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Abstract— Architecture-based software performance 

optimization can not only significantly save time but also 

reduce cost. A few rule-based performance optimization 

approaches at software architecture (SA) level have been 

proposed in recent years. However, in these approaches, the 

number of rules being used and the order of application of 

each rule are uncertain in the optimization process and these 

uncertainties have not been fully considered so far. As a result, 

the search space for performance improvement is limited, 

possibly excluding optimal solutions. Aiming to solve this 

problem, we propose an evolutionary algorithm for rule-based 

performance optimization at SA level named EA4PO. First, the 

rule-based software performance optimization at SA level is 

abstracted into a mathematical model called RPOM. RPOM 

can precisely characterize the mathematical relation between 

the usage of rules and the optimal solution in the performance 

improvement space. Then, a framework named RSEF is 

designed to support the execution of rule sequences. Based on 

RPOM and RSEF, EA4PO is proposed to find the optimal 

performance improvement solution. In EA4PO, an adaptive 

mutation operator is designed to guide the search direction by 

fully considering heuristic information of rule usage during the 

evolution. Finally, the effectiveness of EA4PO is validated by 

comparing EA4PO with a typical rule-based approach. The 

results show that EA4PO can explore a relatively larger space 

and get better solutions. 

Keywords—performance analysis; performance optimization 

algorithm; evolutionary algorithm; software architecture; 

search-based software engineering; rule 

I.  INTRODUCTION 

Performance is an important quality attribute of software 
systems and is a vital factor to determine success or failure 
of a system. Architecture-based software performance 
diagnosis and improvement can find the problems (e.g. high 
resource utilization, long response time and low throughput) 
and provide the solutions to mitigate the negative effects of 

them at the early stage of the software life cycle. 
Architecture-based software performance optimization can 
not only significantly save time but also reduce cost. 

Architecture-based software performance optimization 
has been a highlight topic among academia and industry in 
the field of software engineering. There have been a few 
models and tools [1, 2] for architecture-based software 
performance evaluation, such as Queuing Network (QN) [3], 
Layered QN (LQN) [4, 5], Stochastic Petri Nets (SPN) [6], 
Stochastic Process Algebras (SPA) [7] and Markov process 
[8]. They can strongly support architecture-based software 
performance diagnosis and improvement. However, along 
with the increasing size and complexity of software systems, 
the factors impacting system performance grow and the 
space of architecture-based software performance 
improvement also enlarges. More importantly, this space is 
intrinsically discontinuous because various constraints and 
limitations need to be satisfied in the process of performance 
optimization. It is still a difficult problem for software 
performance optimization to find the optimal or near-optimal 
performance improvement solution in a huge and discrete 
performance improvement space. To solve this problem, 
some researchers have presented metaheuristic-based 
approaches [9, 10] and rule-based approaches [11-14] in 
recent years. At present, metaheuristic-based approaches can 
only explore a few of architectural parameters, such as 
component allocation, hardware configuration, and 
component selection. Moreover, the majorities of 
metaheuristic-based approaches do not consider how to 
apply architecture-based software performance improvement 
knowledge in the evolutionary optimization process. The 
disadvantages of metaheuristic-based approaches can be 
partly avoided in rule-based approaches. 

In the typical rule-based approaches including Xu’s [11], 
McGregor’s [12] and Cortellessa’s [13, 15, 16], the 
architecture-based software performance improvement 
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knowledge from anti-patterns [17, 18] or the specified 
application domains [19] can be formally described in the 
form of rules. These rules usually cover many parameters 
from various viewpoint of SA, such as structure, behavior 
and deployment. Each rule contains two parts of the 
condition and action. The condition of rule is responsible for 
diagnosing the performance problem. Meanwhile the actions 
of rules describe potential improvements for the discovered 
performance problems. In addition, engines or frameworks 
have been developed to automatically [11, 12] or semi-
automatically [15] apply these rules to find the performance 
problems and eliminate them by predefined improvement 
solutions. 

In rule-based approaches, the number and order of each 
rule usage are two key factors that affect the results of 
performance optimization. For example, consider that there 
are two performance improvement rules r1 and r2. Rule r1 
can be used to solve the bottleneck problem of processor P 
by increasing P’s multiplicity, while rule r2 can diagnose 
bottleneck problem of component C and alleviate it by 
raising C’s multiplicity. Suppose that component C1 is 
deployed on processor P1, and that there are bottleneck 
problems in both C1 and P1. It is clear that these problems 
can be found in the initial SA by the rules r1 and r2, 
respectively. However, the optimization results depend on 
the count and order of the rules r1 and r2 usage during 
performance optimization. 

