

An Evolutionary Algorithm for Performance

Optimization at Software Architecture Level

Xin Du

Faculty of software

Fujian Normal University

Fuzhou, China

School of Computer Science

The University of Birmingham

Birmingham, UK

duxy@cs.bham.ac.uk

Youcong Ni

Faculty of software

Fujian Normal University

Fuzhou, China

youcongni@foxmail.com

Peng Ye

College of Mathematics and Computer

Wuhan Textile University

Wuhan, China

Xin Yao

School of Computer Science

The University of Birmingham

Birmingham, UK

Leandro L. Minku

School of Computer Science

The University of Birmingham

Birmingham, UK

Ruliang Xiao

Faculty of software

Fujian Normal University

Fuzhou, China

Abstract— Architecture-based software performance

optimization can not only significantly save time but also

reduce cost. A few rule-based performance optimization

approaches at software architecture (SA) level have been

proposed in recent years. However, in these approaches, the

number of rules being used and the order of application of

each rule are uncertain in the optimization process and these

uncertainties have not been fully considered so far. As a result,

the search space for performance improvement is limited,

possibly excluding optimal solutions. Aiming to solve this

problem, we propose an evolutionary algorithm for rule-based

performance optimization at SA level named EA4PO. First, the

rule-based software performance optimization at SA level is

abstracted into a mathematical model called RPOM. RPOM

can precisely characterize the mathematical relation between

the usage of rules and the optimal solution in the performance

improvement space. Then, a framework named RSEF is

designed to support the execution of rule sequences. Based on

RPOM and RSEF, EA4PO is proposed to find the optimal

performance improvement solution. In EA4PO, an adaptive

mutation operator is designed to guide the search direction by

fully considering heuristic information of rule usage during the

evolution. Finally, the effectiveness of EA4PO is validated by

comparing EA4PO with a typical rule-based approach. The

results show that EA4PO can explore a relatively larger space

and get better solutions.

Keywords—performance analysis; performance optimization

algorithm; evolutionary algorithm; software architecture;

search-based software engineering; rule

I. INTRODUCTION

Performance is an important quality attribute of software
systems and is a vital factor to determine success or failure
of a system. Architecture-based software performance
diagnosis and improvement can find the problems (e.g. high
resource utilization, long response time and low throughput)
and provide the solutions to mitigate the negative effects of

them at the early stage of the software life cycle.
Architecture-based software performance optimization can
not only significantly save time but also reduce cost.

Architecture-based software performance optimization
has been a highlight topic among academia and industry in
the field of software engineering. There have been a few
models and tools [1, 2] for architecture-based software
performance evaluation, such as Queuing Network (QN) [3],
Layered QN (LQN) [4, 5], Stochastic Petri Nets (SPN) [6],
Stochastic Process Algebras (SPA) [7] and Markov process
[8]. They can strongly support architecture-based software
performance diagnosis and improvement. However, along
with the increasing size and complexity of software systems,
the factors impacting system performance grow and the
space of architecture-based software performance
improvement also enlarges. More importantly, this space is
intrinsically discontinuous because various constraints and
limitations need to be satisfied in the process of performance
optimization. It is still a difficult problem for software
performance optimization to find the optimal or near-optimal
performance improvement solution in a huge and discrete
performance improvement space. To solve this problem,
some researchers have presented metaheuristic-based
approaches [9, 10] and rule-based approaches [11-14] in
recent years. At present, metaheuristic-based approaches can
only explore a few of architectural parameters, such as
component allocation, hardware configuration, and
component selection. Moreover, the majorities of
metaheuristic-based approaches do not consider how to
apply architecture-based software performance improvement
knowledge in the evolutionary optimization process. The
disadvantages of metaheuristic-based approaches can be
partly avoided in rule-based approaches.

In the typical rule-based approaches including Xu’s [11],
McGregor’s [12] and Cortellessa’s [13, 15, 16], the
architecture-based software performance improvement

978-1-4799-7492-4/15/$31.00 ©2015 IEEE

mailto:youcongni@foxmail.com

knowledge from anti-patterns [17, 18] or the specified
application domains [19] can be formally described in the
form of rules. These rules usually cover many parameters
from various viewpoint of SA, such as structure, behavior
and deployment. Each rule contains two parts of the
condition and action. The condition of rule is responsible for
diagnosing the performance problem. Meanwhile the actions
of rules describe potential improvements for the discovered
performance problems. In addition, engines or frameworks
have been developed to automatically [11, 12] or semi-
automatically [15] apply these rules to find the performance
problems and eliminate them by predefined improvement
solutions.

