity, we refer
to BR-MARLENE’s sub-classifiers as BR-classifiers and those
of BRPW-MARLENE as PW-classifiers in this section; both
contribute to BRPW-MARLENE’s final predictions.

1) Learning Process: BRPW-MARLENE first runs the
standard BR-MARLENE training to generate BR-classifiers
for each label. In addition, it constructs |L|(|L| − 1) PW-
classifiers for each possible pair of labels in every data stream
Di. Each PW-classifier is trained to model the dependency
between a specific pair of labels (e.g., lq and lq′), using
input features composed of the original features and one label
(x, yq), and predicting the other label yq′ in the pair. The
training process for PW-classifiers is the same as that of
BR-classifiers, including concept drift detection and adaptive
model updates. When a drift is detected in a dependency, a
new PW-classifier is added to represent the new concept. Each
PW-classifier maintains dependency-specific performance in-
dicators and weights, using a weighting scheme similar to BR-
classifiers, but specifically targeting predictive performance
for each label pair dependency. This setup enables BRPW-
MARLENE to learn and adapt to evolving pairwise label
dependencies in the data streams.

2) Voting Procedure: To generate the prediction for a target
label, BRPW-MARLENE first computes the BR-MARLENE
ensemble prediction for each label, which aggregates the
outputs of all BR-classifiers for that label. These initial
predictions are then used as additional inputs to predict the
dependencies between each pair of labels lT,q and lT,q′ as:

Pq,q′(HPW (xT , ŷT,q)) =
∑

h∈HPW

αq,q′

h · P̂ (h(xT , ŷT,q))

(13)

where ŷT,q is BR-MARLENE’s prediction. The final predic-
tion for label lT,q is obtained by combining the outputs of
BR-classifiers and PW-classifiers:

Pq(HBRPW (xT))

=

|LT |∑
q′=1,q′ ̸=q

P (yT,q′)P (yT,q|yT,q′) + P (yT,q|xT) (14)

ŷT,q = arg max
y∈{0,1}

Pq(HBRPW (xT)) (15)

where P (yT,q′) = Pq′(HBR(xT)), P (yT,q′)P (yT,q|yT,q′) =
Pq′,q(HPW (xT , ŷT,q′)), P (yT,q|xT) = Pq(HBR(xT)).

V. TIME COMPLEXITY ANALYSIS

Since PW-classifiers use the same algorithm as BR-
classifiers, both take O(f train

h) for a single training, O(fpred
h)

for prediction, and drift detection takes O(fDD).
When the current example is from the target stream, the

overall time complexity of BR-MARLENE’s learning proce-
dure is O(|LT |×fDD+

∑|LT |
q=1 kT,q×f train

h +|LT |×|HBR|×
fpred
h), where kT,q is the integer from the corresponding Pois-

son distribution, and
∑|LT |

q=1 kT,q is the total number of sub-
classifier training operations; The overall BRPW-MARLENE
training complexity is O(|LT |2 × fDD + (

∑|LT |
q=1 kT,q +∑|LT |

q=1

∑|LT |
q′=1,q′ ̸=q kT,q,q′)× f train

h + (|HBR|+ (|LT | − 1)×
|HPW)× |LT | × fpred

h).
When learning from a source stream Sn, BR/PW sub-

classifier weights are not updated, resulting in lower train-
ing time complexity: BR-MARLENE, O(|LSn

| × fDD +∑|LSn |
q=1 kSn,q×f train

h); BRPW-MARLENE, O(|LSn
|(|LSn

|−
1)× fDD +

∑|LSn |
q=1

∑|LSn |
q′=1,q′ ̸=q kSn,q,q′ × fpred

h).
In BR-MARLENE’s prediction procedure, each sub-

classifier predicts the relevance of each target label, giving an
overall prediction time complexity of O(|LT | × |HBR| × fh).
For BRPW-MARLENE, predictions from all BR-classifiers
and PW-classifiers are combined, with an overall time com-
plexity of O((|HBR|+ (|LT | − 1)× |HPW |)× |LT | × fh)

VI. EXPERIMENTAL SETUP

A. Datasets

1) Real-World Datasets: We selected seven commonly used
real-world datasets [3], [19], [25], [29] to evaluate our pro-
posed methods. To better understand these datasets and the
experimental results on them, it is important to measure the
degree of multi-label in each. Label density (LDen) [30] is a

TABLE I: Tabulation of real-world datasets; superscript indi-
cates input feature type: binary (b) or numeric (n).