If the bottleneck of processor P1 can not be eliminated 
after rule r1 is applied once and the P1’s multiplicity is 
increased with a specified increment, rule r1 can also be 
applied several times provided that P1’s multiplicity is less 
than its pre-defined maximum multiplicity. After rule r1 is 
repeatedly applied several times, the bottleneck problem of 
C1 is likely to disappear because the bottleneck of P1 on 
which C1 is deployed has been solved. Then, there is no 
further improvement when rule r2 is applied. 

In another instance where rule r2 is applied before rule r1, 
the bottleneck problem of processor P1 will become more 
serious and rule r1 may need to be applied more times than 
expected. Thus, the optimization results will vary according 
to the count and order of each rule usage. Unfortunately, how 
to use these  rules is uncertain  

Due to the existence of these uncertainties, in practice, 
the improvement space is enormous. For example, 
Cortellessa and Trubiani et al presented 12 performance 
improvement rules [15] for 12 architecture-based 
performance anti-patterns [17]. So, the size of the 
performance improvement space is determined by 
permutation and combination of 12 different performance 
improvement rules. This space contains 12

12 
(nearly 9,000 

trillion) possible solutions even if the repetitive usage of 
each rule in a solution is not considered. To find optimal 
performance improvement solution, the existing rule-based 
approaches may only explore a limited region of the 
improvement space because they do not fully take the 
uncertainty of the number and order of each rule usage into 
account. Obviously, the limitation of the search space easily 
leads to the fact that the optimal performance improvement 

solution is hard to find, possibly even unreachable by the 
algorithm. Consequently, the quality of performance 
optimization is likely to be suboptimal. 

Aiming at solving the problems above, first, a rule-based 
performance optimization model named RPOM is presented 
to depict precisely the mathematical relation between the 
rules usage and the optimal solution in the performance 
improvement space. Then, a framework called RSEF is 
designed to support the rule sequence execution. Based on 
RPOM and RSEF, EA4PO is proposed to find the optimal 
solution. In EA4PO, an adaptive mutation operator with 
learning tactics is introduced to improve convergence rate. 
Finally, experiments are done to validate the effectiveness of 
EA4PO by comparing our work with Xu’s. The results 
indicate that EA4PO can explore a relatively larger space 
and get better solutions than Xu’s algorithm. 

The rest of this paper is organized as follows. Section II 
introduces the RPOM model. The RSEF framework and 
EA4PO are proposed in Sections III and IV. Section V 
presents a case study. Finally, Section VI concludes this 
paper. 

II. THE RPOM MODEL 

Rule-based performance optimization model (RPOM) is 
defined as follows: 

The performance improvement rules are sequentially 
numbered from 1 to n. Let a sequence of rule numbers 
𝑋 =< 𝑥1, ⋯ , 𝑥𝑘 , ⋯ , 𝑥𝑙  > be a solution for the problem of 
rule-based performance optimization at SA level, where l is 

the length of X.  Let ui and ( )ih X represent the maximal 

possible occurrence times and actual occurrence times of rule 
i in X respectively.  

The constraints for l, the value range of each element in 

X and ( )ih X  are defined as formulas (1), (2) and (3), 

respectively, where i, kx , k, l and n represent natural 

numbers. 

1

n

i
i

l u


                                             (1) 

1 1kx n k l                                  (2) 

( )i ih X u , where 1 i n                       (3) 

In the following definition of functions, let SA and SA0 be 
the software architecture and the initial software architecture, 
respectively. 

The function ( , )imp q SA  can determine whether the 

performance has been improved by applying rule q to SA.  

The function imp  is defined as formula (4).  

0, the performance has not 

    been improved by applying 
( , )

    the rule numbered  to , 1

1, otherwise

if

imp q SA
q SA q N q n


   







(4) 



 

The function ( , )t X SA  can acquire the improved software 

architecture by applying sequentially the rules indicated by X 
to SA. The function t is defined as formulas (5) and (6), 
where ISA is the improved software architecture after 
applying xk  to SA. 

