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Abstract

Many real-world data stream applications not only suffer from concept
drift but also class imbalance. Yet, very few existing studies investigated
this joint challenge. Data difficulty factors, which have been shown to
be key challenges in class imbalanced data streams, are not taken into
account by existing approaches when learning class imbalanced data
streams. In this work, we propose a drift adaptable oversampling strat-
egy to synthesise minority class examples based on stream clustering.
The motivation is that stream clustering methods continuously update
themselves to reflect the characteristics of the current underlying con-
cept, including data difficulty factors. This nature can potentially be
used to compress past information without caching data in the mem-
ory explicitly. Based on the compressed information, synthetic examples
can be created within the region that recently generated new minority
class examples. Experiments with artificial and real-world data streams
show that the proposed approach can handle concept drift involving
different minority class decomposition better than existing approaches,
especially when the data stream is severely class imbalanced and pre-
senting high proportions of safe and borderline minority class examples.

Keywords: Data Streams, Class Imbalance, Concept Drift, Stream
Clustering, Synthetic Data, Data Difficulty Factors
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1 Introduction

In the past years, the volume and incoming speed of data have increased
tremendously. Data frequently arrive continuously in the form of data stream
rather than forming a single static data set. Therefore, data stream learning,
which is able to learn incoming data upon arrival, becomes an increasingly
important approach to extract knowledge from data. It has been widely used
in real-world applications, such as credit card fraud detection [1], software
defect prediction [2] and spam filtering [3]. There are many types of prob-
lems / tasks in data stream learning, for examples, classification, regression,
clustering, anomaly detection etc. This work focuses on binary classification.

Concept drift is a common challenge in data streams. It is a change in
the underlying distribution of the problem. Such a change can deteriorate
the predictive performance of the data stream learning algorithm because the
predictive model built previously may not be valid anymore. To deal with
concept drift, data stream learning algorithms can be categorised to as explicit
and implicit approaches [4, 5]. Explicit approaches employ a concept drift
detection method to detect if there is a concept drift, and then adopt strategies
to update predictive model to cope with such drift [4, 5]. Implicit approaches
do not employ any concept drift detection method but continuously evolve
themselves to reflect the current underlying concept, thus adapting to concept
drifts [4, 5].

Data stream learning algorithms can also be categorised by their mode
of operation: batch-based (chunk-based) learning and online learning [4, 6].
Batch-based learning refers to as learning the data stream by batches of new
training data. It has the advantage of having more data to learn at a given time
step, thus the learning approach can better capture the current underlying
concept [4, 6]. In contrast, online learning has a stricter requirement which
only allows the data stream learning approach to process each training example
separately and then discard it [4, 6],rendering it applicable to problems with
stricter time and memory requirements. To deal with concept drifts in a timely
fashion, online learning usually is more preferable than batch-based learning
which needs to wait for whole batches of training examples to arrive. Moreover,
batch-based learning assumes that all training data within the same batch are
drawn from the same underlying concept, which may not always be the case
in most real-world applications. Thus, this work focuses on online learning.

Another challenge frequently present in real world data stream applica-
tions is that their class distribution is often skewed, an issue that is commonly
referred to as class imbalance [7]. For example, in credit card fraud detection,
there are always more genuine transactions than fraudulent transactions. In
software defect prediction, there are typically more clean than defective com-
ponents. When class imbalance exists, the data stream learning algorithms
are likely to get biased towards the majority class, being likely to misclassify
minority class examples. Yet, the minority class is usually the class of interest
in the classification task, meaning that misclassifying minority class examples
could lead to a high cost. This work focuses on binary classification, thus,
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there is a majority class and a minority class when the data stream is class
imbalanced.

To deal with class imbalance, a category of oversampling strategies has
shown to be successful in data set learning (offline learning). They create syn-
thetic examples to enrich the minority class, which causes less overfitting than
reusing existing minority class examples [8–10]. Some recent work attempted
to bring such a successful idea into the field of data stream learning [11, 12].
However, they usually cache all the minority class examples seen so far into
the memory which is impractical for data stream learning. Moreover, reusing
all past minority class examples may prevent these approaches from dealing
with concept drifts (changes in the underlying probability distribution, a.k.a.,
concept [13]) affecting the minority class.

Dealing with the joint issue of concept drift and class imbalance is a
challenging task. In particular, the relatively small number of minority class
examples mean that it may be more difficult to detect or adapt to concept drifts
affecting the minority class. Many studies have been proposed to deal with
either class imbalance or concept drift. However, existing work to deal with
their joint challenge remains little. Although a recent survey work [7] showed
that class imbalance is a more dominant factor than concept drift in affecting
the predictive performance, the effectiveness of the existing class imbalance
techniques for data stream learning could potentially be compromised by con-
cept drift as most of them are not prepared to deal with drifts. Recent work
addresses this challenge by finding relevant past minority class examples for
oversampling [14] or performing synthetic minority class oversampling based
on the statistics of the minority class after drift detection [15]. These methods
are not always ideal because relevant past minority class examples might not
exist while relying on drift detection to reset minority class statistics could be
detrimental, especially when the drift is gradual.

In addition, the method of storing past examples as proposed in [14] may
be impractical for data stream learning when there are strict space constraints.
Similarly, synthesising new examples based on simple statistics of past exam-
ples as proposed in [15] overlooks important data difficulty factors within the
class. Specifically, this method does not consider the location of past exam-
ples in the feature space. These data difficulty factors include concept drifts
involving different movements of the minority class sub-clusters, changing class
imbalance ratio, and changing the ratios of different types of minority class
examples. Existing work has shown that these factors are critical in learning
from drifting class imbalanced data streams [16].

Therefore, new approaches are needed to better address concept drifts with
multiple data difficulty factors in class imbalanced data streams. To fill this
research gap, this paper aims to answer the following research questions:

• RQ1) How to produce minority class synthetic examples for oversampling
so that we could explore the decision areas of the minority class to better
consider data difficulty factors while adapting to concept drift?
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• RQ2) How does the proposed approach perform compared to existing
approaches in different types of concept drift affecting the minority class?
For which types does it perform the best and worst? Why?

• RQ3) How does the proposed approach perform compared to existing
approaches when applied to real-world data streams?

To answer RQ1, we propose a novel method to create synthetic minority
class examples for oversampling based on stream clustering. The motivation
is that stream clustering methods use a set of micro-clusters as the abstrac-
tion/compression of the examples they have seen so far. They usually retain
micro-clusters by temporal order, which means old micro-clusters are forgot-
ten. Therefore, the information they hold reflects the characteristics of the
current underlying concept. Our novel method exploits this nature of stream
clustering methods to track the current decision areas of the minority class.
It then generates synthetic minority class samples for oversampling within the
region where real minority class examples have been recently observed. With
this strategy, the proposed method is less likely to produce noisy synthetic
examples while being able to explore the decision areas of the minority class,
better considering data difficulty factors when adapting to concept drift (RQ1).

The proposed approach is compared against five existing approaches
through experiments on artificial data streams considering different data dif-
ficulty factors and class imbalance ratios, and real-world data streams (RQ2,
RQ3). The results show that SMOClust handled concept drifts of different
minority class sub-clusters movements better than existing approaches (RQ2,
RQ3). It also performed better than existing approaches when the data stream
is severely class imbalanced and presents high proportions of safe and border-
line [17] minority class examples (RQ2, RQ3). Its major weakness is to handle
data streams presenting large proportions of rare and outlier [17] minority
class examples (RQ2, RQ3).

The rest of this paper is organised as follows. Section 2 discusses related
work on synthetic minority class oversampling techniques and state-of-the-art
approaches in dealing with class imbalance and concept drift in data stream
learning. Section 3 presents the proposed approach. Section 4 presents the
experimental study and discusses the results. Section 5 concludes this study
and discusses the future work.

2 Related Work

This section first introduces class imbalance and existing resampling meth-
ods for class imbalanced learning in Section 2.1. Section 2.2 then discusses
the state-of-the-art approaches to deal with class imbalance and concept drift
in data stream learning. Table 1 summarises the main characteristics of the
approaches discussed in this section. At the end of this table, we contrast these
with SMOClust, the approach that we propose in Section 3 of this paper.
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Table 1: Comparison of Principal Characteristics Between Related Works and SMOClust

Approach Classifier Type Approach Type Concept Drift Adaptation Class Imbalance Strategy

OnlineUnderOverBagging [11]
Online

Ensemble
N/A N/A

Undersampling +
Oversampling

OnlineSMOTEBagging [11]
Not Strictly Onlinea

Ensemble
N/A N/A SMOTE

Learn++.CDS [18]
Batch-based
Ensemble

Implicit Weighted Majority Ensemble SMOTE

Learn++.NIE [18]
Batch-based
Ensemble

Implicit Weighted Majority Ensemble Sub-ensemble Method

DWMIL [19]
Batch-based
Ensemble

Implicit Weighted Majority Ensemble Undersampling

HUWRS.IP [14]
Batch-based
Ensemble

Implicit
Hellinger Distance +

Random Subspace Method
Instance Propagation

OOB [20]
Online

Ensemble
Implicitb Fading Factor Oversampling

UOB [20]
Online

Ensemble
Implicitb Fading Factor Undersampling

ESOS-ELM [21]
Online

Ensemble
Explicit

Hypothesis testing +
Weighted Majority Ensemble

Sub-ensemble Method

C-SMOTE [22]
Not Strictly Onlinea

Meta-strategy
Explicit ADWIN SMOTE + ADWIN

VFC-SMOTE [15]
Online

Meta-strategy
Explicit Employ Drift Detector

Synthetic Minority Oversampling by Beta
Distribution Sampling + Histogram-based Sketch

SMOTE-OB [23]
Online

Ensemble
Explicit Employ Drift Detector

Synthetic Minority Oversampling by Beta
Distribution Sampling + Histogram-based Sketch

CSARF [24]
Online

Ensemble
Explicit

Employ Drift Detector +
Weighted Majority Ensemble

Cost-sensitive Weighting +
Sub-ensemble Method

ROSE [25]
Not Strictly Onlinea

Ensemble
Explicit

ADWIN +
Weighted Majority Ensemble

Cost-sensitive Weighting +
Undersampling

SMOClust
(Proposed approach)

Online
Meta-strategy

Explicit Employ Drift Detector
Synthetic Minority Oversampling by Multivariate
Skewed Gaussian Sampling + Stream Clustering

a Not Strictly Online: Whilst these approaches process training examples upon arrival, they store training examples for later use.
b Can only deal with P(Y) drift.
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2.1 Resampling Methods for Class Imbalance

Class imbalance refers to the data set or data stream having at least one under-
represented class (minority class). In this situation, the machine learning model
tends to misclassify minority class examples more frequently than the majority
class because there exists very little information about the minority class.