In rule-based approaches, the number and order of each
rule usage are two key factors that affect the results of
performance optimization. For example, consider that there
are two performance improvement rules r1 and r2. Rule r1
can be used to solve the bottleneck problem of processor P
by increasing P’s multiplicity, while rule r2 can diagnose
bottleneck problem of component C and alleviate it by
raising C’s multiplicity. Suppose that component C1 is
deployed on processor P1, and that there are bottleneck
problems in both C1 and P1. It is clear that these problems
can be found in the initial SA by the rules r1 and r2,
respectively. However, the optimization results depend on
the count and order of the rules r1 and r2 usage during
performance optimization.

If the bottleneck of processor P1 can not be eliminated
after rule r1 is applied once and the P1’s multiplicity is
increased with a specified increment, rule r1 can also be
applied several times provided that P1’s multiplicity is less
than its pre-defined maximum multiplicity. After rule r1 is
repeatedly applied several times, the bottleneck problem of
C1 is likely to disappear because the bottleneck of P1 on
which C1 is deployed has been solved. Then, there is no
further improvement when rule r2 is applied.

In another instance where rule r2 is applied before rule r1,
the bottleneck problem of processor P1 will become more
serious and rule r1 may need to be applied more times than
expected. Thus, the optimization results will vary according
to the count and order of each rule usage. Unfortunately, how
to use these rules is uncertain

Due to the existence of these uncertainties, in practice,
the improvement space is enormous. For example,
Cortellessa and Trubiani et al presented 12 performance
improvement rules [15] for 12 architecture-based
performance anti-patterns [17]. So, the size of the
performance improvement space is determined by
permutation and combination of 12 different performance
improvement rules. This space contains 12

12
(nearly 9,000

trillion) possible solutions even if the repetitive usage of
each rule in a solution is not considered. To find optimal
performance improvement solution, the existing rule-based
approaches may only explore a limited region of the
improvement space because they do not fully take the
uncertainty of the number and order of each rule usage into
account. Obviously, the limitation of the search space easily
leads to the fact that the optimal performance improvement

solution is hard to find, possibly even unreachable by the
algorithm. Consequently, the quality of performance
optimization is likely to be suboptimal.

Aiming at solving the problems above, first, a rule-based
performance optimization model named RPOM is presented
to depict precisely the mathematical relation between the
rules usage and the optimal solution in the performance
improvement space. Then, a framework called RSEF is
designed to support the rule sequence execution. Based on
RPOM and RSEF, EA4PO is proposed to find the optimal
solution. In EA4PO, an adaptive mutation operator with
learning tactics is introduced to improve convergence rate.
Finally, experiments are done to validate the effectiveness of
EA4PO by comparing our work with Xu’s. The results
indicate that EA4PO can explore a relatively larger space
and get better solutions than Xu’s algorithm.

The rest of this paper is organized as follows. Section II
introduces the RPOM model. The RSEF framework and
EA4PO are proposed in Sections III and IV. Section V
presents a case study. Finally, Section VI concludes this
paper.

II. THE RPOM MODEL

Rule-based performance optimization model (RPOM) is
defined as follows:

The performance improvement rules are sequentially
numbered from 1 to n. Let a sequence of rule numbers
𝑋 =< 𝑥1, ⋯ , 𝑥𝑘 , ⋯ , 𝑥𝑙 > be a solution for the problem of
rule-based performance optimization at SA level, where l is

the length of X. Let ui and ()ih X represent the maximal

possible occurrence times and actual occurrence times of rule
i in X respectively.

The constraints for l, the value range of each element in

X and ()ih X are defined as formulas (1), (2) and (3),

respectively, where i, kx , k, l and n represent natural

numbers.

1

n

i
i

l u


  (1)

1 1kx n k l     (2)

()i ih X u , where 1 i n  (3)

In the following definition of functions, let SA and SA0 be
the software architecture and the initial software architecture,
respectively.

The function (,)imp q SA can determine whether the

performance has been improved by applying rule q to SA.

The function imp is defined as formula (4).

0, the performance has not

 been improved by applying
(,)

 the rule numbered to , 1

1, otherwise

if

imp q SA
q SA q N q n


   







(4)

The function (,)t X SA can acquire the improved software

architecture by applying sequentially the rules indicated by X
to SA. The function t is defined as formulas (5) and (6),
where ISA is the improved software architecture after
applying xk to SA.

, (,) 0
(, , 1

, (,) 1

k
k

k

SA imp SA
t x SA k n

ISA imp SA

x

x


    







） (5)

𝑡(𝑋, 𝑆𝐴) = 𝑡(< 𝑥2, ⋯ , 𝑥𝑙 >, 𝑡(< 𝑥1 >, 𝑆𝐴)) (6)

The function impRulCount(X, SA0) is used to compute the
count of rules usage with improvement effect in the process
of applying sequentially the rules indicated by X to SA0. The
definition of impRulCount(X, SA0) is as formula (7). In

formula (7), 1 1, ,k kV x x   .