, ( , ) 0
( , , 1

, ( , ) 1

k
k

k

SA imp SA
t x SA k n

ISA imp SA

x

x


    







）         (5)  

𝑡(𝑋, 𝑆𝐴) = 𝑡(< 𝑥2, ⋯ , 𝑥𝑙 >, 𝑡(< 𝑥1 >, 𝑆𝐴))          (6) 

The function impRulCount(X, SA0) is used to compute the 
count of rules usage with improvement effect in the process 
of applying sequentially the rules indicated by X to SA0. The 
definition of impRulCount(X, SA0) is as formula (7). In 

formula (7), 1 1, ,k kV x x   . 

0 1 0 0
2

( , ) ( , ) ( , ( , ))
l

k k
k

impRuleCount X SA imp x SA imp x t V SA


    

(7) 

The function r (SA) returns the response time of the 
system specified by SA. 

Function g(X) is defined as objective function of 
performance optimization. The definition of the g(X) is 
shown as formula (8). 

0 0 0 ) , 0 1( ) ( ( ) ( ( , ))) * ( , kg X r SA r t X SA k impRuleCount X SA      

(8) 

Overall, g(X) is the difference between two terms. The 
first term represents the extent of performance improvement, 
while the second term is product of a weight factor and the 
count of rules usage with improvement effect. The larger the 
return value of g(X), the better the corresponding solution X.  
Here, a smaller number of rules may be better because it 
would lead to less modifications in the architecture. 

The rule-based software performance optimization at SA 
level can be formally described as: to find solution X* which 
satisfies formula (9). 

{ ( )} ( )
X

Max g X g X 


                               (9) 

In formula (9), X satisfies the constraints defined by 
formulas (1), (2) and (3).   represents the solution space. 

III. RSEF FRAMEWORK 

The rule sequence execution framework (RSEF) is 
proposed to realize the functions imp, t and r and support the 
computation of the objective function g in RPOM based on 
existing rule engine. Its structure is shown in Fig. 1. 

RSEF encompasses the control engine and the rule 
execution engine. Based on the two engines and the related 
data structure, the RSEF framework can support execution of 
the rule sequence during the performance optimization. The 
data structure and the execution process with respect to 
RSEF are defined as follows. 

A. The definition of data structure 

(1) The performance improvement rule 

A performance improvement rule is stored as a file in the 
specific internal format. Each performance improvement rule 
is numbered by a unique integer and can be executed by the 
specified rule execution engine. 

Rule execution engine

The rule 

library

The Initial SA

(SA0)

The information 

table of rule usage 

in  sequence

(T_RuleUseInSeq)

The Improved SA 

(ISA)

The response time of 

system before and 

after rule execution

The Current SA 

(CSA)

The performance 

improvement 

rule

Control Engine

The sequence of 

rule number(X)

The response time 

of system before 

and after the 

execution of rule 

sequence

(BRT and ART)

 

Fig. 1. The structure of RSEF framework 

 (2) The sequence of rule number X 

A sequence of rule number X is defined as an integer 
array in which each element represents the rule number. It is 
a solution defined in RPOM. 

(3) The rule library 

A library stores all numbered performance improvement 
rules and each rule can be obtained from this library 
according to its number. 

(4) The initial SA 

The initial SA is developed by the architects and stored as 
a file in particular form. It is denoted as SA0 in RPOM. 

(5) The current SA and the improved SA 

The current SA (CSA) is a file which is used as input of 
the rule execution engine, and the improved SA (ISA) is the 
output file which can be generated after the rule execution 
engine applies a performance improvement rule to the 
current SA. The CSA and ISA is input and output of a 
calculation step of the function t defined in RPOM. 

(6)The response time of system before and after rule 
execution 

They are two response times computed by rule execution 
engine based on the CSA and ISA, respectively. They are 
output of the function r defined in RPOM. 

(7)The response time of system before and after the 
execution of rule sequence (BRT and ART) 

They are two response times, and can be acquired based 
on SA0 and the SA which can be obtained after the rule 
sequence is executed on SA0. They are defined as r(SA0) and 
r(t(X, SA0)) in RPOM, respectively. 



 

(8)The information table of rules usages in the sequence 

This table is called T_RuleUseInSeq whose fields are 
shown in Table I. The primary key of the T_RuleUseInSeq is 
composed of two fields of loc and rulNum. T_RuleUseInSeq 
can be used to compute values of the two functions imp and 
impRuleCount defined in RPOM. 

TABLE I.  THE FIELDS OF TABLE T_RULEUSEINSEQ 

No. Field  Description 

1 loc The index position of an element in a rule sequence X 

2 rulNum The rule number at the loc position in a rule sequence X 

3 isImp When the rule numbered rulNum in the loc position is 
applied to the current SA, if response time gets shorter, 

isImp is assigned 1. Otherwise it is 0. 