Approaches to address class imbalance are mainly divided into three cate-
gories: algorithm-level approach, ensemble approach, and data-level approach
[7]. Algorithm-level approaches are often called cost-sensitive approaches, as
they place a higher cost when misclassifying minority class examples than
majority class examples. Ensemble approaches create different class balanced
training subsets to train each ensemble member. Data-level approaches modify
the class distribution using a resampling method, such that standard machine
learning models can learn from both classes with the same amount of informa-
tion. They can be applied during the data pre-processing phase. Due to this
generic nature, this work focuses on data-level approaches.

Undersampling and Oversampling are two main types of data-level
approaches [7]. Undersampling methods reduce the number of majority class
examples for training, usually removing noisy examples or examples that are
deemed to have a low impact on the decision boundary. Yet, it has the chance
to cause important information loss. On the other hand, oversampling methods
increase the number of minority class examples, by replication or synthesis.
They will not cause any information loss but they cause longer training time
and are likely to cause overfitting when training on the same examples multiple
times.

Synthetic Minority Oversampling Technique (SMOTE) [8] is a very
renowned oversampling technique in offline learning, which synthesises minor-
ity class examples for oversampling, thus balancing the data set. In practice,
SMOTE first randomly chooses an existing minority class example from the
data set, denoted as xi. It then randomly chooses one of the k-nearest neigh-
bours of xi in the minority class, denoted as x′i. After that, a difference vector
between xi and x′i is calculated. To create a point along the line between xi and
x′i, each dimension of the difference vector is multiplied by a random number
θ (0 < θ < 1), then the resulting difference vector is added to xi dimension-
wisely. SMOTE performs this procedure until the target oversampling rate M
is reached. This oversampling rate M and the k for k-nearest neighbours are
the hyper-parameters of the algorithm.

Many variants of SMOTE have been proposed in the last two decades. For
example, Borderline-SMOTE [9] considers that examples close to the decision
boundary are more difficult to learn, thus it synthesises minority class examples
around this area. Gaussian-based SMOTE (G-SMOTE) [10] is a more recent
approach which tend to synthesise examples very close to the existing minority
class examples. Other well-known methods of synthetic minority oversampling
include ADASYN [26], DBSMOTE [27], SWIM [28] etc.

On top of the class imbalance ratio, it has been pointed out that data
difficultly factors also greatly impact the classification performance [17] . These
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factors describe the characteristic of a given example (usually the minority
class example) in the feature space:

• Safe: Surrounded by examples from the same class.
• Borderline: Located near the decision boundary.
• Rare: Located deep inside the decision region of the opposite class, together
with handful examples from the same class.

• Outlier: Isolated and located deep inside the decision region of the opposite
class.

The aforementioned methods can also be considered as taking the data dif-
ficulty factors into the account. For example, Borderline-SMOTE synthesises
minority class examples around the borderline region, while G-SMOTE can be
considered as synthesising minority class examples in the safe region.

However, these synthetic minority oversampling methods could not be
applied to class imbalanced data stream learning directly as they cache the
entire data set into memory, which is impractical in data stream learning. For
example, OnlineSMOTEBagging [11] is one of this kind. It replaces simple
oversampling with SMOTE in OnlineUnderOverbagging. In our preliminary
experiments with the data streams used in this work, we attempted to run
OnlineSMOTEBagging. However, OnlineSMOTEBagging consumed all the
memory we had access to (8GB), resulting in failure to complete the run. Fur-
thermore, the underlying concept of the data stream may change over time
(concept drift). The cached examples may be from different concepts. Thus,
synthesising minority class examples based on them may not always follow the
current underlying concept.

Additionally, one recent work in the field of software effort estimation is
also quite inspiring [29]. They enlarge the software project data set by adding
Gaussian noise to the existing examples. This method could be particularly
related to synthetic minority oversampling for class imbalanced data stream
learning as it is memory efficient and fast to perform. The potential risk is
that, if we apply it to the most recent minority class examples, it might cause
overfitting to such a recent area.

2.2 Approaches for Class Imbalanced Data Stream
Learning in the Presence of Concept Drift

This section discusses approaches that are closely related to the proposed
approach. For a comprehensive survey on class imbalanced data stream
learning, please refer to [30].

Broadly speaking, existing approaches to deal with class imbalance and con-
cept drift have two main categories: explicit approach and implicit approach.

Explicit Approaches

Explicit approaches estimate whether a concept drift has happened, usually by
employing a drift detector to monitor the predictive performance of the base
learner / main ensemble. This drift detector can be any from the literature,
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ideally using a class imbalance insensitive metric, such as DDM-OCI [31], LFR
[32], PAUC-PH [33] etc.

Continuous-SMOTE (C-SMOTE) [12] is one of the pioneers who bring
SMOTE to drifting class imbalanced data stream learning. It uses an Adaptive
Window (ADWIN) [34] to store the most recent examples and applies SMOTE
to the minority class examples inside the ADWIN for oversampling. Upon drift
detection, the old window of ADWIN is dropped as it is deemed to belong to
the old concept. However, when there is no concept drift detection, C-SMOTE
keeps storing minority class examples which can cause memory issues. Besides,
SMOTE does not take decision boundaries and data difficulty factors into
consideration, thus noisy examples may be generated.

Very Fast Continuous-SMOTE (VFC-SMOTE) [15] was proposed to solve
the issues faced by C-SMOTE. It uses a dynamic summary data structure,
called “sketch”, to summarise the statistics of past examples. It generates
synthetic examples by Beta distribution sampling from a set of summaries
in the sketch, where each summary has the information of one input feature
of past examples. When generating synthetic minority class examples, VFC-
SMOTE tends to choose summaries that represent more past examples, which
means it tends to generate synthetic minority class examples in the dense area
of minority class. Nevertheless, this method may generate considerably noisy
synthetic examples because it samples each input feature individually and does
not adopt mechanisms to try to respect decision boundaries.

SMOTE with Online Bagging (SMOTE-OB) [23] is another approach that
is similar to VFC-SMOTE. It incorporates the strategy of generating synthetic
minority class examples from VFC-SMOTE into OnlineUnderOverBagging
[11]. With this design, SMOTE-OB combines three data-level re-balancing
methods to combat class imbalance while training the base learners diversely
[23]. However, as SMOTE-OB uses the same synthetic minority class exam-
ples generating strategy as VFC-SMOTE, it faces the same disadvantages in
terms of potentially generating considerably noisy synthetic examples.

Ensemble of Subset Online Sequential Extreme Learning Machine (ESOS-
ELM) [21] is another notable explicit approach for drifting class imbalanced
data stream learning. It uses a sub-ensemble method to train each base learner
with an approximately equal number of majority and minority class exam-
ples, thus dealing with class imbalance. To deal with concept drift, it uses
a threshold-based strategy with hypothesis testing to detect any significant
change in the predictive performance of the main ensemble, thus reporting con-
cept drift. Meanwhile, it also uses a weighted majority vote system, based on
G-Mean, to adapt to any potential concept drift that could not be detected by
the aforementioned method. ESOS-ELM’s sub-ensemble method is time effi-
cient in dealing with class imbalance as it does not replicate or synthesise any
examples. However, it does not provide additional information to explore the
decision areas of minority class. Besides, ESOS-ELM is restrictive in terms of
base learner type. It only allows to use ELMs.
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Cost-sensitive Adaptive Random Forest (CSARF) [24] is an online, cost-
sensitive sub-ensemble method designed to address the challenges of drifting
class imbalanced data streams. It is a variant of the Adaptive Random Forest
(ARF) [35] algorithm. It incorporates a drift detector and a weighted majority
ensemble to handle concept drift. To deal with class imbalance, CSARF utilises
the Matthews Correlation Coefficient (MCC), a class imbalance insensitive
metric, to assign weights to internal decision trees and ensure that all trees are
trained with examples from the minority class [24]. While CSARF offers speed
and memory efficiency due to its cost-sensitive approach, it fails to consider
factors related to data difficulty. Additionally, CSARF is limited to using only
the Hoeffding Tree [36] as base learners.