0 1 0 0
2

(,) (,) (, (,))
l

k k
k

impRuleCount X SA imp x SA imp x t V SA


  

(7)

The function r (SA) returns the response time of the
system specified by SA.

Function g(X) is defined as objective function of
performance optimization. The definition of the g(X) is
shown as formula (8).

0 0 0) , 0 1() (() ((,))) * (, kg X r SA r t X SA k impRuleCount X SA    

(8)

Overall, g(X) is the difference between two terms. The
first term represents the extent of performance improvement,
while the second term is product of a weight factor and the
count of rules usage with improvement effect. The larger the
return value of g(X), the better the corresponding solution X.
Here, a smaller number of rules may be better because it
would lead to less modifications in the architecture.

The rule-based software performance optimization at SA
level can be formally described as: to find solution X* which
satisfies formula (9).

{ ()} ()
X

Max g X g X 


 (9)

In formula (9), X satisfies the constraints defined by
formulas (1), (2) and (3).  represents the solution space.

III. RSEF FRAMEWORK

The rule sequence execution framework (RSEF) is
proposed to realize the functions imp, t and r and support the
computation of the objective function g in RPOM based on
existing rule engine. Its structure is shown in Fig. 1.

RSEF encompasses the control engine and the rule
execution engine. Based on the two engines and the related
data structure, the RSEF framework can support execution of
the rule sequence during the performance optimization. The
data structure and the execution process with respect to
RSEF are defined as follows.

A. The definition of data structure

(1) The performance improvement rule

A performance improvement rule is stored as a file in the
specific internal format. Each performance improvement rule
is numbered by a unique integer and can be executed by the
specified rule execution engine.

Rule execution engine

The rule

library

The Initial SA

(SA0)

The information

table of rule usage

in sequence

(T_RuleUseInSeq)

The Improved SA

(ISA)

The response time of

system before and

after rule execution

The Current SA

(CSA)

The performance

improvement

rule

Control Engine

The sequence of

rule number(X)

The response time

of system before

and after the

execution of rule

sequence

(BRT and ART)

Fig. 1. The structure of RSEF framework

 (2) The sequence of rule number X

A sequence of rule number X is defined as an integer
array in which each element represents the rule number. It is
a solution defined in RPOM.

(3) The rule library

A library stores all numbered performance improvement
rules and each rule can be obtained from this library
according to its number.

(4) The initial SA

The initial SA is developed by the architects and stored as
a file in particular form. It is denoted as SA0 in RPOM.

(5) The current SA and the improved SA

The current SA (CSA) is a file which is used as input of
the rule execution engine, and the improved SA (ISA) is the
output file which can be generated after the rule execution
engine applies a performance improvement rule to the
current SA. The CSA and ISA is input and output of a
calculation step of the function t defined in RPOM.

(6)The response time of system before and after rule
execution

They are two response times computed by rule execution
engine based on the CSA and ISA, respectively. They are
output of the function r defined in RPOM.

(7)The response time of system before and after the
execution of rule sequence (BRT and ART)

They are two response times, and can be acquired based
on SA0 and the SA which can be obtained after the rule
sequence is executed on SA0. They are defined as r(SA0) and
r(t(X, SA0)) in RPOM, respectively.

(8)The information table of rules usages in the sequence

This table is called T_RuleUseInSeq whose fields are
shown in Table I. The primary key of the T_RuleUseInSeq is
composed of two fields of loc and rulNum. T_RuleUseInSeq
can be used to compute values of the two functions imp and
impRuleCount defined in RPOM.

TABLE I. THE FIELDS OF TABLE T_RULEUSEINSEQ

No. Field Description

1 loc The index position of an element in a rule sequence X

2 rulNum The rule number at the loc position in a rule sequence X

3 isImp When the rule numbered rulNum in the loc position is
applied to the current SA, if response time gets shorter,

isImp is assigned 1. Otherwise it is 0.

B. The definition of execution process of rule sequence

The execution process of rule sequence is described by
Algorithm 1 named ARE.

ALGORITHM 1 THE ARE ALGORITHM

 Input：X, SA0

Output： BRT, ART, T_RuleUseInSeq

1: CSA←SA0, i←1, BRT← -1, ART← -1 and let T_RuleUseInSeq be
empty;

2: while i <=|X| do
3: The rule execution engine runs after receiving CSA and the

performance improvement rule numbered xi ;
4: ΔRT ←BRTi - ARTi ;
5: if BRT= -1 then

6: BRT=BRTi；

7: end if

8: ART←ARTi
9: if ΔRT>0 then
10: insert the record (i, xi, 1) into the T_RuleUseInSeq;
11: else
12: insert the record (i, xi, 0) into the T_RuleUseInSeq;
13: end if
14: if ΔRT>0 then
15: Let CSA be the SA which returned by rule execution engine;
16: end if
17: i←i+1;
18: end while
19: Output BRT, ART and T_RuleUseInSeq.