B. The definition of execution process of rule sequence 

The execution process of rule sequence is described by 
Algorithm 1 named ARE. 

ALGORITHM 1 THE ARE ALGORITHM 

 Input：X, SA0 

Output： BRT, ART, T_RuleUseInSeq 

1: CSA←SA0, i←1, BRT← -1, ART← -1 and let T_RuleUseInSeq be 
empty; 

2: while i <=|X| do 
3:      The rule execution engine runs after receiving CSA and the 

performance improvement rule numbered xi ; 
4:      ΔRT ←BRTi - ARTi ; 
5: if  BRT= -1 then 

6: BRT=BRTi； 

7: end if  

8: ART←ARTi 
9: if ΔRT>0 then 
10:           insert the record (i, xi, 1) into the T_RuleUseInSeq; 
11: else 
12:      insert the record (i, xi, 0) into the T_RuleUseInSeq; 
13: end if 
14: if ΔRT>0 then  
15:   Let CSA be the SA which returned by rule execution engine;  
16: end if 
17: i←i+1; 
18: end while 
19: Output BRT, ART and T_RuleUseInSeq. 

IV. EA4PO ALGORITHM 

Based on RPOM model and RSEF framework, EA4PO 
algorithm is proposed to find the optimal improvement 
solution. EA4PO algorithm is elaborated as following. 

A.  Individual encoding  

An individual 1 2, , , , ,k lX x x x x 
       is encoded as 

a sequence of rule number with fixed-length integer. The 
length l′ of X′ is defined as formula (10). 

1

n

i

i

l u


                                  (10) 

In formula (10), ui represents maximal possible 
occurrence times of rule number i in X’. In order to ensure 
that each rule number in a sequence can comply with 
formulas (1)-(3) defined by RPOM and get the shorter 
optimal sequence of rule numbers, rule number 0, which 

indicates the do-nothing rule, is introduced into individual 
encoding. If the do-nothing rule is applied to any SA, the 
performance of system cannot be improved. Let u0 represent 
the maximal possible occurrence times of the rule number 0 

in X’ and 
0u l . 

Any rule number kx  in X′ satisfies formula (11). 

0k kx N x n     （1 k l  ）                (11) 

The actual occurrence times of rule number i in X’ is 
denoted by hi(X’) which satisfies formula (12).  

( ') , 0i ih X u i n                          (12) 

B. Fitness function 

The fitness function of individual 'X  is defined as 
formula (13). The larger the value of ( )fitness X  , the better 

the corresponding solution X′. 

0( ) ( , ), 0 1fitness X BRT ART k impRuleCount X SA k     ( )   (1

3) 

In formula (13), X is a sequence of rule number which is 
generated by deleting rule number 0 in X′. It is same as the 
formula (8) in RPOM. BRT and ART represent the response 
time of system before and after the execution of rule 
sequence X respectively.  

The algorithm solveFitness is designed to compute the 
fitness value of X′.  In solveFitness algorithm, there is a 
statistical table of rule usage called T_RuleUseInHis, which 
is designed to record the information of rules usage during 
the evolution. The fields of the T_RuleUseInHis are shown 
in Table II. Algorithm 2 depicts the solveFitness in detail. 

TABLE II.  THE FIELDS OF TABLE T_RULEUSEINHIS 

No. Field  Description 

1 loc The index position of an element in a rule 

sequence X 

2 rulNum The rule number at the loc position in a rule 
sequence X 

3 preRulNum The rule number at the loc-1 position in a rule 

sequence X. And if loc=1, then let preRulNum= -1. 
4 impNum The usage count of rule numbered by rulNum with 

improvement effect under the condition that the 

two rule numbers rulNum and preRulNum are in 
the loc and loc-1 positions respectively 

5 totNum The usage count of rule numbered by rulNum 

under the condition that the two rule numbers 
rulNum and preRulNum are in the loc and loc-1 

position respectively 

ALGORITHM 2 THE SOLVEFITNESS ALGORITHM 

 Input： individual X′, SA0, T_RuleUseInHis 

Output：the fitness value of X′, T_RuleUseInHis 

1: Get X by deleting all 0 in X′; 
2: Run the ARE algorithm in RSEF framework by inputting X and 

SA0, and get T_RuleUseInSeq, BRT and ART; 
3: Compute impRulCount(X,SA0) according to T_RuleUseInSeq ; 
4: Compute the fitness value of X′ based on formula (13); 
5: Run the Updating algorithm by inputting T_RuleUseInSeq and 

Update T_RuleUseInHis;  



 

6: Output the fitness value of X′ and update T_RuleUseInHis. 