Dataset(D) |D| |xD| |LD| LDen(D) LIR(D) LSIR(D)

Slashdotb 3782 1079 22 0.054 0.054 0.054
Ohsumedb 13929 1002 23 0.072 0.072 0.072
Reutersn 6000 500 103 0.014 0.014 0.014
Yeastn 2417 103 14 0.303 0.232 0.297
20NGb 19300 1006 20 0.051 0.051 0.051
TMC2007b 28596 500 22 0.098 0.092 0.098
IMDBb 120919 1001 28 0.071 0.071 0.071

widely used measure reflecting the average number of labels
associated with each instance and can be computed as follows:

LDen(D) =
1

|D|

|D|∑
t=1

|LD|∑
q=1

ytq
|LD|

(16)

As class imbalance frequently occurs in multi-label data
streams, the imbalance rate is an important measure to con-
sider. In single-label binary problems, the Imbalance Rate (IR)
refers to the occurrence probability of the minority class. For
multi-label problems, we define the Label Imbalance Rate
(LIR) as the mean IR across all labels, and the Label-Set
Imbalance Rate (LSIR) as the mean IR across all label sets
for each example:

LIR(D) =

∑|LD|
q=1 Nmin

q

|LD| · |D|
, LSIR(D) =

∑|D|
t=1 N

min
yt

|LD| · |D|
(17)

where Nmin
q is the number of samples in the minority class

for the q-th label, and Nmin
yt is the number of samples in

the minority class for the label set of the t-th example.
LIR measures average imbalance across labels, while LSIR
captures imbalance within each instance’s label set; lower
values mean greater imbalance. If the minority class for every
label in D is positive, then LIR(D) = LDen(D); likewise,
if the minority class for each example’s label set is positive,
LSIR(D) = LDen(D). Table I summarises each dataset’s
parameters and measurements. Each dataset includes only a
target stream without source streams. This setting allows us
to analyse the benefit of transfer between label concepts within
a stream, which is the main focus of this work.

2) Synthetic Datasets: Due to privacy concerns, few real-
world multi-label datasets are available, and traditional offline
datasets are unsuitable for non-stationary environments [31],
making it difficult to find appropriate source data for each real-
world dataset. To further investigate the impact of concept drift
and multiple sources, we generate synthetic datasets composed
of several synthetic streams (sources and target).

Each dataset consists of two numeric features and five
binary labels (|LD| = 5). For each source or target, input
features follow a mixture of five Gaussian distributions. Each
class of a label is linked to specific Gaussians, with one
representing the positive class and the other four representing
negatives. Target datasets vary in size per Gaussian (50, 500,
5000), simulating small, medium and large samples. Each

target has both similar and non-similar source datasets to
generate diverse synthetic streams. Datasets with no source
represent transfer only between labels within the same target
stream. This setup allows us to analyse 1) the benefit of
transfer from source to target labels, 2) transfer between labels
within the target stream. All sources have 5000 examples per
Gaussian distribution. To better assess the proposed methods
and their ability to handle concept drift on each label, two
target labels (l1 and l2) are evaluated under three scenarios:
stable (S), abrupt drift (A), and incremental drift (I), resulting
in six possible combinations (e.g., IA: l1 incremental, l2 abrupt
drift). Datasets are named according to the drift type of l1 and
l2 (e.g., IA: l1 has incremental drift, l2 has abrupt drift; AS:
l1 has abrupt drift, l2 is stable). The other three labels remain
stable.

B. Benchmark Methods

We select 11 SOTA multi-label approaches available in the
Massive Online Analysis (MOA) tool [32] via MEKA [33],
covering all major groups of existing multi-label methods:
EBR [16], ECC [16], EPS [18], ERT [19], EaBR [25], EaCC
[25], EaPS [25], GOBR [3], GOCC [3], GOPS [3], GORT
[3]. EaBR, EaCC, and EaPS have built-in ADWIN [34] for
concept drift detection, while BR-MARLENE uses the class
imbalance concept drift detector (DDM-OCI [27]).

We use sliding window-based prequential evaluation [35]
with a window size of 10% of |D|. As GOBR, GOCC, GOPS,
and GORT are chunk-based and can only predict after the first
chunk is filled, evaluation for all methods begins when these
approaches are ready to make predictions. All approaches use
Hoeffding Trees [26] as the base classifier, with an ensemble
size of 10 (i.e., 10 sub-classifiers) except for BR-MARLENE
and BRPW-MARLENE, whose ensemble sizes depend on the
number of possible labels in the dataset.

Thirty runs are performed for all stochastic approaches,
while GOBR, GOCC, GOPS, and GORT, being deterministic,
require only a single run. The average Macro/Micro/Label-set-
based G-Mean and computation time over 30 runs are reported.

C. Evaluation Metrics

In the multi-label setting, simple metrics like accuracy
do not adequately capture model performance. Multi-label
classifiers are typically evaluated using either label-set-based
or label-based measures. Label-set-based measures (e.g., Ham-
ming Score (HScore) and Hamming Loss (HLoss) [36]) assess
model performance by averaging predictions over each exam-
ple’s label set; HScore is the mean fraction of correct labels per
instance, while HLoss is the mean proportion of misclassified
labels. However, both metrics may be misleading in imbal-
anced datasets because they fail to capture performance on
rare labels, similar to the limitations of accuracy in single-
label imbalance.