Robust Online Self-Adjusting Ensemble (ROSE) [25] is a cost-sensitive
ensemble method designed specifically for learning from drifting class imbal-
anced data streams. It employs ADWIN as a drift detector and uses a weighted
majority ensemble to handle concept drift. To address class imbalance, ROSE
employs self-adjusting λ bagging (where λ is determined based on estimated
class sizes), and enforces the Hoeffding bound to improve predictive perfor-
mance in the minority class. Furthermore, ROSE maintains sliding windows
per class to store the most recent examples and to create a class balanced
data set through undersampling. This class balanced data set is used to build
new background base learners. However, similar to CSARF, ROSE does not
consider data difficulty factors in its class imbalance adaptation strategy. Addi-
tionally, ROSE’s strategy for building new background base learners may be
prone to more extreme levels of class imbalance in non-stationary data streams
because such a scenario would require using very old minority class examples
to build new base learners, besides the sliding window initially taking time to
get filled with minority class examples.

In short summary, most existing explicit approaches to deal with class
imbalance and concept drift do not explore the decision areas of the minority
class. Whilst a few recent work [12, 15, 23] attempted to fill this research gap,
they did not strictly take decision boundaries and data difficulty factors, which
are crucial in data stream learning, into consideration.

Implicit Approaches

Implicit approaches are usually ensemble learners. They do not actively detect
concept drift but continuously update the voting weights of the base learners,
thus adapting to any potential changes in the underlying concept. However,
in class imbalanced data stream learning, the weighting strategy also needs to
consider that the base learner may bias toward the majority class. To address
this issue, one can place a higher penalty on the weight of the base learners
performing poorly in the minority class (cost-sensitive approach). Another
method is to employ a resampling method to reduce the learning bias (data-
level approach).

Oversampling-based and Undersampling-based Online Bagging (OOB and
UOB) [20] are two pioneers of data-level approach for class imbalanced data
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streams. Their idea is to incorporate random oversampling or random under-
sampling with Online Bagging (OB) [37]. They estimate the current class size
based on an exponential smoothing function with a fading factor θ. Whenever
a new example st with a class label yt arrives, it is first used to calculate the
class imbalance ratio of class yt to the majority class (OOB) or the minority
class (UOB). This ratio is used as the parameter λ of Poisson distribution in
OB, thus deciding the number of times to train each ensemble member on st.
While OOB and UOB are effective in addressing class imbalance with simple
resampling methods, they can only deal with concept drifts that affect the
posterior probability of the classes (P (Y )).

Learn++ for Concept Drift with SMOTE (Learn++.CDS) and Learn++
for Non-stationary and Imbalanced Environments (Learn++.NIE) [18] are
two pioneer batch-based approaches in this category. They were both based
on the well-known approach, Learn++ for Non-Stationary Environment
(Lean++.NSE) [38]. Learn++.CDS uses SMOTE to balance the most recent
batch of training data, while Learn++.NIE is a sub-ensemble method which
bootstraps the majority class in the most recent batch of training examples to
create different class balanced training sets. They both use weighted majority
vote as a strategy to deal with concept drift where ensemble members per-
forming well in the minority class have a higher weight. While they are both
great methods to deal with class imbalance, they could struggle when the data
stream is severely class imbalanced because there could exist some training
batches which has no minority class examples.

Dynamic Weighted Majority for Imbalance Learning (DWMIL) [19]
brought the renowned Dynamic Weighted Majority (DWM) into class imbal-
anced data stream learning. In general, it changes the weighting metric from
accuracy to a class imbalance insensitive metric, such as G-Mean, while adopt-
ing UnderBagging [39], which is an offline learning approach, as the base
learner to deal with class imbalance.

Heuristic Updatable Weighted Random Subspaces with Instance Propaga-
tion (HUWRS.IP) [14] is a batch-based learning approach to deal with drifting
class imbalanced data streams. It is based on the approach of HUWRS [40]
which was proposed to learn class balanced data streams. The main novelty of
HUWRS.IP is the example selection mechanism, called Instance Propagation
(IP), which selects relevant past minority class examples for oversampling the
most recent train batch. However, these examples may not exist in the memory.

Shortly summarising, existing implicit approaches to deal with class imbal-
ance and data stream learning either rely on sub-ensemble methods or reusing
relevant past examples. These methods do not explore the decision areas of
the minority class. They do not take data difficulty factors into account either.
Besides, these approaches are batch-based approaches, thus they are unlikely
to react to concept drift swiftly due to the need to wait for whole batches to
arrive.
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3 Proposed Approach

To answer the RQ1 posed in Section 1, we proposed a novel approach called
Synthetic Minority Oversampling based on stream Clustering (SMOClust).
The main novelty of this approach is to produce synthetic minority class exam-
ples for oversampling based on the information compressed by the stream
clustering method. Most stream clustering methods represent this information
in the form of micro-clusters, which summarise the statistics of past examples
that are close together in the feature space. These statistics usually include
the vectors of the dimensional-wise cumulative sum and squared sum. Thus,
they do not need to cache all the past examples in the memory. Most impor-
tantly, this strategy could potentially deal with gradual drift involving different
data difficulty factors because stream clustering methods continuously update
themselves to reflect the characteristics of the current underlying concept.

SMOClust also employs a concept drift detector to monitor the predictive
performance of the base learner, as a strategy to deal with abrupt drift. Thus,
it is an explicit concept drift adaptation approach. Upon drift detection, the
base learner will be reset. Although this strategy may not always be ideal
[41, 42], this work focuses on investigating the effectiveness of the novel stream
clustering based synthetic minority oversampling strategy in learning class
imbalanced data streams with concept drift. So, it is intended to keep other
components of SMOClust simple to analyse the characteristics of the proposed
strategy.

Algorithm 1 presents the pseudo-code over-viewing SMOClust. The details
of its working mechanism are described and explained as follows.

SMOClust is a data stream learning algorithm that uses a base learner B to
learn from and make predictions to new examples. This base learner B could
be any single learner, such as Hoeffding Tree [36], or an ensemble learner, such
as Online Bagging [37]. SMOClust does not store past models. It uses stream
clustering methods SC[] to manage sets of micro-clusters that compress the
information of past examples. There is one stream clustering method for each
class of the problem (line 1, Algorithm 1). The stream clustering method can
be arbitrary from the literature, such as Clustream [43], StreamKM++ [44],
DenStream [45], Clustree [46] etc. In this work, Clustream was chosen because
it is largely invariant for different types of concept drifts, meaning that it
can effectively adapt to concept drift without compromising the quality of its
clustering results [47]. The strategy of synthesising minority class examples for
oversampling based on micro-clusters is explained in Section 3.1.

The most recent example st will be first used for concept drift detection
(line 4, Algorithm 1). This concept drift detection method can be arbitrary
from the literature, such as DDM [48], DDM-OCI [31], PAUC-PH [33], ADWIN
[34] etc. Upon drift detection, the base learner B and time decay class sizes
are reset but not the stream clustering methods SC[] because they are pre-
pared to adapt to concept drifts (line 5, Algorithm 1). That said, after concept
drift detection, the stream clustering methods will still retain some knowledge
belonging to the previous concept. This has two advantages: 1) In the case of
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Algorithm 1 Synthetic Minority Oversampling based on Stream Clustering
- SMOClust
Hyper-parameters: Base Learner(b), Stream Clustering Method(sc), Class Size Fad-
ing Factor(θ), Gaussian Noise Variance(v), Categorical Change Probability(Pc), k-Nearest
neighbour(k), Drift Detector(d), Data Stream(S)
Variables: Base Learner(B), Stream Clustering Methods array(SC[])

1: Create a array of stream clustering methods (SC[]). Each of them corresponds to a class of
the classification task.

2: for each new example st from the data stream S do
3: Update the drift detector by the prediction made by base learner B to st
4: if drift detection alarm is issued then
5: Reinitialise the base learner B
6: end if
7: Train the base learner B and update its estimated class size using st
8: Store the latest example of each class
9: classmaj , classmin ← Determine the current majority and minority class based on the

estimated class size by B
10: while (the minority class estimated by B is smaller than that of majority class AND

all stream clustering methods can provide micro-clustering results) OR
SMOClust has observed any minority class example do

11: if all stream clustering methods are ready to provide micro-clustering results then
12: mClusteranchor ← Randomly pick a frequently updated micro-cluster of classmin

13: if mClusteranchor is surrounded by micro-clusters of classmin then
14: synthInstBin ← create a synthetic example using Alg. 2
15: else
16: synthInstBin ← create a synthetic example by Gaussian

sampling mClusteranchor

17: end if
18: Train SC[classmin] using synthInstBin (without class attribute)

19: Train the base learner B and update its estimated class size using synthInstBin

20: else
21: synthInst← create a synthetic example by adding Gaussian noise to latest

minority class example [29]
22: Train SC[classmin] using synthInst (without class attribute)
23: Train the base learner B and update its estimated class size using synthInst
24: end if
25: end while
26: Use st (without class attribute) to train the stream clustering method that corresponds

to the class value of st
27: end for

false positive drift detection, SMOClust can exploit the knowledge stored in
the micro-clusters to train the base learner. 2) Knowledge of the pre-drift con-
cept could help to learn the post-drift concept, especially when the drift has
low severity [49].

After that, SMOClust uses st to train B and to update the time decay class
sizes (line 7, Algorithm 1). The time decay class sizes estimate the current
minority class and thus determine the oversampling rate. Equation 1 presents
the calculation of the normalised class size of class cm at time step t [20]:

classSize(cm)(t) =

{
1

M
, if t = f

[cst=cm]+θ×classSize(cm)(t−1)×(t−f)
t−f+1 , otherwise

(1)

where m ∈ M and M = {0, 1}, considering binary classification tasks and
θ (0 < θ < 1) is a predefined time decay factor. cst is the true class of st.
Thus, [cst = cm] = 1 if the true class of st is cm, otherwise 0. f is the first
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time step used in the calculation. Note that, unlike OOB and UOB [20] which
estimate the current class sizes of the data stream, SMOClust estimates the
class imbalance degree of the information seen by the base learner rather than
the class imbalance degree of the data stream. Thus, synthetic examples are
also used to update the class sizes. The reason behind this design is discussed
together with the strategy of training the base learner with synthetic examples.