ALGORITHM 3 UPDATING ALGORITHM 

 Input： T_RuleUseInSeq , T_RuleUseInHis 

Output：T_RuleUseInHis 

1: Let i←1, len← the number of records in Table T_RuleUseInSeq; 
2: While i ≤ len do 
3: Take the ith record (loci, rulNumi, isImpi ) from the Table 

T_RuleUseInSeq; 
4: Search the record and assign it to recordj according to the   

condition  
1( )

ii i locloc loc rulNum rulNum preRulNum x     （ ）（ ）  

in Table T_RuleUseInHis. If loci=1, then  preRulNum= -1;  

5: If 1i jisImp record null     then 

6: 
Add 1 to value of the field impNum and totNum in recordj , 
respectively and update the record corresponding to recordj in 
Table T_RuleUseInHis; 

7:   end if 
8: 

If 0i jisImp record null    then 

9: Add 1 to value of the field totNum in recordj and update the 
record corresponding to  recordj  in Table T_RuleUseInHis; 

10:   end if 
11: 

  If ( 1) ( 1)i j iisImp record null loc    （ ）   then 

12:           Insert the record
1( , , , 1, 1)

ii i locloc rulNum x 
 into the Table 

T_RuleUseInHis; 
13:       end if 
14:       If ( 1) 1i j iisImp record null loc    （ ）（ ） then 

15:              Insert the record ( , , 1,1,1)i iloc rulNum   into the Table 

T_RuleUseInHis; 
16:      end if 
17: 

      If  ( 0) ( 1)i j iisImp record null loc    （ ）  then 

18:            Insert the record
1( , , , 0,1)

ii i locloc rulNum x 
 into the Table  

T_RuleUseInHis; 
19:       end if 
20: 

      If ( 0) ( ) ( 1)i j iisImp record null loc       then 

21:             Insert the record ( , , 1, 0,1)i iloc rulNum   into the Table 

T_RuleUseInHis; 
22:       end if 
23:         i←i+1; 
24: end while   
25: Output T_RuleUseInHis 

C. Crossover operator 

One-point crossover with constraint checking and 
repairing is adopted. And it includes three computational 
steps: crossover, constraint checking and repairing. First, two 
intermediate individuals are generated by crossover operator. 
Then, the constraint checking is done on two intermediate 
individuals to verify whether each bit from the crossover 
position to the last position satisfies the constraint defined in 
formula (3). Last, repairing step will be done for those bits 
which disobey the constraint and assign 0 to them. 

For example, there are two parent individuals 

1 1,2,3,3,2,1,3,1X     and 
2 2,1,2,3,3,1,1,3X    . Each 

individual is composed of the rule numbers 1, 2, 3 and their 

maximal possible occurrence times are defined as 1 =3u ,

2 =2u , 3 =3u . So, the length of each individual is 8. Suppose 

that the crossover point is randomly chosen as 5, the process 

of one-point crossover in EA4PO algorithm can be described 
as follows. First, two intermediate individuals 

11 1, 2,3,3,3,1,1,3X     and 21 2,1,2,3,2,1,3,1X    are 

generated by exchanging their corresponding bits from 
crossover position to the last position. Second, constraint 

checking is done on 11X   and 21X  . The 8
th
 bit in 11X   and 

the 5
th
 bit in 21X   disobey the constraints which are 

3 11 3( ) 4h X u    and 2 21 2( ) 3h X u   . Third, the two bits 

should be assigned as 0. As a result, two offspring 

individuals 
3 1, 2,3,3,3,1,1, 0X     and

4 2,1,2,3,0,1,3,1X    are formed. 

D. Adaptive mutation operator 

The mutation operator has a great influence on the 
convergence rate of evolutionary algorithm [20]. Here, the 
adaptive mutation operator with learning tactics is introduced 
to guide the search direction of algorithm. Each bit mutates 
according to the conditional mutation probabilities that are 
drawn from the statistical table of rule usage 
T_RuleUseInHis during the evolution.  The mutation 
operator in EA4PO algorithm is composed of three 
computational steps: mutate, constraint checking and 
repairing. 