Unlike label-set-based measures, label-based measures are
calculated by averaging the model’s performance on each

individual label (using micro or macro averaging) across all
examples [37]:

Mmarco =

∑|LD|
q=1 M(TPq, FPq, FNq)

|LD|
(18)

Mmicro = M(

|LD|∑
q=1

TPq,

|LD|∑
q=1

FPq,

|LD|∑
q=1

FNq (19)

where M is a performance metric (e.g., Recall, Precision, F-
Score). Macro measures calculate the metric on each label
and then average the results, making them sensitive to label
imbalance. Micro measures, in contrast, aggregate counts
across labels before computing the metric, thus reflecting
overall performance and diluting the influence of individual
label imbalance [38]. Recall, Precision, and F-Score are the
most common metrics for macro and micro evaluation; as seen
from equations 18 and 19, they focus on positive prediction
performance and generally assume the positive class is the
minority, which is not always the case (e.g., In Yeast, positives
are the majority for two labels, and in TMC2007, one label
also has majority positives, so LIR ̸= LDen in both datasets).
A dummy classifier that always predicts the majority class for
each label can still achieve high macro and micro scores, high-
lighting the limitations of these metrics under class imbalance.

To address the limitations of current metrics, we adapt the
widely used G-Mean [5] from single-label class imbalance
learning for use in multi-label settings. G-Mean evaluates
model performance by taking the geometric mean of recall
for both positive and negative classes [39]:

G−Mean = 2

√
TP

TP + FN
× TN

TN + FP
(20)

where TP
TP+FN is the positive class recall and TN

TN+FP is the
negative class recall. Macro and micro G-Mean are obtained
by using G-Mean as the performance metric in Equations 18
and 19. Unlike recall, precision, or F-Score, G-Mean offers a
more balanced assessment of model performance across both
classes for each label.

Label-set-based G-Mean (LS-G-Mean) is computed by cal-
culating TP , FP , TN , and FN on each received label set:

G−MeanLS =

1

|D|

|D|∑
t=1

G−Mean(TP t, FP t, TN t, FN t) (21)

where TP t, FP t, TN t, and FN t are the confusion matrix
counts computed for the predicted ŷt and true label sets yt.
Compared to HScore and HLoss, LS-G-Mean gives equal
weight to all classes across label sets, helping to avoid the
effects of class imbalance.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results on Real-World Datasets

The predictive performance of each algorithm on each
dataset is shown in Table II. Due to the high computa-

TABLE II: Experimental results on each dataset. BR-M refers to BR-MARLENE, BRPW-M refers to BRPW-MARLENE,
Macro refers to Macro-G-Mean, Micro to Micro-G-Mean, LS to Label-set-based-G-Mean, and Rank to Friedman’s rank.
Friedman’s p-values are always < 2.2× 10−16. The best approach is highlighted in red, and approaches without a significant
difference according to the post-hoc Nemenyi test are shown in bold.