SMOClust first records the most recent examples from each class (line 8,
Algorithm 1), then checks if the base learner has learnt from both classes
equally (line 10, Algorithm 1). If not, SMOClust will generate synthetic minor-
ity class examples for oversampling based on the micro-clusters of the minority
class (line 13-17, Algorithm 1), which is detailed in Section 3.1.

In the case that not all stream clustering methods can provide micro-
clustering results and SMOClust has observed and recorded the most recent
“real” example of the minority class (denoted as slast minority), SMOClust will
generate a synthetic minority class by adding Gaussian noise to slast minority

for oversampling (line 21, Algorithm 1). This strategy follows the strategy
proposed by [29], except SMOClust treats ordinal attributes as categorical
attributes due to the limitation in MOA [50].

No matter the synthetic minority class example is generated based on
micro-clusters or Gaussian noise, SMOClust will use it to train the base learner
and the corresponding stream clustering method, and to update the class size
immediately (line 18-19, 22-23, Algorithm 1). This strategy can prevent the
base learner from biasing towards the majority class when there are no “real”
minority class examples arrive for a long period, which is likely to happen
when the data stream is extremely class imbalanced. Also, updating the class
sizes with both “real” and synthetic examples allows us to estimate if the base
learner has learnt from both classes equally. If not, SMOClust will then create
synthetic minority class examples to train the base learner immediately.

In the case of none of the above conditions being satisfied, i.e., none of the
conditions of the while-loop are satisfied (line 10, Algorithm 1), SMOClust
will not perform any oversampling because this means either oversampling is
not needed or there is no information about the minority class for SMOClust
to generate synthetic examples. Lastly, a copy of the most recent example
st is converted to a suitable format to train the stream clustering method,
corresponding to the class value of st (line 26, Algorithm 1).

3.1 Generating a Synthetic Minority Class Example for
Oversampling using Micro-clusters

This section presents the overview of generating a synthetic minority class
example for oversampling based on micro-clusters. The general idea is to create
synthetic minority class examples in one of the dense areas of the minority
class. In this way, we can consolidate the knowledge learnt in the existing
minority class areas without being greatly affected by noise. In the case where
a dense area does not exist, SMOClust will pick one of the past minority class
areas to explore the decision boundary around it.
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Algorithm 2 presents the pseudo-code of this method. The details of gener-
ating a synthetic minority class example using micro-clusters can be described
as follows.

Algorithm 2 Generate Synthetic Instance with k-NN Micro-Clusters

1: function genSynthInstBykNN(SC[classmin], mClusteranchor, classmin, k)
2: sphere cluster ← combine mClusteranchor with its k nearest micro-clusters, using Alg. 3
3: synthInst← create a synthetic example by sampling sphere cluster, using Alg. 4
4: return synthInst
5: end function

First of all, SMOClust randomly takes one of the micro-clusters from the
minority class as an anchor (denoted as mcminority

anchor ) (line 12, Algorithm 1).
Micro-clusters that are created recently or are updated frequently and recently
have higher chance to be chosen as this anchor. After that, SMOClust checks
if mcminority

anchor is surrounded by the micro-clusters from the same class (line
13, Algorithm 1). If this condition is satisfied, SMOClust can consider such
area is dense enough to create synthetic minority examples for oversampling.
It will then make a copy of mcminority

anchor and then combine it with its k-Nearest
micro-clusters (based on hull distance) in class classmin to form a temporary
micro-cluster mctemp (line 2, Algorithm 2). We denote such set of k-Nearest
micro-clusters as MCkNN,minority, thus, |MCkNN,minority| = k and each k-

Nearest micro-clusters is denoted as mckNN,minority
i ∈ MCkNN,minority. The

details of how to combine a set of micro-clusters into one are presented in
Algorithm 3.

Algorithm 3 Combining a set of micro-clusters into one

1: function combine(mClusters[])
2: cnew ← compute the weighted average of the centres of micro-clusters in mClusters[]
3: for each micro-cluster mClust ∈ mClusters[] do
4: d← compute the distance between cnew and the centre of mClust
5: rn ← rn∪ (the radius of mClust + d)
6: end for
7: rnew ← find the largest value in rn
8: return a new micro-cluster with centre cnew and radius rnew

9: end function

To combine a set of micro-clusters into one, we first need to calculate the
new centre cnew of the resulting micro-cluster mctemp. This can be achieved by
getting the weighted average of the centres of the original set of micro-clusters,
dimensionwisely (line 2, Algorithm 3). After that, we set the radius rnew of
the resulting micro-cluster mctemp to as the distance between the new centre
to the farthest hull (boundary) among all the original micro-clusters (line 3-7,
Algorithm 3). Figure 1 illustrates an example of combining mcminority

anchor with
its 3-nearest neighbours into one micro-cluster.

A synthetic minority class example will then be generated by sampling
from this resulting micro-cluster with the highest chance near the centre of
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Fig. 1: Illustration of Combining mcminority
anchor with 3-nearest neighbours into

one micro-cluster

mcminority
anchor (line 3, Algorithm 2). Figure 2 illustrates an example of sampling

from a synthetic minority class example from mctemp.
In Figure 2, the green circles are the micro-clusters belonging to the minor-

ity class while the blue circles are the micro-clusters belonging to the majority
class.1 The black circle line represents mctemp and the red dashed lines are the
contour of the probability density function to sampling a point. The closer to
the centre of mcminority

anchor , the higher the probability.
The reason for sampling a new synthetic minority class example close to

mcminority
anchor is that this mctemp could overlap with the micro-cluster from the

other class. If we just sample from mctemp randomly or by a multivariate
Gaussian distribution with a mean at cnew, we will have a high chance to
sample a point that is close to the region or the majority class. Therefore,
sampling points as synthetic minority class examples from mctemp but close

to the centre of mcminority
anchor can reduce the risk of generating noisy examples

while maintaining the ability to explore this dense region of the minority class.
Although Figure 2 only illustrates an example in two-dimensional feature

space, this idea can be applied to any multi-dimensional space. This sampling
strategy is further detailed in Section 3.2.

1Note that, the size and the number of micro-clusters in Figure 2 do not necessarily reflect the
number of examples in each class. This figure just focuses on a particular region in the feature for
explanation purposes.
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Fig. 2: Illustration of Sampling a Synthetic Minority Class Example from
mctemp

In the case that mcminority
anchor is not surrounded by the micro-clusters belong-

ing to the same class, SMOClust will generate a synthetic minority class
example by performing multivariate Gaussian sampling inside mcminority

anchor (line
16, Algorithm 1). For example, this will be the case when when mc(i+2) (top

right green circle in Figure 2) is chosen to be the mcminority
anchor . The the mean

of the multivariate Gaussian distribution is the centre of mcminority
anchor and the

standard deviation is set as a third of the radius of mcminority
anchor (radius/3). In

other words, the boundary of mcminority
anchor is set at three units standard devi-

ations (or standard score = 3) from the centre. Therefore, we have 99.9% of
chance to sample a point within mcminority

anchor . Gaussian distribution was chosen

rather than uniform distribution in sampling mcminority
anchor because mcminority

anchor

could partly overlap with the majority class region. Therefore, sampling a new
point as synthetic minority class example close to the centre of mcminority

anchor is
a safe strategy.

3.2 Sampling from a Micro-cluster with the Highest
Probability at a Designated Location

This section present the strategy to sampling points from the temporary micro-
clustermctemp which is formed by combiningmcminority

anchor andmckNN,minority
i ∈
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MCkNN,minority with the highest probability at the centre of mcminority
anchor . The

general idea is to sample random points that are inside mctemp and these

points are likely to be close to the centre of mcminority
anchor . The pseudocode of this

sampling strategy is presented in Algorithm 4. Figure 3 illustrates the steps of
this sampling strategy and it can be explained as follows.

Algorithm 4 Sampling from a Hyper-Sphere by Skewed Gaussian with the
Maximum of the Probability Density Function at a Designated Location

1: function sample around target(α(1), sphere cluster)
2: β ← sphere cluster.getCentre()
3: r ← sphere cluster.getRadius()
4: dimensions← β.numOfDimensions()
5: δ ← createArrayWithSize(dimensions)
6: γ ← createArrayWithSize(dimensions)

7: α(2) ← sample random from hypersphere(α(1), 1) ▷ By Muller’s Method [51]
8: A← 0; B ← 0; C ← 0
9: for i ∈ range(0..dimensions) do

10: δ[i]← α(2)[i]− α(1)[i]

11: γ[i]← β[i]− α(1)[i]
12: A← A + (δ[i] ∗ δ[i]) ▷ A =

∑n
i=0 δ2i

13: B ← B + (δ[i] ∗ γ[i]) ▷
∑n

i=0 δiγi

14: C ← C + (γ[i] ∗ γ[i]) ▷
∑n

i=0 γ2
i

15: end for
16: B ← B ∗ −2 ▷ B = −2(

∑n
i=0 δiγi)

17: C ← C − (r ∗ r) ▷ C = (
∑n

i=0 γ2
i )− r2

18: return (−B + sqrt(B ∗ B − 4 ∗ A ∗ C))/(2 ∗ A) ▷
−B+

√
B2−4AC
2A

19: end function

Let us first denote the micro-cluster mctemp as HSβ which is a hyper-
sphere with radius r and centred at β = (β1, β2, β3, ..., βn), where n is the
number of dimensions of the input space of the problem, the equation of this
hyper-sphere is:

n∑
i=0

(xi − βi)
2 = r2 (2)