IV. EA4PO ALGORITHM

Based on RPOM model and RSEF framework, EA4PO
algorithm is proposed to find the optimal improvement
solution. EA4PO algorithm is elaborated as following.

A. Individual encoding

An individual 1 2, , , , ,k lX x x x x 
      is encoded as

a sequence of rule number with fixed-length integer. The
length l′ of X′ is defined as formula (10).

1

n

i

i

l u


  (10)

In formula (10), ui represents maximal possible
occurrence times of rule number i in X’. In order to ensure
that each rule number in a sequence can comply with
formulas (1)-(3) defined by RPOM and get the shorter
optimal sequence of rule numbers, rule number 0, which

indicates the do-nothing rule, is introduced into individual
encoding. If the do-nothing rule is applied to any SA, the
performance of system cannot be improved. Let u0 represent
the maximal possible occurrence times of the rule number 0

in X’ and
0u l .

Any rule number kx in X′ satisfies formula (11).

0k kx N x n     （1 k l  ） (11)

The actual occurrence times of rule number i in X’ is
denoted by hi(X’) which satisfies formula (12).

(') , 0i ih X u i n   (12)

B. Fitness function

The fitness function of individual 'X is defined as
formula (13). The larger the value of ()fitness X  , the better

the corresponding solution X′.

0() (,), 0 1fitness X BRT ART k impRuleCount X SA k     () (1

3)

In formula (13), X is a sequence of rule number which is
generated by deleting rule number 0 in X′. It is same as the
formula (8) in RPOM. BRT and ART represent the response
time of system before and after the execution of rule
sequence X respectively.

The algorithm solveFitness is designed to compute the
fitness value of X′. In solveFitness algorithm, there is a
statistical table of rule usage called T_RuleUseInHis, which
is designed to record the information of rules usage during
the evolution. The fields of the T_RuleUseInHis are shown
in Table II. Algorithm 2 depicts the solveFitness in detail.

TABLE II. THE FIELDS OF TABLE T_RULEUSEINHIS

No. Field Description

1 loc The index position of an element in a rule

sequence X

2 rulNum The rule number at the loc position in a rule
sequence X

3 preRulNum The rule number at the loc-1 position in a rule

sequence X. And if loc=1, then let preRulNum= -1.
4 impNum The usage count of rule numbered by rulNum with

improvement effect under the condition that the

two rule numbers rulNum and preRulNum are in
the loc and loc-1 positions respectively

5 totNum The usage count of rule numbered by rulNum

under the condition that the two rule numbers
rulNum and preRulNum are in the loc and loc-1

position respectively

ALGORITHM 2 THE SOLVEFITNESS ALGORITHM

 Input： individual X′, SA0, T_RuleUseInHis

Output：the fitness value of X′, T_RuleUseInHis

1: Get X by deleting all 0 in X′;
2: Run the ARE algorithm in RSEF framework by inputting X and

SA0, and get T_RuleUseInSeq, BRT and ART;
3: Compute impRulCount(X,SA0) according to T_RuleUseInSeq ;
4: Compute the fitness value of X′ based on formula (13);
5: Run the Updating algorithm by inputting T_RuleUseInSeq and

Update T_RuleUseInHis;

6: Output the fitness value of X′ and update T_RuleUseInHis.

ALGORITHM 3 UPDATING ALGORITHM

 Input： T_RuleUseInSeq , T_RuleUseInHis

Output：T_RuleUseInHis

1: Let i←1, len← the number of records in Table T_RuleUseInSeq;
2: While i ≤ len do
3: Take the ith record (loci, rulNumi, isImpi) from the Table

T_RuleUseInSeq;
4: Search the record and assign it to recordj according to the

condition
1()

ii i locloc loc rulNum rulNum preRulNum x     （ ）（ ）

in Table T_RuleUseInHis. If loci=1, then preRulNum= -1;

5: If 1i jisImp record null   then

6:
Add 1 to value of the field impNum and totNum in recordj ,
respectively and update the record corresponding to recordj in
Table T_RuleUseInHis;

7: end if
8:

If 0i jisImp record null   then

9: Add 1 to value of the field totNum in recordj and update the
record corresponding to recordj in Table T_RuleUseInHis;

10: end if
11:

 If (1) (1)i j iisImp record null loc    （ ） then

12: Insert the record
1(, , , 1, 1)

ii i locloc rulNum x 
 into the Table

T_RuleUseInHis;
13: end if
14: If (1) 1i j iisImp record null loc    （ ）（ ） then

15: Insert the record (, , 1,1,1)i iloc rulNum  into the Table

T_RuleUseInHis;
16: end if
17:

 If (0) (1)i j iisImp record null loc    （ ） then

18: Insert the record
1(, , , 0,1)

ii i locloc rulNum x 
 into the Table

T_RuleUseInHis;
19: end if
20:

 If (0) () (1)i j iisImp record null loc     then

21: Insert the record (, , 1, 0,1)i iloc rulNum  into the Table

T_RuleUseInHis;
22: end if
23: i←i+1;
24: end while
25: Output T_RuleUseInHis

C. Crossover operator

One-point crossover with constraint checking and
repairing is adopted. And it includes three computational
steps: crossover, constraint checking and repairing. First, two
intermediate individuals are generated by crossover operator.
Then, the constraint checking is done on two intermediate
individuals to verify whether each bit from the crossover
position to the last position satisfies the constraint defined in
formula (3). Last, repairing step will be done for those bits
which disobey the constraint and assign 0 to them.

For example, there are two parent individuals

1 1,2,3,3,2,1,3,1X    and
2 2,1,2,3,3,1,1,3X    . Each

individual is composed of the rule numbers 1, 2, 3 and their

maximal possible occurrence times are defined as 1 =3u ,

2 =2u , 3 =3u . So, the length of each individual is 8. Suppose

that the crossover point is randomly chosen as 5, the process

of one-point crossover in EA4PO algorithm can be described
as follows. First, two intermediate individuals

11 1, 2,3,3,3,1,1,3X    and 21 2,1,2,3,2,1,3,1X    are

generated by exchanging their corresponding bits from
crossover position to the last position. Second, constraint

checking is done on 11X  and 21X  . The 8
th
 bit in 11X  and

the 5
th
 bit in 21X  disobey the constraints which are

3 11 3() 4h X u   and 2 21 2() 3h X u   . Third, the two bits

should be assigned as 0. As a result, two offspring

individuals
3 1, 2,3,3,3,1,1, 0X    and

4 2,1,2,3,0,1,3,1X    are formed.

D. Adaptive mutation operator

The mutation operator has a great influence on the
convergence rate of evolutionary algorithm [20]. Here, the
adaptive mutation operator with learning tactics is introduced
to guide the search direction of algorithm. Each bit mutates
according to the conditional mutation probabilities that are
drawn from the statistical table of rule usage
T_RuleUseInHis during the evolution. The mutation
operator in EA4PO algorithm is composed of three
computational steps: mutate, constraint checking and
repairing.

 The conditional mutation probabilities

-1(|)j jp x k x q   are computed based on the statistical

table of rules usage T_RuleUseInHis. And the statistical

information can be acquired by the functions (, ,)f j k m

and (,)O j k described in the following.

The function (, ,)f j k m aims to obtain the average

improvement rate of the k
th
 rule under the condition that the

rule number k and m are at j and j-1 positions respectively.

The function (,)O j k can be used to obtain all the rule

numbers at j+1 position under the condition that rule number
k is at j position.

On the basis of the functions (, ,)f j k m and (,)O j k ,

the conditional mutation probability
1(|)j jp x k x q

   can

be defined as formula (14). Especially, let j (j>=1) represent

mutation position and 0 1x   .

'

1
((1,) / ')

1 '

(1, , 1) / (1, , 1) 1 '

(, ,) / (, ,), 1 ' (1,) / '(|)

/ , 1 ' (1,) / '

j

j

j

j

i n i x

j j
j j

i O j q x

k i j j

i n i x

f k f i j k x

f j k q f j i q j k x O j q xp x k x q

u u j k x O j q x

  


 

   

     

           


      








, (14)

In formula (14), the definition of
1(|)j jp x k x q

  

includes three cases. The first is mutation position 1j  . The

second is that the mutation position 1j  and the set of rule

numbers returned by function (1,)O j q after removing the

rule number k is not empty set  . The third is that the
mutation position 1j  and the set of rule numbers

returned by function (1,)O j q after removing the rule

number k is empty set .

E. The main steps of EA4PO algorithm

Let X*’ represent the optimal individual in EA4PO, X*
represent the optimal sequence by deleting all 0 in X*’.The
main steps of EA4PO algorithm is given in Algorithm 4.

ALGORITHM 4 THE PROPOSED EA4PO ALGORITHM

 Input： popsize n, crossover rate pc, mutation rate pm

Output：the optimal sequence X*
1: Initialize evolutionary generation t←0;
2: Create an initial population P(t) with n individuals;
3: Create an empty Table T_RuleUseInHis;
4: Compute the fitness value of each individual in P(t) by using the

algorithm solveFitness;
5: Select the optimal individual from population P(t) and assign it to

X*’
6: While stop criteria is not satisfied do
7: Generate a new (intermediate) population by defined one-

point crossover operator based on population P(t) with
probability pc (0 < pc < 1) and denote it as PC(t);

8: Generate a new (intermediate) population by adaptive
mutation operator based on population PC(t) with probability
pm (0 < pm< 1) and denote it as PM (t);

9: Compute the fitness value of each individual in PM (t) by
using the algorithm solveFitness;

10:

Select n individuals from population PM (t) and P(t) according
to elitist-based roulette select, then generate the next
population P(t+1).