Dataset Slashdot Ohsumed Reuters Yeast 20NG TMC2007 IMDB
Metrics Macro Rank Macro Rank Macro Rank Macro Rank Macro Rank Macro Rank Macro Rank Avg. Rank
BRPW-M - - - - - - 0.567 - - - - - - - -
BR-M 0.357 1.116 0.571 1.019 0.415 1.003 0.539 1.012 0.699 1.023 0.752 1.003 0.411 1.000 1.025
EBR 0.023 7.850 0.294 3.662 0.048 5.877 0.232 6.464 0.506 3.075 0.491 2.203 0.059 4.271 4.772
ECC 0.020 8.992 0.273 4.828 0.041 6.757 0.239 5.802 0.490 4.587 0.479 3.172 0.035 6.441 5.797
EPS 0.081 6.356 0.151 6.073 0.035 6.642 0.295 2.542 0.268 7.138 0.245 6.443 0.008 9.412 6.372
ERT 0.000 10.290 0.030 10.477 0.000 10.718 0.000 11.991 0.112 11.101 0.006 12.000 0.002 11.273 11.121
EaBR 0.010 8.776 0.227 5.893 0.020 8.501 0.231 6.698 0.464 5.095 0.436 3.979 0.031 6.789 6.533
EaCC 0.019 9.313 0.016 11.278 0.003 10.123 0.238 6.077 0.270 7.713 0.411 4.946 0.006 10.442 8.556
EaPS 0.110 3.996 0.126 7.327 0.049 4.812 0.288 3.598 0.199 9.364 0.246 6.345 0.012 9.424 6.409
GOBR 0.027 7.143 0.126 7.293 0.042 5.700 0.221 7.178 0.294 6.355 0.177 7.979 0.126 2.751 6.343
GOCC 0.028 7.106 0.134 6.949 0.013 9.327 0.196 9.046 0.176 9.779 0.163 9.052 0.154 2.249 7.644
GOPS 0.196 2.415 0.196 4.558 0.047 4.704 0.218 7.358 0.271 6.523 0.138 9.878 0.014 8.685 6.303
GORT 0.068 4.647 0.092 8.642 0.060 3.837 0.177 10.233 0.293 6.247 0.090 11.000 0.043 5.263 7.124
Metrics Micro Rank Micro Rank Micro Rank Micro Rank Micro Rank Micro Rank Micro Rank Avg. Rank
BRPW-M - - - - - - 0.663 - - - - - - - -
BR-M 0.572 2.362 0.610 1.461 0.753 1.000 0.644 8.694 0.759 1.004 0.774 1.763 0.524 2.611 2.699
EBR 0.065 8.692 0.375 5.342 0.188 6.292 0.724 2.165 0.561 3.131 0.761 2.379 0.226 8.034 5.148
ECC 0.059 9.715 0.360 6.524 0.177 7.325 0.718 2.593 0.547 4.652 0.754 3.530 0.111 9.667 6.287
EPS 0.333 5.076 0.458 5.410 0.335 5.654 0.697 5.883 0.462 5.835 0.691 6.851 0.414 5.501 5.744
ERT 0.003 10.817 0.165 10.495 0.001 10.813 0.000 12.000 0.255 10.094 0.039 12.000 0.013 11.565 11.112
EaBR 0.040 9.572 0.309 7.727 0.112 9.198 0.724 2.445 0.523 5.148 0.755 2.784 0.133 9.327 6.600
EaCC 0.057 9.987 0.037 11.626 0.024 10.199 0.717 2.951 0.337 8.172 0.745 4.571 0.021 11.407 8.416
EaPS 0.287 5.975 0.415 7.070 0.380 3.882 0.700 5.015 0.358 8.655 0.682 6.480 0.415 5.837 6.131
GOBR 0.598 1.877 0.546 2.933 0.407 4.309 0.576 9.246 0.448 6.239 0.554 8.924 0.570 2.154 5.097
GOCC 0.155 7.333 0.256 9.165 0.081 9.448 0.577 9.645 0.230 10.871 0.531 10.439 0.372 5.683 8.941
GOPS 0.365 4.564 0.414 6.567 0.282 6.715 0.576 9.468 0.337 8.578 0.521 10.535 0.429 4.921 7.335
GORT 0.596 2.031 0.506 3.680 0.408 3.164 0.633 7.895 0.487 5.620 0.640 7.745 0.612 1.295 4.490
Metrics LS Rank LS Rank LS Rank LS Rank LS Rank LS Rank LS Rank Avg. Rank
BRPW-M - - - - - - 0.636 - - - - - - - -
BR-M 0.412 2.345 0.497 1.347 0.640 1.000 0.606 8.404 0.650 1.012 0.733 2.120 0.397 2.615 2.692
EBR 0.015 8.559 0.234 5.321 0.097 6.290 0.697 1.912 0.363 3.157 0.720 2.231 0.079 8.029 5.071
ECC 0.013 9.667 0.221 6.509 0.089 7.188 0.685 2.902 0.347 4.732 0.707 3.835 0.018 9.765 6.371
EPS 0.134 5.050 0.275 5.242 0.157 5.431 0.646 6.045 0.223 5.859 0.630 6.925 0.261 5.361 5.702
ERT 0.000 10.828 0.050 10.461 0.000 10.813 0.000 12.000 0.082 10.120 0.004 12.000 0.000 11.600 11.117
EaBR 0.006 9.832 0.178 7.743 0.046 9.116 0.697 2.374 0.332 5.075 0.717 2.516 0.030 9.233 6.556
EaCC 0.012 9.942 0.005 11.629 0.004 10.170 0.684 2.922 0.152 8.182 0.700 4.559 0.001 11.372 8.396
EaPS 0.101 5.969 0.230 6.953 0.205 3.448 0.652 5.169 0.138 8.760 0.619 6.495 0.262 5.707 6.071
GOBR 0.436 1.923 0.381 3.084 0.216 4.729 0.517 8.830 0.224 6.285 0.436 8.910 0.451 2.235 5.142
GOCC 0.031 7.336 0.087 9.177 0.015 9.557 0.517 9.658 0.057 10.887 0.405 10.416 0.208 6.020 9.007
GOPS 0.156 4.565 0.223 6.750 0.112 6.738 0.514 10.046 0.126 8.367 0.392 10.549 0.284 4.740 7.393
GORT 0.426 1.984 0.321 3.785 0.206 3.521 0.594 7.739 0.267 5.565 0.570 7.445 0.515 1.322 4.480

tional cost from modelling pairwise dependencies, BRPW-
MARLENE is only evaluated on the Yeast dataset (|L| = 14).
As BRPW-MARLENE is an extension of BR-MARLENE and
only tested on Yeast, we first compare BR-MARLENE with
other benchmarks, and then compare BRPW-MARLENE with
BR-MARLENE.