Let us also denote the centre ofmcminority
anchor to as α(1) = (α

(1)
1 , α

(1)
2 , α

(1)
3 , ..., α

(1)
n )

(the black dot in Figure 3(a)), which should always be inside HSβ . First of
all, we need to pick a random direction from α(1) (Figure 3(a)). This can be
achieved by randomly and uniformly picking a point from a unit hyper-sphere
centred at α(1), using the Muller’s method [51]. We then denote this point to as

α(2) = (α
(2)
1 , α

(2)
2 , α

(2)
3 , ..., α

(2)
n ) (the red dot in Figure 3(a)) (line 7, Algorithm

4). Points α(1) and α(2) form an n-dimensional infinite long straight line (the
line d in Figure 3(b)), whose parameterised equation is:

xi = α
(1)
i + t(α

(2)
i − α

(1)
i ) (3)
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Two-Dimensional Example of the Sam-
pling Result

Fig. 3: Illustration of Sampling from mctemp

where t is a scalar and (α
(2)
i −α

(1)
i ) is the direction vector. To find the intercepts

of this infinite long line to the hull of HSβ (the blue and green dots in Figure
3(b)), we can substitute Equation 3 into Equation 22:

n∑
i=0

((α
(2)
i − α

(1)
i )t+ (α

(1)
i − βi))

2 = r2 (4)

Let us denote δi = α
(2)
i − α

(1)
i and γi = βi − α

(1)
i (line 10 and 11, Algorithm

4), then Equation 4 becomes:

n∑
i=0

(δit− γi)
2 = r2

2The idea is inspired by the discussion on https://math.stackexchange.com/questions/151064/calculating-
line-intersection-with-hypersphere-surface-in-mathbbrn?rq=1
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(

n∑
i=0

δ2i )t
2 − 2(

n∑
i=0

δiγi)t+ (

n∑
i=0

γ2
i )− r2 = 0 (5)

Let us denote A =
∑n

i=0 δ
2
i (line 12, Algorithm 4), B = −2(

∑n
i=0 δiγi) (line

13 and 16, Algorithm 4) and C = (
∑n

i=0 γ
2
i ) − r2 (line 14 and 17, Algorithm

4) to solve Equation 5 based on Bhaskara’s equation:

t =
−B ±

√
B2 − 4AC

2A
Here, we just take the positive root of t because it “follows” the direction
vector, while the negative root “oppositely follows” the direction vector (the
direction is denoted by the arrows on line d in Figure 3(b)). i.e.

tintercept =
−B +

√
B2 − 4AC

2A
(6)

Substituting tintercept into Equation 3 will obtain the intercept of the line
and the hyper-sphere, following the direction vector (the blue dot in Figure
3(b)). Thus, to sample points within the HSβ , we can simply sample a scalar
tsample between 0 and tintercept (Figure 3(c)) and substitute it into Equation
3 to obtain the sampled point. As we want to sample this point with the
highest chance at the target point α(1), we can sample tsample using Gaussian

distribution with the mean = 0 and standard deviation =
tintercept

3 . i.e.

g ∼ N(0, (
tintercept

3
)2)

tsample = g

At last, we substitute tsample into Equation 3 to obtain the sample point.

The reason for setting the standard deviation to be
tintercept

3 is that we want
the sampled point to be within the micro-cluster. Yet, the probability density
function of the Gaussian distribution has no bounds. Thus, we set the tintercept
at 3 standard score (z-score = 3), such that 99.9% area under the probability
density function curve of the Gaussian distribution is between −tintercept and
+tintercept. Also, we want tsample to “follow” the direction vector (i.e. we only
interested in line segment between the black and the blue dots on d in Figure
3(b)), thus, we only accept the positive value of tsample.

Figure 3(d) presents a two-dimensional example of using the aforemen-
tioned strategy to sample points in a hyper-sphere centred at (0,0) with a
radius of 10. The points have the highest probability to be sampled at (-7,0)

4 Experiments to Evaluate the Predictive
Performance of SMOClust

This section presents the design of the experiments to evaluate SMOClust.
The predictive performance of SMOClust was first compared against five exist-
ing approaches from the literature on artificial data streams of different types
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of drifts. This is to investigate for which types of drift SMOClust will be
advantageous and disadvantageous, answering RQ2. SMOClust was then com-
pared against the same set of existing approaches on real-world data streams
to obtain a general idea of its performance in practical situations, answering
RQ3. Massive Online Analysis (MOA) [50] was chosen to be the experimenta-
tion platform. Section 4.1 presents the details of artificial and real-world data
streams used in the experiments. Section 4.2 presents the detailed setup of
the experiments, including the procedure of hyper-parameter tuning and the
evaluation method used in the experiments.

4.1 Data Streams

As discussed in Sections 1 and 2, data difficulty factors play a crucial role
in class imbalanced data stream learning with concept drift. Therefore, it is
important to evaluate class imbalance data stream learning approaches based
on data streams with different data difficulty factors. In line with that, the
artificial data stream generator proposed by [16] was adopted because it allows
us to simulate concept drifts that affect different data difficulty factors, includ-
ing the class imbalance ratio, movement of the clusters in the minority class,
and the proportion of safe, borderline and rare minority class examples. We
have generated a large variety of artificial data streams to avoid any bias in the
evaluation and enable us to understand the conditions under which SMOClust
performs well and the conditions under which it fails, as well as the reason for
such behaviour.

Table 2 presents a summary of artificial data streams used in the experi-
ments. Each of them has five numerical input attributes {xi ∈ (−1, 1)}5i=1 and
a class label yi ∈ {0, 1}. They all consist of 200k examples where concept drift
happens gradually from 70k to 100k time steps. The continuous movement of
minority class sub-clusters in gradual drift scenarios creates a complex and
dynamic environment for evaluation. We created thirty artificial data streams
of each type with different random seeds. Each of the thirty streams is used to
evaluate the data stream learning approaches in a single run. The evaluation
method is detailed in Section 4.2

Following the default setting by [16], when the artificial data stream has no
drift or no modifier specified, it is: 1) class balanced, 2) composed of a single
cluster representing class 1, uniformly surrounded by the examples of class 0,
and 3) examples only appear in safe regions. When the data stream is class
imbalanced, class 1 is the minority class while class 0 is the majority class.

As shown in Table 2, we considered four groups of drift from [16]’s work
in this study. The first group (Imbalance ratio drift) considers concept drift
affecting the class imbalance ratio only. The second group (Single factor drift
with static imbalance ratio) considers data streams with a static class imbal-
ance ratio while the concept drift happens in the form of five factors, which
were discussed by [16]: splitting, moving, merging clusters and decreasing the
ratio of safe examples while increasing the ratio of borderline or rare examples.
In the third (Double factor drift) and the fourth (Complex factor drift) groups,
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Table 2: Summary of Artificial Data Streams

Imbalance Ratio Drift Single Factor Drift with Static Imbalance Ratio

StaticIm10 Im1,
StaticIm1 Im10,

Im1,
StaticIm1 Im50

StaticIm{30/10/1} Split{3/7},
StaticIm{30/10/1} Move{3/7},
StaticIm{30/10/1} Merge{3/7},

StaticIm{30/10/1} Borderline{20/100}
StaticIm{30/10/1} Rare{20/100}

Double Factor Drift Complex Factor Drift
Im1+Rare100,
Im10+Rare60,
Split5+Im10,

Im1+Borderline100,
Im10+Borderline20

StaticIm10 Split5+Im1+Rare100,
StaticIm10 Split5+Im1+Borderline100,
Split5+Im10+Borderline40+Rare40,

Split5+Im10+Borderline80,
Im10+Borderline20+Rare20

- All artificial data streams have 200k examples, where a single concept drift occurs from 70k-th
time step to 100k-th time step.

- “+” refers to the factors occurring simultaneously during the concept drift.
- StaticIm{N} refers to a static minority class ratio of N% throughout the entire stream.
- Im{N} refers to the minority class ratio of N% after the concept drift.
- Split{N}, Move{N}, Merge{N} refer to drifts which split, move and merge N clusters in the
minority class respectively.

- Borderline{N}, Rare{N} refer to drifts changing N% of the minority class examples from

appearing in a safe region of the clusters to being borderline region and rare cases respectively.

we have chosen ten artificial data streams (five for each group) with concept
drift affecting two factors and a group of factors, respectively. These artificial
data streams were chosen evenly across the lists of data streams from [16]’s
work with double factor drift and complex factor drift in [16]’s work respec-
tively. These lists were sorted by the average performance of the compared data
stream learning approaches in their work. Thus, picking data streams evenly
from these lists means that we are taking scenarios with different difficulty
levels.

As the analysis which is presented in Section 4.3 shows that SMOClust
performed well in severely imbalanced data streams, we performed additional
experiments with the aforementioned single factor drift streams with more
severe static class imbalance ratio to further evaluate SMOClust in extreme
cases. These additional severely class imbalanced artificial data streams are
summarised in Table 3. Note that, although we reused the static imbalance
ratio of 1% minority class examples, we used another set of random seeds when
performing these additional experiments.

Apart from experiments with artificial data streams, we also performed
experiments with different real-world data streams to evaluate SMOClust in
practical applications. These real-world data streams are summarised in Table
4 and their details are as follows.