  The conditional mutation probabilities 

-1( | )j jp x k x q   are computed based on the statistical 

table of rules usage T_RuleUseInHis. And the statistical 

information can be acquired by the functions ( , , )f j k m  

and ( , )O j k  described in the following. 

The function ( , , )f j k m aims to obtain the average 

improvement rate of the k
th
 rule under the condition that the 

rule number k and m are at j and j-1 positions respectively. 

The function ( , )O j k  can be used to obtain all the rule 

numbers at j+1 position under the condition that rule number 
k is at j position.  

On the basis of the functions ( , , )f j k m  and ( , )O j k , 

the conditional mutation probability
1( | )j jp x k x q

    can 

be defined as formula (14). Especially, let j (j>=1) represent 

mutation position and 0 1x   .  

'

1
( ( 1, ) / ' )

1 '

(1, , 1) / (1, , 1) 1 '

( , , ) / ( , , ), 1 ' ( 1, ) / '( | )

/ , 1 ' ( 1, ) / '

j

j

j

j

i n i x

j j
j j

i O j q x

k i j j

i n i x

f k f i j k x

f j k q f j i q j k x O j q xp x k x q

u u j k x O j q x

  


 

   

     

           


      








, (14) 

In formula (14), the definition of 
1( | )j jp x k x q

    

includes three cases. The first is mutation position 1j  . The 

second is that the mutation position 1j   and the set of rule 

numbers returned by function ( 1, )O j q  after removing the 

rule number k is not empty set  . The third is that the 
mutation position 1j   and the set of rule numbers 



 

returned by function ( 1, )O j q  after removing the rule 

number k is empty set . 

E. The main steps of EA4PO algorithm 

Let X*’ represent the optimal individual in EA4PO, X* 
represent the optimal sequence by deleting all 0 in X*’.The 
main steps of EA4PO algorithm is given in Algorithm 4. 

ALGORITHM 4 THE PROPOSED EA4PO ALGORITHM 

 Input： popsize n, crossover rate pc, mutation rate pm 

Output：the optimal sequence X*  
1: Initialize evolutionary generation t←0; 
2: Create an initial population P(t) with n individuals; 
3: Create an empty Table T_RuleUseInHis; 
4: Compute the fitness value of each individual in P(t) by using the 

algorithm solveFitness; 
5: Select the optimal individual from population P(t) and assign it to 

X*’ 
6: While stop criteria is not satisfied do  
7: Generate a new (intermediate) population by defined one-

point crossover operator based on population P(t) with 
probability pc ( 0 < pc < 1 ) and denote it as PC(t);  

8: Generate a new (intermediate) population by adaptive 
mutation operator based on population PC(t) with probability 
pm (0 < pm< 1) and denote it as PM (t); 

9: Compute the fitness value of each individual in PM (t) by 
using the algorithm solveFitness; 

10: 

Select n individuals from population PM (t) and P(t) according 
to elitist-based roulette select, then generate the next 
population P(t+1). 

11: t:=t+1; 
12: Update the X*’; 

1
13: 

end while 
1

14: 
Delete all the rules number 0 in the optimal individual X*’ and get a 
sequence X*; 

15: Output the X*; 

 

The stop criterion is that the EA4PO will terminate after 
the response time cannot be improved any longer for given 
continuous generations or maximal generation has been 
achieved. 

V. CASE STUDY 

In this section, in order to validate the effectiveness of 
EA4PO, web application (WebApp) [11] is selected as the 
experimental case to compare our work with Xu’s. Firstly 
Xu’s work is briefly introduced. Then the WebApp case is 
illustrated concisely. Finally, the experimental process and 
result analysis are depicted in detail. 

A. Xu’s work 

Based on software architecture described in UML SPT 
[10] and LQN model, performance improvement rules and 
the performance optimization algorithms are proposed in 
Xu’s work. They are demonstrated in brief as follows. 

① The performance improvement rules  

The performance improvement rules based on LQN 
model proposed by Xu are divided into configuration 
improvement rules and design improvement rules. The 
configuration improvement rules are used to find the 
bottleneck problem caused by the unreasonable utilization or 
allocation of resources and eliminate this problem by means 
of resource reconfiguration. The configuration improvement 

rules contain three rules which are rules r1, r2, r3. In 
addition, design improvement rules are utilized to discover 
the long path problem caused by the inappropriate designs. 
The design improvement rules consist of rules r4, r5, r6, r7. 