BR-MARLENE achieves the best average Friedman rank
and significantly higher Macro-G-Mean values than all other
approaches across datasets. Since Macro-G-Mean is partic-
ularly sensitive to minority class results of each label (as
discussed in Section VI-C) and all datasets have very low
LIR (see Table I), this demonstrates that BR-MARLENE is
especially effective at handling class imbalance for each label.

BR-MARLENE achieves the best average Friedman ranking
in Micro-G-Mean across all datasets, reflecting strong global
performance over all classes and labels. While it does not have
the top Micro-G-Mean on three datasets (Slashdot, Yeast, and
IMDB) because it assigns less weight to the majority class,
it still delivers competitive results (e.g., BR-MARLENE’s
Micro-G-Mean on Slashdot is 0.572, compared to 0.598 for
the best method GOBR). Results for LS-G-Mean are similar:
BR-MARLENE has the best average Friedman ranking and

the highest ranking position on most datasets.
The average runtime for each approach is shown in Table III.

BR-MARLENE has the shortest execution time on all datasets
except Reuters, TMC2007, and IMDB, as these datasets have
more labels and may contain more concept drift, increasing
the number of sub-classifiers. Nevertheless, BR-MARLENE
remains the second fastest on TMC2007 and third fastest on
Reuters and IMDB.

Comparing BR-MARLENE and BRPW-MARLENE on
Yeast, BRPW-MARLENE achieves higher performance across
all three evaluation metrics, demonstrating that modelling
label dependencies can indeed improve performance. However,
BRPW-MARLENE is nearly 53 times slower (see Table III)
than BR-MARLENE due to the large number of pairwise mod-
els. More comparisons between BR-MARLENE and BRPW-
MARLENE on synthetic datasets are discussed in the next
section.

B. Results on Synthetic Datasets

To further investigate the impact of multiple sources and
different concept drift types, we run BR/BRPW-MARLENE
on several synthetic datasets. The Friedman ranks for each

TABLE III: Tabulations of execution time. All values are in
milliseconds. The best values of each column are in red.

Dataset Slashdot Ohsumed Reuters Yeast 20NG TMC2007 IMDB
BRPW-M - - - 82604 - - -
BR-M 24111 110207 88068 1562 134837 105846 5754256
EBR 400567 1932007 1958737 20823 2284106 2000631 31679670
ECC 400471 1804186 1947755 20072 2269085 1994518 31296078
EPS 64995 185806 34768 3961 273480 78551 296169
ERT 53813 238408 186590 8090 259720 225389 1895433
EaBR 394570 2049120 2100270 32151 2560537 2427817 22042432
EaCC 391400 1757911 2011307 32178 2214708 2337822 18848438
EaPS 169128 424801 112571 8383 765386 243306 639729
GOBR 559366 2001526 2024646 22191 2640190 2179204 26444018
GOCC 565521 2015383 2221846 25066 2643139 2281488 27882590
GOPS 113790 269166 76479 7536 432014 141485 546422
GORT 75365 294842 209673 7824 367842 334401 3200813

evaluation metric are reported in IV. BRPW-MARLENE with
similar sources, non-similar sources, and no source achieve
the first, second, and third best average ranks across all
metrics, respectively. This shows that modelling label de-
pendencies with BRPW-MARLENE consistently outperforms
all BR-MARLENE with/without sources. Moreover, BRPW-
MARLENE benefits most from similar sources, but non-
similar sources can also be helpful.

Among BR-MARLENE methods using different source set-
tings, incorporating similar sources gives the best average per-
formance across all metrics, with no-source BR-MARLENE
second best on Macro-G-Mean and Micro-G-Mean, and non-
similar sources second on LS-G-Mean. This shows that similar
sources offer greater improvement to BR-MARLENE, as
also observed for BRPW-MARLENE. It is worth noting that
BR/BRPW-MARLENE with similar sources do not always
achieve the best ranks (e.g., Macro AA 5000); as the number of
target examples increases, both methods can perform well even
without source help. Thus, similar sources are most beneficial
when the target size is small, which is further investigated in
the next section.

To further analyse the performance on each label under
different types of concept drift, we plot G-Mean curves
against different labels. G-Mean on each label is calculated
prequentially over 30 runs and reset at each drift. This isolates
performance on each concept. Representative results are shown
in Figure 1.

If the concept is stable, similar sources offer the greatest
benefit at the beginning of learning (e.g., 1a, 1b, 1d, 1h, 1l)
when target examples are limited, but as more target data
becomes available, the performance of methods with similar,
non-similar, or no source becomes similar. When concept
drifts occur frequently, similar sources continue to provide an
advantage throughout (e.g., 1c, 1e, 1f, 1h), with greater benefit
as drift frequency increases. This is reasonable, as transfer
from similar sources is less useful once a large number of
target examples is available for training.