The Luxembourg stream [52] was constructed from the European Social
Survey from 2002 to 2007. The classification task is to predict whether inter-
net usage is high or low. The NOAA stream [38] contains weather records
collected over five decades (1949-1999). These records include temperature,
pressure, wind speed, precipitation and other weather-related events. The clas-
sification task is to predict whether the next day will rain. The Ozone stream
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Table 3: Summary of Single Factor Drift Artificial Data Streams with Severe
Imbalance Ratio

Single Factor Drift with Severe Static Imbalance Ratio

StaticIm{5/3/1/07/05/03} Split{3/7},
StaticIm{5/3/1/07/05/03} Move{3/7},
StaticIm{5/3/1/07/05/03} Merge{3/7},

StaticIm{5/3/1/07/05/03} Borderline{20/100},
StaticIm{5/3/1/07/05/03} Rare{20/100}

- All artificial data streams have 200k examples, where a single concept drift from 70k-th time
step to 100k-th time step.

- StaticIm{N} refers to a static minority class ratio to be N% throughout the entire stream.
StaticIm{0N} refers to a static minority class ratio to be 0.N% throughout the entire stream.

- Split{N}, Move{N}, Merge{N} refer to drifts which split, move and merge N clusters in the
minority class respectively.

- Borderline{N}, Rare{N} refer to drifts changing N% of the minority class examples from

appearing in a safe region of the clusters to being borderline region and rare cases respectively.

Table 4: Summary of Real-World Data Streams

Stream
#Examples

(Pre)
#Examples
(Actual)

#Nom.
Attr.

#Num.
Attr.

Imbalance
Ratio (Pre)

Imbalance
Ratio (Actual)

Luxembourg 190 1711 15 16 0.532:0.468 0.512:0.488
NOAA 1,815 16,344 0 8 0.698:0.303 0.685:0.315
Ozone 253 2,281 0 72 0.893:0.107 0.942:0.058

PAKDD2009 4999 44998 13 14 0.798:0.202 0.803:0.197
Covtype(c1={1-6}) 58,101 522,911 2 10 0.785:0.215 0.619:0.381

Covtype(c1=1) 58,101 522,911 2 10 0.595:0.405 0.524:0.476

Covtype(c1=2) 58,101 522,911 2 10 0.963:0.037 0.936:0.064

Covtype(c1=3) 58,101 522,911 2 10 0.963:0.037 0.999:0.001

Covtype(c1=4) 58,101 522,911 2 10 0.958:0.042 0.987:0.014

Covtype(c1=5) 58,101 522,911 2 10 0.963:0.037 0.971:0.029

Covtype(c1=6) 58,101 522,911 2 10 0.963:0.037 0.965:0.035

INSECTSinc. 45,204 406,840 0 33 0.899:0.101 0.905:0.095
INSECTSabr. 35,527 319,748 0 33 0.912:0.088 0.907:0.093
INSECTSinc.grad. 14,342 128,981 0 33 0.921:0.079 0.899:0.101
INSECTSinc.abr. re. 45,204 406,840 0 33 0.895:0.105 0.905:0.095
INSECTSinc.re. 45,204 406,840 0 33 0.895:0.105 0.905:0.095

Amazon 800 7,200 0 30 0.728:0.272 0.875:0.125
Twitter 909 8,181 0 30 0.814:0.186 0.846:0.154

- Total number of attributes = #Nominal attributes + #Numeric attributes + Class attribute.
- “Pre” refers to hyper-parameter tuning sets (i.e. the first 10% of the original data set). “Actual”
refers to actual experiment sets (i.e. the remaining 90% of the original data set.

- Covtype(c1=x): “c1=x” refers to the class 1 is the class x in the original data set while the rest

of the classes are combined to be the class 0 in the “Actual” experiment stream. “c1={x0−xn}”
refers to the class 1 is the class x0-xn in the original data set combined while the rest of the
classes are combined to be the class 0 in the “Actual” experiment stream.

- For all INSECTS data streams, “ae-albopictus” is the class 1. “inc.” refers to incremental,

“abr.” refers to abrupt, “grad” refers to gradual, and “re.” refers to recurring.

[53] consists of air measurements collected from 1998 to 2004. The task is to
predict the ozone level eight hours ahead of time. The PAKDD2009 stream
[54] consists of private label credit card application records and the task is
to decide whether a given application should be approved. Forest Covertype
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(Covtype) stream [55] contains the cartographic information about the forest
of 30 × 30-meter cells and the task is to predict the cover type for a given cell.
Covtype stream originally is a multi-class classification problem with seven
forest cover types. To make it suitable for this study, it has been converted
into seven binary classification streams. Each of them takes one of the forest
cover types as one class while combining other forest cover types to be the
other class. INSECTS streams [56] were constructed using a smart trap with
optical sensors to collect the flying data of three different species of insects
in a non-stationary environment for around three months. The temperature
of the data collection environment was controlled to simulate concept drifts.
INSECTS streams originally have six classes: three species of mosquitoes with
two genders. We converted them into binary classification tasks by combining
classes belonging to the species of ae-albopictus as the minority class while
combining the rest of the classes as the majority class. Also, it has to note that
[56] originally proposed seven INSECTS streams but we only adopted six of
them which contain concept drifts and left the INSECT-out-of-control stream
unused as it does not contain any concept drift. The Amazon stream [57] com-
prises reviews of books, DVDs, electronics, and kitchen appliances. Reviews
with a rating greater than 3 were labelled as positive. The objective is to dis-
cern whether a review has a rating above 3. The Twitter stream [58] consists
of labelled tweets about popular topics. The goal is to predict whether the
sentiment of a given tweet is positive or negative.

To facilitate analysing the predictive performance of SMOClust, we also
analysed the characteristics of the minority class of the real-world data
streams, including the potential number of clusters, and the ratios of safe,
borderline, rare and outlier examples. Note that we only analysed the por-
tion of the real-world data streams used in the actual experiments, which
excludes the first 10% of each original real-world data stream that was used
for hyper-parameter tuning (see Section 4.2 for details the hyper-parameter
tuning procedure). The procedure of this analysis follows the methodology
proposed by [16] and is described as follows.

The characteristics of each real-world data stream are estimated in suc-
cessive batched of examples. We followed [16] to use a batch size of 2000
examples for all data streams except for Luxembourg, NOAA, Amazon, and
Twitter, where a batch size of 200 was used as these data streams have less
than 10,000 examples. The class imbalance ratio and the ratios of each minor-
ity class type are estimated for each batch. It is worth noting that we only
focused on analysing the class 1 because it is the global minority class of all
the real-world data streams (see Table 4), even though this class could poten-
tially become a majority during certain periods of the data stream, e.g., when
there is potential concept drift affecting P (Y ), changing the roles of major-
ity and minority classes temporarily. As for types of minority class examples,
they were estimated using the method proposed by [17]. This method first
finds the k-Nearest neighbours of each minority class example. Based on the
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class ratios among these k-Nearest neighbours, it then categorises each minor-
ity class example as safe, borderline, rare, or outlier. Here, we followed [17] to
adopt k = 5.

Following [16]’s procedure, we also estimated the number of minority
class clusters in each batch, using the affinity propagation algorithm [59] and
removing clusters with less than six minority class examples [16]. The affinity
propagation algorithm was run thirty times with different random seeds for
each batch. The average estimated number of minority class clusters is then
recorded.

Lastly, we reported the ranges of the aforementioned characteristics across
the different batched and their medians in Table 5. Note that we only per-
formed analysis about types of minority class examples and the potential
number of clusters on batched that contain at least six (k + 1) minority class
(class 1) examples. This is to prevent always categorising the minority class
examples as rare cases or outliers when the total number of minority class
examples in the batch is extremely low. The number of batches with less than
size minority class examples is reported in brackets in the third column of
Table 5.

As shown in Table 5, PAKDD2009 and NOAA streams usually present the
most number of clusters of minority class examples, with medians of twenty-
eight clusters, meaning that the minority class is split into several clusters in
this data stream. INSECTS streams usually present fewer clusters of the minor-
ity class than PAKDD2009 and NOAA streams, which have medians ranging
from thirteen to sixteen clusters. Luxembourg, Ozone, Covtype, Amazon and
Twitter streams usually present the least number of clusters of the minority
class, having medians ranging from zero to six.

As for the types of minority class examples, Table 5 shows that the
Ozone, PAKDD2009, INSECTS, Amazon, and Twitter streams mainly con-
sist of borderline, rare, and outlier minority class examples. Luxembourg and
NOAA streams mainly consist of safe and borderline minority class exam-
ples. Most Covtype streams mainly consist of safe minority class examples.
Regarding the minority ratios, most of them have a small range, indicating
that the potential concept drifts only affect P (Y ) with mild severity. In con-
trast, Covtype(c1={1-6}), Covtype(c1=1) and Covtype(c1=2) streams have a very
large range, indicating that that they potentially present severe concept drifts
affecting P (Y ). In particular, Covtype(c1=2) presents a large range of minority
class ratio with a very small median (1%). This may indicate that the severe
concept drifts affecting P (Y ) could potentially be abrupt.