② The optimization algorithm 

Xu designed the optimization algorithms to find the 
optimal solution in performance improvement space by use 
of the improvement rules. As shown in Fig. 2, the search 
process of the algorithms can be described as a search tree 
and divided into several rounds.  

In Fig. 2, a round search is marked in the dashed 
rectangle. Concretely, the search starts from the root node 
LQN0 extracted from the initial software architecture SA0. 
Firstly, in the configuration space, the rules sequence <r1, r2, 
r3> are repeatedly applied to LQN0 till the sequence <r1, r2, 
r3> has no improvement effect. Then, a candidate model can 
be got. Next, a round search for this candidate model will 
happen. In a round search, design improvement rules r4, r5, 
r6 and r7 are applied respectively to this model and a group 
of improved models can be obtained. Furthermore, each 
improved model is optimized by repeatedly applying the rule 
sequence < r1, r2, r3>. So, a group of candidate models can 
be obtained in the end of a round search. Finally, the 
response time of systems corresponding to these candidate 
models are evaluated. How to search in next round depends 
on the search strategy. 

Based on the depths first search (DFS) strategy, Xu 
proposed the DFS algorithm. In DFS, the candidate model 
with the best response time is selected as the sole initial 
model in next round.  

LQN0(SA0)

configuration 
improvement

design 
improvement

search in a round

configuration 
improvement

evaluation by system response time

...

(r1,r2,r3)*

r4 r5 r7

(r1,r2,r3)*

...

search in next round

(r1,r2,r3)*

...

 

Fig. 2. The search process of  Xu’s algorithm 

B.  Case:A web application  

In WebApp case, when user accesses the pages deployed 
on Web server (WS) by browser, WS loads these pages. 
Then WS will call business services deployed on application 
servers App1 and App2. Then, these business services will 
call data management services deployed on database servers 
DB1 and DB2.  The initial LQN model of this case can be 
found in [11] and the response time corresponding to this 
model is 179.71 milliseconds. 

The EA4PO and DFS algorithms are respectively applied 
to the WebApp case for obtain the shortest response time. 



 

The six rules from r1 to r6 defined by Xu are used during the 
execution of the two algorithms. 

C. Experiment  

① Parameter setting  

There are some parameters which are relevant to six 
improvement rules from r1 to r6 used in the WebApp case. 
To fairly compare EA4PO with DFS algorithm, the setting of 
these parameters in EA4PO and DFS is same. The values of 
these parameters shown in Table III come from Xu’s paper 
[11].  

For more convenient comparison, the optimal 
improvement solution can be represented as the sequence of 
rule numbers on the search path from root node to the node 
with the shortest response time of system, as far as DFS is 
concerned. 

TABLE III.  THE SETTING OF PARAMETERS RELEVANT TO SIX 

IMPROVEMENT RULES  

No. Name Description Value 

1 
eS ,,ct  limiting fraction for reduction in the 

CPU demand of entry e with the r4 
0.2 

2 
',,, eeYct  

limiting fraction for reduction in the 

calls from entry e to entry e’, under 
the r4 

0.2 

3 
eteS ,,,ma  

limiting fraction in which the CPU 

demand of first phase of et is moved to 
second phase when e calls et ,under 

the r5 

0.5 

4 
tY e,e,,ma  

limiting fraction in which the call 

number of first phase of et  moved to 

second phase when e calls et , under 

the rule r5 

0.5 

5 Mmax,WS The maximal multiplicity  of WS 10 

6 Mmax,App1 The maximal multiplicity of App1 5 

7 Mmax,App2 The maximal multiplicity of App2 3 

8 Mmax,DB1 The maximal multiplicity of DB1 10 

9 Mmax,DB2 The maximal multiplicity of DB2 10 

10 r,maxU  
The predefined maximal utilization of  

resource 
0.95 

11 u  
Limiting fraction for reducing 

resource utilization  
0.9 

For more strict comparison, two conditions are set. One 
is that each rule from r1 to r6 has the opportunity to be used. 
Another is that the maximal usage number of each rule for 
EA4PO algorithm is less than or equal to the maximal 
occurrence times in the improvement solution of DFS.  

In addition, in EA4PO algorithm, the parameters of the 
weight factor, the population size, run times, evolutionary 
generation, crossover probability and mutation probability 
are set as 0.142,30, 20, 30, 0.6 and 0.3, respectively. Here, 
we let k be 0.01, 0.1, 0.14, 0.142, 0.2, 0.35, 0.57 respectively. 
And the results are better when k is 0.142. 