C. Effect Analysis of the Transfer Learning

The strong results of BR/BRPW-MARLENE compared to
existing methods (Sections VII-A and VII-B) demonstrate
the effectiveness of our approach. However, it remains to be
verified whether this improvement is truly due to our designed

TABLE IV: Friedman’s ranks on synthetic datasets: Macro,
Micro, and LS refer to Macro-G-Mean, Micro-G-Mean, and
Label-set-based-G-Mean, respectively. Best ranks are in red,
bold indicates no significant difference by Nemenyi test, and
all Friedman’s p-values are always < 2.2× 10−16

Dataset BR w/o S BRPW w/o S BR w/ NS BRPW w/ NS BR w/ SS BRPW w/ SS
Drift Type Size Macro

SS
50 4.392 2.768 4.292 2.926 4.152 2.470
500 5.315 2.501 5.114 2.981 3.308 1.781
5000 5.038 1.858 5.752 2.692 4.092 1.568

IS
50 4.522 2.966 4.853 2.748 3.796 2.115
500 5.155 2.345 5.616 2.716 3.664 1.503
5000 4.714 1.765 5.444 2.581 4.470 2.025

II
50 5.212 2.808 5.171 2.245 3.986 1.578
500 5.081 3.094 5.323 2.189 3.802 1.512
5000 4.853 2.847 5.214 1.893 4.579 1.614

IA
50 5.038 2.965 5.133 2.884 3.682 1.298
500 4.877 2.619 5.216 2.461 4.235 1.591
5000 4.641 2.501 5.248 1.975 4.852 1.783

AA
50 4.712 2.977 4.539 2.456 3.779 2.537
500 5.104 2.889 4.817 1.613 4.514 2.064
5000 4.996 1.793 5.291 2.233 4.525 2.162

AS
50 4.228 3.255 4.374 3.200 3.507 2.436
500 5.084 2.380 4.994 3.070 3.172 2.300
5000 4.955 1.957 5.860 1.691 4.038 2.499

Avg. Rank 4.884 2.571 5.125 2.475 4.008 1.935
Drift Type Size Micro

SS
50 4.380 2.804 4.280 2.910 4.094 2.532
500 5.363 2.846 5.091 2.579 3.193 1.928
5000 4.891 2.376 5.698 1.724 4.298 2.013

IS
50 4.226 3.244 4.538 3.032 3.704 2.256
500 5.065 2.648 5.533 2.757 3.521 1.477
5000 4.767 1.986 5.469 2.353 4.447 1.978

II
50 4.996 2.979 4.986 2.407 3.964 1.668
500 4.706 3.239 5.087 2.270 4.252 1.445
5000 4.802 2.953 5.090 1.810 4.766 1.578

IA
50 4.943 3.002 5.189 2.988 3.591 1.288
500 4.651 2.806 5.058 2.807 4.149 1.529
5000 4.561 2.640 5.222 1.896 4.955 1.726

AA
50 4.689 3.015 4.510 2.348 3.692 2.746
500 5.005 3.326 4.678 1.499 4.250 2.241
5000 4.907 2.410 5.045 1.404 4.867 2.367

AS
50 4.078 3.533 4.290 3.251 3.242 2.606
500 5.051 2.535 4.880 2.664 3.304 2.566
5000 4.947 2.296 5.867 1.355 3.996 2.538

Avg. Rank 4.779 2.813 5.028 2.336 4.016 2.027
Drift Type Size LS

SS
50 4.528 2.890 4.428 2.856 3.864 2.434
500 5.406 3.276 4.924 2.090 3.308 1.995
5000 5.344 2.767 5.140 1.164 4.353 2.233

IS
50 4.154 3.509 4.333 3.033 3.330 2.642
500 5.416 2.965 5.180 2.761 3.451 1.227
5000 5.097 2.234 5.297 1.920 4.461 1.990

II
50 4.538 3.654 4.581 2.964 3.136 2.128
500 4.912 3.078 5.184 2.259 4.320 1.247
5000 5.360 3.031 4.539 1.692 4.955 1.424

IA
50 4.757 3.360 4.927 3.207 3.262 1.486
500 5.118 2.850 4.793 3.142 3.724 1.372
5000 5.280 2.378 4.760 2.179 4.795 1.608

AA
50 4.436 3.288 4.190 2.386 3.663 3.037
500 5.376 3.632 5.051 1.628 3.201 2.113
5000 5.151 2.476 4.364 1.035 5.301 2.673

AS
50 4.143 3.809 4.195 3.134 2.917 2.802
500 5.172 3.088 4.867 2.098 3.487 2.288
5000 5.646 2.736 5.008 1.139 4.037 2.433

Avg. Rank 4.991 3.057 4.764 2.260 3.865 2.063

transfer mechanisms. This section provides an analysis of
whether this is the case.