4.2 Experiment Setup

This section presents the procedure of hyper-parameter tuning and exper-
iments. The following are the approaches from the literature that were
considered in this study and the reason behind the choice. All of these
approaches are strict online approaches, which do not require storage of any
past data, so that the comparisons are fair.
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Table 5: Characteristics of Real-World Data Streams (Values in the brackets are the median)

Stream #Examples
#Batches

(Uncounted)
Est. #Clust.
(Median)

Minority
Ratio

Safe Borderline Rare Outlier

Luxembourg 1711 9 (0) 4-8 (6) 46%-53% (48%) 47%-62% (51%) 32%-48% (42%) 3%-9% (4%) 0%-3% (1%)
NOAA 16344 9 (0) 9-33 (28) 25%-37% (31%) 29%-45% (33%) 33%-50% (43%) 11%-18% (15%) 6%-13% (9%)
Ozone 2281 12 (5) 0-2 (0) 0%-18% (4%) 0%-22% (0%) 0%-61% (17%) 14%-58% (30%) 5%-70% (33%)

PAKDD2009 44998 23 (0) 19-32 (28) 17%-22% (20%) 0%-4% (2%) 27%-38% (32%) 33%-41% (36%) 22%-34% (30%)
Covtype(c1={1-6}) 522911 262 (8) 1-26 (1) 0%-76% (36%) 66%-99% (92%) 0%-26% (6%) 0%-8% (1%) 0%-5% (1%)
Covtype(c1=1) 522911 262 (2) 1-36 (1) 0%-91% (46%) 69%-100% (93%) 0%-25% (5%) 0%-5% (1%) 0%-4% (0%)
Covtype(c1=2) 522911 262 (149) 0-33 (5) 0%-89% (0%) 0%-100% (90%) 0%-78% (7%) 0%-14% (2%) 0%-11% (1%)
Covtype(c1=3) 522911 262 (240) 0-6 (1) 0%-3% (0%) 0%-62% (44%) 0%-67% (19%) 0%-38% (16%) 9%-67% (20%)
Covtype(c1=4) 522911 262 (108) 0-9 (3) 0%-10% (1%) 0%-100% (68%) 0%-79% (23%) 0%-56% (6%) 0%-50% (2%)
Covtype(c1=5) 522911 262 (159) 0-14 (3) 0%-28% (0%) 0%-99% (81%) 0%-61% (13%) 0%-38% (3%) 0%-29% (2%)
Covtype(c1=6) 522911 262 (110) 0-17 (2) 0%-21% (1%) 0%-100% (91%) 0%-93% (6%) 0%-33% (1%) 0%-22% (1%)

INSECTSinc. 406840 204 (1) 0-27 (15) 0%-19% (9%) 0%-24% (5%) 0%-46% (32%) 0%-42% (29%) 14%-100% (33%)
INSECTSabr. 319748 160 (0) 0-49 (13) 0%-39% (9%) 0%-50% (5%) 0%-53% (32%) 0%-46% (27%) 4%-100% (32%)

INSECTSinc.
grad. 128981 65 (0) 7-27 (16) 5%-19% (10%) 0%-43% (8%) 17%-46% (33%) 5%-42% (27%) 8%-47% (28%)

INSECTSinc.
abr. re. 406840 204 (1) 0-26 (15) 0%-18% (10%) 0%-29% (5%) 0%-57% (32%) 7%-41% (28%) 6%-93% (32%)

INSECTSinc.
re. 406840 204 (1) 0-26 (15) 0%-17% (10%) 0%-27% (4%) 0%-58% (32%) 0%-41% (28%) 5%-100% (32%)

Amazon 7200 36 (20) 1-5 (4) 0%-34% (0%) 0%-13% (4%) 27%-55% (40%) 25%-46% (36%) 10%-38% (17%)
Twitter 8181 41 (0) 0-7 (2) 5%-41% (13%) 0%-22% (0%) 0%-52% (20%) 0%-59% (31%) 9%-90% (41%)

- Covtype(c1=x): “c1=x” refers to the class 1 is the class x in the original data set while the rest of the classes are combined to be the class 0 in the “Actual”

experiment stream. “c1={x0-xn}” refers to the class 1 is the class x0-xn in the original data set combined while the rest of the classes are combined to be
the class 0 in the “Actual” experiment stream.

- For all INSECTS data streams, “ae-albopictus” is the class 1. “inc.” refers to incremental, “abr.” refers to abrupt, “grad” refers to gradual, and “re.” refers
to recurring.
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• OOB(d) and UOB(d) [20]: Baseline approaches that use simple oversampling
or undersampling to deal with class imbalance in data stream learning.

• OnlineUnderOverBagging(d) (oUnderOverB(d)) [11]: A simple existing
approach which combines simple undersampling and oversampling for class
imbalance data stream learning. We slightly modified it to use time decay
class sizes with the “oversampling” equation from OOB to controlling the
resampling rate. We chose to adopt the “oversampling” equation from OOB
because the research paper [11] explicitly states that the resampling rate for
OnlineUnderOverBagging should be greater than 1. On the other hand, the
“undersampling” equation from UOB produces a fractional number, which
is not suitable in this context.

• VFC-SMOTE [15]: An existing approach which addresses class imbalance
by generating synthetic minority class examples using histogram-based
summaries of past examples.

• SMOTE-OB [23]: An existing approach which incorporates
the class imbalance adaptation strategy of VFC-SMOTE into
OnlineUnderOverBagging[11].

• OnlineOversampling(d) (oOS(d)): A variant of the proposed approach which
always uses the most recently seen minority class example for oversam-
pling. This approach is used as a baseline to support the investigation of
when the proposed strategy of creating synthetic minority class examples
for oversampling is advantageous / disadvantageous.

• SMOGauNoise: A variant of the proposed approach inspired by [29], which
proposed a data augmentation method for software effort estimation. SMO-
GauNoise has the same learning and making prediction strategies as the
proposed approach but it always creates synthetic minority class examples
for oversampling by adding Gaussian noise to the most recent minority
class example. Note that this is the first time to investigate [29]’s data
augmentation method in the context of classification problems.

Approaches followed by “(d)” refers to these approaches that were not
designed to handle concept drift originally3. We used a wrapper to enable
them to use a concept drift detector. Their system reset upon concept drift
detection.

For the evaluation method, we modified the periodic holdout test for the
experiments with artificial data streams. This modified periodic holdout test
takes the data difficulty factors into the consideration, which includes the posi-
tion of the minority class clusters, class imbalance ratio, and the proportions
of borderline and rare examples. During a single run, the data stream learning
approach was tested on a holdout test set Btest

t of m examples after training
on every n example. Its predictive performance in G-Mean was then recorded.
The holdout test sets are class balanced and they follows the same underlying
joint probability distribution (concept) at the evaluation time step t, where
t mod n = 0, i.e., Btest

t ∼ Pt(X,Y ). At the end of the run, we summarised

3Except OOB and UOB can handle concept drift affecting P (Y ).
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their performance across the stream by taking an average of their G-Mean
performance on the test sets.

For hyper-parameter tuning purposes, an additional artificial data stream
was created. It also consists of 200k examples where the concept drift hap-
pens from 70k to 100k time steps but the class imbalance ratio and the drift
behaviour were randomly selected from the set of all combinations of drift fac-
tors used in [16]. We denote this data stream as the “hyper-parameter tuning
stream”. The set of hyper-parameter values of each approach that leads to
the best ten runs average of G-Mean across this stream was then used in the
experiments. In the experiments, we adopted thirty runs rather than ten runs
to reduce the effect of randomness on the results.

Experiments with real-world data streams have a similar procedure. The
first 10% or each real-world data stream was used for the hyper-parameter
tuning purposes. The prequential evaluation was used because the underlying
concepts are unknown in advance. The set of hyper-parameter values of each
approach that leads to the best ten runs average of G-Mean across the first
10% of each real-world data stream was then chosen to be used in the exper-
iment of the corresponding data stream which consists of the remaining 90%
of examples. The time decayed G-Mean performance was sampled at every
500 time steps, except they were sampled at every fifty time steps for NOAA,
Ozone, Amazon, Twitter streams and every ten time steps for Luxembourg
stream due to the fact that these streams are a lot shorter than other streams
(i.e., they have a lot fewer examples than other data streams). Thus, sampling
at shorter intervals allows us to see how the performance of the approaches
changes throughout these relatively short data streams. We adopted a time
decay factor of 0.999 to make their past predictive performance less impor-
tant to the current time step. We recorded their thirty runs average G-Mean
performance across each stream for evaluation and comparative analysis.

At the end of the experiments, the predictive performance of the approaches
was compared by different concept drift data difficulty factors. The correspond-
ing rankings in the groups were then presented. Friedman test with a level of
significance of 0.05 was applied to each group, confirming if there is any statis-
tical significance between the predictive performance of different approaches. If
there is, Nememyi post-hoc test was used to determine which approaches per-
formed significantly different from the top-ranked approach. In the statistical
tests, each group corresponds to a data stream learning approach while each
observation within a group corresponds to the average predictive performance
across a given data stream in a single run. The thirty runs average predictive
performance of the approaches are also reported to facilitate us in analysing
the margin of the performance difference.

4.3 Results with Artificial Data Streams

This section presents the analysis done to compare the predictive performance
of SMOClust against existing approaches on artificial data streams which
consider different drift difficulties in the minority class. General comparisons
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are first given based on the Friedman rankings of average G-Mean of the
approaches grouped by different drift difficulty factors, presented in Table 6. It
is then followed by a detailed analysis of the behaviour of SMOClust in repre-
sentative cases where it performed better and worse than existing approaches
in Sections 4.3.1 and 4.3.2 respectively.