11: t:=t+1;
12: Update the X*’;

1
13:

end while
1

14:
Delete all the rules number 0 in the optimal individual X*’ and get a
sequence X*;

15: Output the X*;

The stop criterion is that the EA4PO will terminate after
the response time cannot be improved any longer for given
continuous generations or maximal generation has been
achieved.

V. CASE STUDY

In this section, in order to validate the effectiveness of
EA4PO, web application (WebApp) [11] is selected as the
experimental case to compare our work with Xu’s. Firstly
Xu’s work is briefly introduced. Then the WebApp case is
illustrated concisely. Finally, the experimental process and
result analysis are depicted in detail.

A. Xu’s work

Based on software architecture described in UML SPT
[10] and LQN model, performance improvement rules and
the performance optimization algorithms are proposed in
Xu’s work. They are demonstrated in brief as follows.

① The performance improvement rules

The performance improvement rules based on LQN
model proposed by Xu are divided into configuration
improvement rules and design improvement rules. The
configuration improvement rules are used to find the
bottleneck problem caused by the unreasonable utilization or
allocation of resources and eliminate this problem by means
of resource reconfiguration. The configuration improvement

rules contain three rules which are rules r1, r2, r3. In
addition, design improvement rules are utilized to discover
the long path problem caused by the inappropriate designs.
The design improvement rules consist of rules r4, r5, r6, r7.

② The optimization algorithm

Xu designed the optimization algorithms to find the
optimal solution in performance improvement space by use
of the improvement rules. As shown in Fig. 2, the search
process of the algorithms can be described as a search tree
and divided into several rounds.

In Fig. 2, a round search is marked in the dashed
rectangle. Concretely, the search starts from the root node
LQN0 extracted from the initial software architecture SA0.
Firstly, in the configuration space, the rules sequence <r1, r2,
r3> are repeatedly applied to LQN0 till the sequence <r1, r2,
r3> has no improvement effect. Then, a candidate model can
be got. Next, a round search for this candidate model will
happen. In a round search, design improvement rules r4, r5,
r6 and r7 are applied respectively to this model and a group
of improved models can be obtained. Furthermore, each
improved model is optimized by repeatedly applying the rule
sequence < r1, r2, r3>. So, a group of candidate models can
be obtained in the end of a round search. Finally, the
response time of systems corresponding to these candidate
models are evaluated. How to search in next round depends
on the search strategy.

Based on the depths first search (DFS) strategy, Xu
proposed the DFS algorithm. In DFS, the candidate model
with the best response time is selected as the sole initial
model in next round.

LQN0(SA0)

configuration
improvement

design
improvement

search in a round

configuration
improvement

evaluation by system response time

...

(r1,r2,r3)*

r4 r5 r7

(r1,r2,r3)*

...

search in next round

(r1,r2,r3)*

...

Fig. 2. The search process of Xu’s algorithm

B. Case:A web application

In WebApp case, when user accesses the pages deployed
on Web server (WS) by browser, WS loads these pages.
Then WS will call business services deployed on application
servers App1 and App2. Then, these business services will
call data management services deployed on database servers
DB1 and DB2. The initial LQN model of this case can be
found in [11] and the response time corresponding to this
model is 179.71 milliseconds.

The EA4PO and DFS algorithms are respectively applied
to the WebApp case for obtain the shortest response time.

The six rules from r1 to r6 defined by Xu are used during the
execution of the two algorithms.

C. Experiment

① Parameter setting

There are some parameters which are relevant to six
improvement rules from r1 to r6 used in the WebApp case.
To fairly compare EA4PO with DFS algorithm, the setting of
these parameters in EA4PO and DFS is same. The values of
these parameters shown in Table III come from Xu’s paper
[11].

For more convenient comparison, the optimal
improvement solution can be represented as the sequence of
rule numbers on the search path from root node to the node
with the shortest response time of system, as far as DFS is
concerned.