② Results  

The results of the performance optimization for the 
WebApp case by use of DFS and EA4PO algorithms are 
shown in Table IV and Fig. 3.  

In Table IV, it is worth noting that the imprNum, totNum, 
imprNums and totNums rows respectively give the count of 
each rule usage with improvement effect, the total count of 
each rule usage, the count of all rules usage with 
improvement effect, and the total count of all rules usage. 
From Table IV, it can be seen that the total count of all rules 
usage in EA4PO (average results of 20 runs) is 15, which is 
less than 23 in DFS. And the count of each rule usage with 
improvement effect in EA4PO is equal to that of DFS except 
for the rule r2. From Fig. 3, the resulting response time 
obtained by EA4PO is 26.50 milliseconds which is better 
than 29.88 milliseconds obtained by DFS. In addition, the 
Wilcoxon rank-sum test is done to compare the resulting 
response time obtained by EA4PO and DFS algorithms at a 
0.05 significance level. The results show that EA4PO is 
significantly better than DFS. 

In WebApp case, it should be explained that the count of 
each rule usage with improvement effect in DFS is larger 
than that in EA4PO, and the resulting response time obtained 
by DFS is worse than EA4PO. It leads to such result that the 
order of rule usage in DFS and EA4PO algorithms is 
different. Our RSEF records two sequences of < r2, r2, r2, r2, 
r2, r3, r4, r5 > and < r2, r2, r2, r5, r2, r3, r4 >, which are 
obtained by deleting the rules without improvement effect 
from two solutions solved by DFS and the run of EA4PO 
nearest to the average response time 26.50 milliseconds. 
Therefore, EA4PO managed to achieve a better response 
time while using a smaller number of rules. 

TABLE IV.  THE USAGE INFORMATION OF RULES IN THE OPTIMAL 

SOLUTIONS   SOLVED BY DFS AND EA4PO ALGORITHMS 

 DFS EA4PO 

(Average result) 

r1 
imprNum 0 0 

totNum 7 3 

r2 
imprNum 5 4 

totNum 7 5 

r3 
imprNum 1 1 

totNum 7 4 

r4 
imprNum 1 1 

totNum 1 1 

r5 
imprNum 1 1 

totNum 1 1 

r6 
imprNum 0 0 

totNum 0 1 

footing 
imprNums 8 7 

totNums 23 15 

imprNum:   the count of each rule usage with improvement effect; 

TotNum:     the total count of each rule usage; 

imprNums:  the count of all rules usage with improvement effect 

totNums:     the total count of  all rules usage; 

 

Two conclusions can be drawn from above results when 
the shortest response time was solved respectively by DFS 
and EA4PO algorithms. One is search range may be 
significantly reduced in DFS algorithm when the 
improvement space is divided into two sub-spaces of 
configuration and design, and explored by pre-defined order. 
The other is that the fixed order of rule usage in 
configuration and design space may further make the search 
space of DFS algorithm smaller. As a result, it is difficult for 
DFS algorithm to find the optimal solution. Compared with 



 

DFS, EA4PO can explore a relatively larger space and the 
quality of solution can be improved. 

 

Fig. 3. The comparison of the resulting response time  

          obtained by EA4PO and  DFS algorithms 

VI. CONCLUSION 

In this paper, the RPOM optimization model is presented 
to formally describe the relation between the usage of rules 
and optimal solution in performance improvement space. 
The RPOM model helps to search the larger space by fully 
considering the count and order of each rule usage in the 
optimization process. RSEF framework is designed to 
support the execution of rule sequence. Furthermore, EA4PO 
algorithm is proposed to find the optimal performance 
improvement solution based on RPOM model and RSEF 
framework. In EA4PO algorithm, the individual encoding 
contributes to use performance improvement rules flexibly 
during the evolution. The adaptive mutation operator can 
learn from the heuristic information collected during the 
execution of rules so as to accelerate convergence of EA4PO. 
The fitness function considers both the extent of performance 
improvement and the count of rules usage with improvement 
effect. Experimental results show that our EA4PO algorithm 
can obtain better system response time and more efficient 
rules usage than Xu’s DFS algorithm. RPOM model, RSEF 
framework and EA4PO algorithm proposed by this paper 
have certain generality and can help those rule-based 
software performance optimization approaches at SA level to 
search the larger space in order to improve the quality of 
optimization. 
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