To assess the role of transfer learning in our methods, we
select two datasets (AA with similar sources, 5000 samples;
and Yeast) and plot the average weight ratios of all source sub-
classifiers (i.e., all sub-classifiers trained on source streams
or on other labels in the target stream, excluding the given
target label) over 30 runs. For BR-MARLENE, the source
sub-classifier weight ratio (SWRq) is the percentage of total
weights assigned to source sub-classifiers in the ensemble for
label lT,q . The average source weight ratio (ASWR) is then
calculated as:

SWRq =

∑
h∈HBR

src
αq
h∑

h∈HBR αq
h

, ASWR =

∑|LT |
q=1 SWRq

|LT |
(22)

where Hsrc is the set of all source sub-classifiers. For BRPW-
MARLENE, the average weight ratio of source PW-classifiers

(a) SS; lT,1; size of 50 (b) SS; lT,2; size of 50 (c) IS; lT,1; size of 5000 (d) IS; lT,2; size of 5000

(e) II; lT,1; size of 500 (f) II; lT,2; size of 500 (g) IA; lT,1; size of 500 (h) IA; lT,2; size of 500

(i) AA; lT,1; size of 5000 (j) AA; lT,2; size of 5000 (k) AS; lT,1; size of 5000 (l) AS; lT,2; size of 5000

Fig. 1: Average G-Mean of label lT,1 and lT,2 on Synthetic Datasets.

is calculated as:

SWRq,q′ =

∑
h∈HPW

src
αq,q′

h∑
h∈HPW αq,q′

h

(23)

ASWR =

∑|LT |
q=1

∑|LT |
q′=1,q′ ̸=q SWRq,q′

|LT ||LT | − 1
(24)

Figure 2 shows that the ASWR of both BR- and BRPW-
MARLENE remains high, indicating a strong contribution
from source sub-classifiers over time. For the synthetic AA
dataset, this weight reflects 1) transfer from source data
streams to the target stream and 2) transfer between different
labels within the target stream. For Yeast, it reflects inter-label
transfer. The consistently high ASWR values confirm that both
source-to-target and inter-label transfer are beneficial.

The source PW-classifiers in BRPW-MARLENE have a
higher ASWR than source BR-classifiers in BR-MARLENE,
since BRPW-MARLENE’s ensemble contains many more sub-
classifiers; even with some low-weight source sub-classifiers,
the total source weight remains high. Spikes and drops in
ASWR for both methods on the real-world dataset (Figures
2b, 2d) suggest that the weighting mechanism may be affected
by noise.

(a) BR-MARLENE (b) BR-MARLENE

(c) BRPW-MARLENE (d) BRPW-MARLENE

Fig. 2: Average Source sub-classifiers’ Weight Ratio. (a) and
(c) show results on AA (size 5000, Similar Source); (b) and
(d) show results on Yeast.

VIII. CONCLUSION

In this paper, we introduced BR-MARLENE, the first ap-
proach to transfer knowledge across different labels to boost
multi-label classification performance in non-stationary envi-
ronments. Building on this, we proposed BRPW-MARLENE,
a novel extension that further improves classification perfor-
mance by modelling pairwise label dependencies and transfer-
ring knowledge between these dependencies. We conduct com-
prehensive experiments on real-world and synthetic datasets.
The results demonstrate both the effectiveness and clear ad-
vantage of these transfer mechanisms.

Although BRPW-MARLENE delivers higher predictive per-
formance, its pairwise dependency modelling is not scal-
able for problems with a large number of labels. Making
BRPW-MARLENE more efficient for large-scale data is a
key challenge. Other future directions include experimenting
with alternative base classifiers, drift detectors and additional
datasets.

REFERENCES

[1] J. Read and I. Žliobaitė, “Learning from data streams: An overview and
update,” arXiv preprint arXiv:2212.14720, 2022.

[2] E. Spyromitros-Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vla-
havas, “Dealing with concept drift and class imbalance in multi-label
stream classification,” Department of Computer Science, Aristotle Uni-
versity of Thessaloniki, 2011.

[3] A. Büyükçakir, H. Bonab, and F. Can, “A novel online stacked ensemble
for multi-label stream classification,” in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
2018, pp. 1063–1072.

[4] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[5] M. Kubat, S. Matwin et al., “Addressing the curse of imbalanced training
sets: one-sided selection,” in 14th International Conference on Machine
Learning, vol. 97. Citeseer, 1997, pp. 79–86.

[6] L. L. Minku and X. Yao, “Ddd: A new ensemble approach for dealing
with concept drift,” IEEE transactions on knowledge and data engineer-
ing, vol. 24, no. 4, pp. 619–633, 2011.

[7] P. Zhao, S. C. Hoi, J. Wang, and B. Li, “Online transfer learning,”
Artificial Intelligence, vol. 216, pp. 76–102, 2014.

[8] H. Du, L. L. Minku, and H. Zhou, “Multi-source transfer learning for
non-stationary environments,” in 2019 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[9] E. Yu, J. Lu, B. Zhang, and G. Zhang, “Online boosting adaptive learning
under concept drift for multistream classification,” in AAAI Conference
on Artificial Intelligence, vol. 38, no. 15, 2024, pp. 16 522–16 530.