TABLE III. THE SETTING OF PARAMETERS RELEVANT TO SIX

IMPROVEMENT RULES

No. Name Description Value

1
eS ,,ct limiting fraction for reduction in the

CPU demand of entry e with the r4
0.2

2
',,, eeYct

limiting fraction for reduction in the

calls from entry e to entry e’, under
the r4

0.2

3
eteS ,,,ma

limiting fraction in which the CPU

demand of first phase of et is moved to
second phase when e calls et ,under

the r5

0.5

4
tY e,e,,ma

limiting fraction in which the call

number of first phase of et moved to

second phase when e calls et , under

the rule r5

0.5

5 Mmax,WS The maximal multiplicity of WS 10

6 Mmax,App1 The maximal multiplicity of App1 5

7 Mmax,App2 The maximal multiplicity of App2 3

8 Mmax,DB1 The maximal multiplicity of DB1 10

9 Mmax,DB2 The maximal multiplicity of DB2 10

10 r,maxU
The predefined maximal utilization of

resource
0.95

11 u
Limiting fraction for reducing

resource utilization
0.9

For more strict comparison, two conditions are set. One
is that each rule from r1 to r6 has the opportunity to be used.
Another is that the maximal usage number of each rule for
EA4PO algorithm is less than or equal to the maximal
occurrence times in the improvement solution of DFS.

In addition, in EA4PO algorithm, the parameters of the
weight factor, the population size, run times, evolutionary
generation, crossover probability and mutation probability
are set as 0.142,30, 20, 30, 0.6 and 0.3, respectively. Here,
we let k be 0.01, 0.1, 0.14, 0.142, 0.2, 0.35, 0.57 respectively.
And the results are better when k is 0.142.

② Results

The results of the performance optimization for the
WebApp case by use of DFS and EA4PO algorithms are
shown in Table IV and Fig. 3.

In Table IV, it is worth noting that the imprNum, totNum,
imprNums and totNums rows respectively give the count of
each rule usage with improvement effect, the total count of
each rule usage, the count of all rules usage with
improvement effect, and the total count of all rules usage.
From Table IV, it can be seen that the total count of all rules
usage in EA4PO (average results of 20 runs) is 15, which is
less than 23 in DFS. And the count of each rule usage with
improvement effect in EA4PO is equal to that of DFS except
for the rule r2. From Fig. 3, the resulting response time
obtained by EA4PO is 26.50 milliseconds which is better
than 29.88 milliseconds obtained by DFS. In addition, the
Wilcoxon rank-sum test is done to compare the resulting
response time obtained by EA4PO and DFS algorithms at a
0.05 significance level. The results show that EA4PO is
significantly better than DFS.

In WebApp case, it should be explained that the count of
each rule usage with improvement effect in DFS is larger
than that in EA4PO, and the resulting response time obtained
by DFS is worse than EA4PO. It leads to such result that the
order of rule usage in DFS and EA4PO algorithms is
different. Our RSEF records two sequences of < r2, r2, r2, r2,
r2, r3, r4, r5 > and < r2, r2, r2, r5, r2, r3, r4 >, which are
obtained by deleting the rules without improvement effect
from two solutions solved by DFS and the run of EA4PO
nearest to the average response time 26.50 milliseconds.
Therefore, EA4PO managed to achieve a better response
time while using a smaller number of rules.

TABLE IV. THE USAGE INFORMATION OF RULES IN THE OPTIMAL

SOLUTIONS SOLVED BY DFS AND EA4PO ALGORITHMS

 DFS EA4PO

(Average result)

r1
imprNum 0 0

totNum 7 3

r2
imprNum 5 4

totNum 7 5

r3
imprNum 1 1

totNum 7 4

r4
imprNum 1 1

totNum 1 1

r5
imprNum 1 1

totNum 1 1

r6
imprNum 0 0

totNum 0 1

footing
imprNums 8 7

totNums 23 15

imprNum: the count of each rule usage with improvement effect;

TotNum: the total count of each rule usage;

imprNums: the count of all rules usage with improvement effect

totNums: the total count of all rules usage;

Two conclusions can be drawn from above results when
the shortest response time was solved respectively by DFS
and EA4PO algorithms. One is search range may be
significantly reduced in DFS algorithm when the
improvement space is divided into two sub-spaces of
configuration and design, and explored by pre-defined order.
The other is that the fixed order of rule usage in
configuration and design space may further make the search
space of DFS algorithm smaller. As a result, it is difficult for
DFS algorithm to find the optimal solution. Compared with

DFS, EA4PO can explore a relatively larger space and the
quality of solution can be improved.