[10] H. Du, L. L. Minku, and H. Zhou, “Marline: Multi-source mapping
transfer learning for non-stationary environments,” in IEEE International
Conference on Data Mining. IEEE, 2020, pp. 122–131.

[11] Y. Sun, K. Tang, Z. Zhu, and X. Yao, “Concept drift adaptation by ex-
ploiting historical knowledge,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 10, pp. 4822–4832, 2018.

[12] C. Yang, Y.-m. Cheung, J. Ding, and K. C. Tan, “Concept drift-
tolerant transfer learning in dynamic environments,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 33, no. 8, pp. 3857–
3871, 2021.

[13] B. Jiao and S. Liu, “Otl-ce: Online transfer learning for data streams
with class evolution,” Neurocomputing, p. 129470, 2025.

[14] X. Renchunzi and M. Pratama, “Automatic online multi-source domain
adaptation,” Information Sciences, vol. 582, pp. 480–494, 2022.

[15] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled
classification,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, 2004, pp. 22–30.

[16] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2009, pp.
254–269.

[17] J. Fürnkranz, E. Hüllermeier, E. L. Mencı́a, and K. Brinker, “Multilabel
classification via calibrated label ranking,” Machine Learning, vol. 73,
no. 2, pp. 133–153, 2008.

[18] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification
using ensembles of pruned sets,” in 2008 eighth IEEE International
Conference on Data Mining. IEEE, 2008, pp. 995–1000.

[19] A. Osojnik, P. Panov, and S. Džeroski, “Multi-label classification via
multi-target regression on data streams,” Machine Learning, vol. 106,
no. 6, pp. 745–770, 2017.

[20] H. Wu, M. Han, Z. Chen, M. Li, and X. Zhang, “A weighted ensemble
classification algorithm based on nearest neighbors for multi-label data
stream,” ACM Transactions on Knowledge Discovery from Data, vol. 17,
no. 5, pp. 1–21, 2023.

[21] Y. Zou, X. Hu, P. Li, and J. Hu, “Weak multi-label data stream
classification under distribution changes in labels,” IEEE Transactions
on Big Data, 2024.

[22] P. Li, H. Zhang, X. Hu, and X. Wu, “High-dimensional multi-label data
stream classification with concept drifting detection,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 8, pp. 8085–8099,
2022.

[23] A. Esteban, A. Cano, A. Zafra, and S. Ventura, “Hoeffding adaptive
trees for multi-label classification on data streams,” Knowledge-Based
Systems, vol. 304, p. 112561, 2024.

[24] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2010, pp. 135–150.

[25] J. Read, A. Bifet, G. Holmes, and B. Pfahringer, “Scalable and efficient
multi-label classification for evolving data streams,” Machine Learning,
vol. 88, no. 1-2, pp. 243–272, 2012.

[26] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2000, pp. 71–80.

[27] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao,
“Concept drift detection for online class imbalance learning,” in The
2013 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2013, pp. 1–10.

[28] D. You, Y. Wang, J. Xiao, Y. Lin, M. Pan, Z. Chen, L. Shen, and X. Wu,
“Online multi-label streaming feature selection with label correlation,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[29] R. Sousa and J. Gama, “Multi-label classification from high-speed data
streams with adaptive model rules and random rules,” Progress in
Artificial Intelligence, vol. 7, no. 3, pp. 177–187, 2018.

[30] M. Vergara, B. Bustos, I. Sipiran, T. Schreck, and S. Lengauer, “Multi-
label learning on low label density sets with few examples,” Expert
Systems with Applications, vol. 265, p. 125942, 2025.

[31] X. Zheng, P. Li, Z. Chu, and X. Hu, “A survey on multi-label data
stream classification,” IEEE Access, vol. 8, pp. 1249–1275, 2019.

[32] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” The Journal of Machine Learning Research, vol. 11, no. May,
pp. 1601–1604, 2010.

[33] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “Meka: a
multi-label/multi-target extension to weka,” in The Journal of Machine
Learning Research, 2016.

[34] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavalda, “New
ensemble methods for evolving data streams,” in Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and
Data mining, 2009, pp. 139–148.

[35] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[36] G. Wu and J. Zhu, “Multi-label classification: do hamming loss and
subset accuracy really conflict with each other?” Advances in Neural
Information Processing Systems, vol. 33, pp. 3130–3140, 2020.

[37] M. Heydarian, T. E. Doyle, and R. Samavi, “Mlcm: Multi-label confu-
sion matrix,” Ieee Access, vol. 10, pp. 19 083–19 095, 2022.

[38] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Addressing
imbalance in multilabel classification: Measures and random resampling
algorithms,” Neurocomputing, vol. 163, pp. 3–16, 2015.

[39] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 5, pp. 1356–1368, 2014.