Fig. 3. The comparison of the resulting response time

 obtained by EA4PO and DFS algorithms

VI. CONCLUSION

In this paper, the RPOM optimization model is presented
to formally describe the relation between the usage of rules
and optimal solution in performance improvement space.
The RPOM model helps to search the larger space by fully
considering the count and order of each rule usage in the
optimization process. RSEF framework is designed to
support the execution of rule sequence. Furthermore, EA4PO
algorithm is proposed to find the optimal performance
improvement solution based on RPOM model and RSEF
framework. In EA4PO algorithm, the individual encoding
contributes to use performance improvement rules flexibly
during the evolution. The adaptive mutation operator can
learn from the heuristic information collected during the
execution of rules so as to accelerate convergence of EA4PO.
The fitness function considers both the extent of performance
improvement and the count of rules usage with improvement
effect. Experimental results show that our EA4PO algorithm
can obtain better system response time and more efficient
rules usage than Xu’s DFS algorithm. RPOM model, RSEF
framework and EA4PO algorithm proposed by this paper
have certain generality and can help those rule-based
software performance optimization approaches at SA level to
search the larger space in order to improve the quality of
optimization.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (No. 61305079, 61305086, 61203306，
61370078), the project of preeminent youth fund of Fujian
province(JA12471), outstanding young teacher training fund
of Fujian Normal University (No.fjsdjk2012083), the open
fund of State Key Laboratory of Software Engineering(No.
SKLSE 2014-10-02), and EPSRC Grant No. EP/J017515/1.

REFERENCES

[1].Balsamo, S., et al., "Model-based performance prediction in software
development: A survey," IEEE Transactions on Software Engineering,

vol.30, no.5, pp. 295-310, 2004.

[2].Koziolek, H., "Performance evaluation of component-based software
systems: A survey," Performance Evaluation, vol. 67, no.8, pp. 634-658,

2010.

[3].Trivedi, K.S., "Probability & statistics with reliability, queuing and
computer science applications," John Wiley & Sons, 2008.

[4].Woodside, M., et al., "Automated performance modeling of software

generated by a design environment," Performance Evaluation, vol.45, no.2,
pp. 107-123, 2001.

[5].Cortellessa, V., A. D Ambrogio and G. Iazeolla, "Automatic derivation

of software performance models from case documents," Performance
Evaluation, vol. 45, no.2, pp. 81-105, 2001.

[6].Marsan, M.A., G. Balbo and G. Conte, "Performance models of

multiprocessor systems," 1986.
[7].Hermanns, H., U. Herzog and J. Katoen, "Process algebra for

performance evaluation," Theoretical computer science, vol.274, no.1, pp.

43-87, 2002.
[8].Lindemann, C., et al. "Performance analysis of time-enhanced UML

diagrams based on stochastic processes," Proceedings of the 3rd

international workshop on Software and performance, ACM, 2002:
[9].Martens, A., et al. "Automatically improve software architecture models

for performance, reliability, and cost using evolutionary algorithms,"

Proceedings of the first joint WOSP/SIPEW international conference on
Performance engineering, ACM, 2010.

[10].Tribastone, M. "Efficient optimization of software performance

models via parameter-space pruning," Proceedings of the 5th ACM/SPEC
international conference on Performance engineering, ACM, 2014.

[11].Xu, J., "Rule-based automatic software performance diagnosis and

improvement," Performance Evaluation, vol.69, no.11, pp. 525-550, 2012.
[12].McGregor, J.D., et al., "Using arche in the classroom: One

experience," DTIC Document, 2007.

[13].Cortellessa, V., et al., "A process to effectively identify “guilty”

performance antipatterns," Fundamental Approaches to Software

Engineering, T. Maibaum, T. Maibaum^Editors, Springer: Berlin, pp. 368-
382, 2010.

[14].Trubiani, C. and A. Koziolek, "Detection and solution of software

performance antipatterns in palladio architectural models," ACM SIGSOFT
Software Engineering Notes, ACM, 2011.

[15].Cortellessa, V., A. Di Marco and C. Trubiani, "An approach for

modeling and detecting software performance antipatterns based on first-
order logics," Software & Systems Modeling, vol.13, no.1, pp. 391-432,

2014.

[16].Cortellessa, V. and L. Frittella, "A framework for automated
generation of architectural feedback from software performance analysis,"

Formal Methods and Stochastic Models for Performance Evaluation, K.

Wolter, K. Wolter^Editors, Springer: Berlin, pp. 171-185, 2007.
[17].Smith, C.U. and L.G. Williams. "Software performance antipatterns,"

Workshop on Software and Performance. 2000.

[18].Williams, L.G. and C.U. Smith, "Performance solutions: a practical
guide to creating responsive, scalable software," Addison-Wesley, Reading,

MA, 2001.

[19].Bondarev, E., M.R. Chaudron and E.A. de Kock, "Exploring
performance trade-offs of a JPEG decoder using the DeepCompass

framework," Proceedings of the 6th international workshop on Software
and performance, New York, USA: ACM, 2007.

[20].Beyer, H., H. Schwefel and I Wegener, "How to analyse evolutionary

algorithms,"Theoretical Computer Science, vol. 287, no.1, pp. 101-130,
2002.

24

25

26

27

28

29

30

31

DFS EA4PO

t
h
e
 o
p
t
i
m
a
l
 r
e
s
p
o
n
s
e
 t
i
m
e

The comparison of the optimal response time