Table 6: Statistical (Friedman) Ranking of G-Mean on Artificial Streams
Grouped by Factors

Groups OOB UOB oOS
oUnder-
OverB

OOBd UOBd oOSd
oUnder-
OverBd

SMO-
Gau-
Noise

VFC-
SMO-
TE

SMO-
TE-
OB

SMO-
Clust

Imbalance
Ratio
Drift

3.77 4.44 4.72 3.27 7.35 7.59 8.37 5.05 6.93 11.65 9.1 5.76

Double
Factor

6.03 7.24 5.71 6.85 4.2 7.39 6.05 5.47 2.67 11.38 9.21 5.80

Complex
Factor

5.16 8.2 5.27 6.4 4.27 6.09 6.88 4.99 2.94 11.71 10.4 5.68

Single Factor Drift with Static Imbalance Ratio
StaticIm{*}a

Split
7.04 6.93 7.69 5.63 4.96 6.93 6.09 3.72 2.97 11.6 9.48 4.97

StaticIm{*}a
Move

5.13 6.97 4.75 4.65 5.93 8.04 6.66 5.34 3.19 11.84 9.96 5.53

StaticIm{*}a
Merge

5.40 6.84 4.70 3.84 6.38 8.01 6.60 4.74 3.30 11.77 10.01 6.41

StaticIm{*}a
Borderline

5.89 6.17 5.91 4.26 5.46 7.65 7.91 4.08 3.47 11.61 9.09 6.51

StaticIm{*}a
Rare

2.52 6.98 3.04 4.34 6.6 7.56 8.58 5.72 4.06 11.3 9.26 8.04

StaticIm30 {*}b5.84 9.02 3.40 6.94 3.81 7.93 3.75 5.54 2.19 11.27 11.12 7.20

StaticIm10 {*}b4.89 8.98 5.03 3.87 4.14 9.17 7.49 3.56 2.23 11.91 7.77 8.96

StaticIm1 {*}b 4.86 2.34 7.23 2.83 9.64 5.81 10.27 5.06 5.78 11.69 9.78 2.72

All 5.16 6.78 5.23 4.90 5.63 7.43 7.12 4.87 3.58 11.61 9.57 6.12
a “StaticIm{*}a” refers to StaticIm{30/10/1}, which means the group includes all artificial
data streams of that type in static minority class ratio of 30%, 10%, and 1% respectively.

b “{*}” refers to Split/Move/Merge/Borderline/Rare, which means the group includes all arti-
ficial data streams of the above five types of drifts with the same static minority class ratio.

- Smaller values for the rankings are better values.
- The p-values of Friedman tests are all ≤2.2E-16.
- Highlighted ranks denote significant superior performance.
- Underlined ranks denote the corresponding approach’s performance have no statistical signif-
icance with SMOClust.

Table 6 shows that SMOClust was one of the top-ranked approaches when
the data stream is extremely class imbalanced (minority class ratio: 1%),
indicating that SMOClust handled extremely class imbalanced data stream
better than most existing approaches, while it performed similarly to UOB
and OnlineUnderOverBagging. However, SMOClust was one of the low-ranked
approaches in the group of rare cases, indicating that it could not han-
dle rare cases very well. For other groups, although SMOClust was not one
of the top-ranked approaches, it usually performed similarly to mid-ranked
approaches.

As Friedman rankings only show the relative position of approaches’ pre-
dictive performance but they do not provide any information about the margin
of difference. To investigate how much did SMOClust performed better in



Springer Nature 2021 LATEX template

SMOClust 29

severely class imbalanced streams and worse in other groups of factors, we fur-
ther compared their thirty runs average G-Mean on each artificial data stream.
The results of their difference in average G-Mean are presented in the form of
a heat-map in Figure 4. Green cells indicate results favourable to SMOClust,
whereas red cells indicate results favourable to the compared approach. For a
comprehensive table of the predictive performance of the approaches, please
refer to the supplementary document.

Table 6 shows that SMOClust usually obtained lower rankings than other
approaches in less severe class imbalanced data streams. However, Figure 4
reveals that the margin of the under-performance was usually small as we
can rarely see saturated red cells in the table. In contrast, the high ranking
achieved by SMOClust in the group of StaticIm1 {*} was supported by a lot
of saturated green cells in the sector StaticIm1 of Figure 4, meaning that
SMOClust performed a lot better than existing approaches in cases with severe
class imbalanced ratio. Besides, Figure 4 further confirms that SMOClust could
not handle rare minority class examples very well as we can see that cases
involving Rare100 drift have lots of saturated red cells. In particular, OOB and
OnlineUnderOverBagging handled rare minority class examples better than
SMOClust.

One potential reason why SMOClust did not perform well in handling
data streams with a large proportion of rare minority class examples is the
conservative nature of the proposed synthetic example generation method,
where most synthetic examples are generated in the dense area of the minority
class. To address this, it might be helpful to generate synthetic examples in
a more diverse manner. However, generating synthetic examples diversely can
also introduce a significant amount of noise or even create artificial concept
drifts. Moreover, it can be challenging to ensure that a certain area belongs
to the minority class if there are no real minority class examples in that area.
The proposed method is less prone to these risks and uncertainties, while
overcoming the problems of existing work, which ignore data difficulty factors
and rely on caching all (minority class) examples for synthetic minority class
oversampling.

Comparing the predictive performance of SMOClust against UOB and
OnlineUnderOverBagging in the group of StaticIm1 {*}, Table 6 shows that
they performed similarly. Yet, the sector of StaticIm1 in Figure 4 reveals that
SMOClust performed better than UOB by small margins (around 1-2% G-
Mean, light green cell) in cases presenting concept drift of increasing rare
minority class ratio, yet, it performed worse than UOB by medium-small mar-
gins (around 3% G-Mean, light red cells) in cases presenting concept drift
of moving and merging minority class clusters. SMOClust performed bet-
ter than OnlineUnderOverBagging by medium-small margins (around 2-3%
G-Mean, light green cells) in cases presenting a concept drift of splitting
minority class clusters. However, it performed slightly worse than Online-
UnderOverBagging (around 1% G-Mean, light red cell) in cases presenting
concept drift of merging minority class clusters. It also performed worse than
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Fig. 4: Difference in Average G-Mean Against SMOClust on Class Imbalanced
Artificial Data Streams Based on 30 Runs (Green cells indicate SMOClust
performed better; Red cells indicate SMOClust performed worse; Grey hori-
zontal lines separate different groups of data streams, i.e., StaticIm{30/10/1},
Imbalance Ratio Drift, Double Factor, and Complex Factor)
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OnlineUnderOverBagging by a large margin (around 7% G-Mean, saturated
red cell) in StaticIm1 Rare100 case. In short, SMOClust performed similarly
to both UOB and OnlineUnderOverBagging in most StaticIm1 cases, except
OnlineUnderOverBagging performed a lot better in StaticIm1 Rare100 case.

When comparing the predictive performance of SMOClust against two
approaches that also summarise past knowledge to support the generation of
synthetic examples (VFC-SMOTE and SMOTE-OB), Table 6 and Figure 4
show that SMOClust performed better in most cases, especially in StaticIm1
cases. This indicates that the proposed synthetic minority oversampling
strategy in SMOClust is superior.

Based on the aforementioned results, additional experiments were per-
formed with the same set of single factor drift artificial data streams but
enforced with extremely severe class imbalance ratios (minority class ratio 0.3%
to 5%, summarised in Table 3) to further evaluate if SMOClust can usually
perform better than existing approaches in extremely class imbalanced data
streams.

Table 7 presents the Friedman rankings of average G-Mean by groups of
different drift difficulty factors on the severely class imbalanced artificial data
streams. It shows that SMOClust can indeed achieve higher rankings when
the class imbalance ratio is very severe (minority class ratio ≤ 1%). Figure
5 presents the difference in average G-Mean (based on thirty runs) between
the compared approaches and SMOClust on severely class imbalanced artifi-
cial data streams in the form of a heat-map with the same colour scheme as
Figure 4. Similarly, please refer to the supplementary document for a compre-
hensive table of the predictive performance of the approaches. It supports the
aforementioned deduction with a lot of saturated green cells in the cases of
minority class ratio ≤ 1%, indicating the superior performance of SMOClust.
The exception here is the comparison against UOB, with the margin of under-
performance increasing as the severity of the class imbalance ratio increases
by case. When compared against OnlineUnderOverBagging, SMOClust gen-
erally performed better in cases other than Rare100 drift, with the margin of
superior performance increasing as the severity of the class imbalance ratio
increases by case.

Figure 5 also confirms that SMOClust usually does not handle rare minority
class examples very well, especially when compared against OOB, Online-
UnderOverBagging and SMOGauNoise. However, an extremely severe class
imbalance ratio may give advantage to SMOClust in dealing with Rare100
drift as cases involving Rare100 present less saturated red cells when the class
imbalance ratio is ≤ 1%. In particular, the case of StaticIm03 Rare100 presents
a row of saturated green cells. Anyhow, these results are consistent with pre-
vious results of experiments with less severe class imbalanced artificial data
streams.

Besides, Table 7 also shows that SMOClust could not achieve high rankings
in the groups concerning minority class ratio of 5% and 3%. This may due
to the fact that the artificial data streams are long enough to have quite
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Fig. 5: Difference in Average G-Mean Against SMOClust on Severely Class
Imbalanced Artificial Data Streams Based on 30 Runs (Green cells indi-
cate SMOClust performed better; Red cells indicate SMOClust performed
worse; Grey horizontal lines separate different groups of data streams, i.e.,
StaticIm{5/3/1/07/05/03})
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Table 7: Statistical (Friedman) Ranking of G-Mean on Severely Class Imbal-
anced Artificial Streams Grouped by Factors

Groups OOB UOB oOS
oUnder-
OverB

OOBd UOBd oOSd
oUnder-
OverBd

SMO-
Gau-
Noise

VFC-
SMO-
TE

SMO-
TE-
OB

SMO-
Clust

StaticIm{*}a
Split

5.78 2.61 8.18 3.62 8.58 5.30 9.90 4.17 4.84 11.92 9.81 3.30

StaticIm{*}a
Move

4.80 3.20 7.53 2.82 7.62 6.25 10.25 4.76 5.13 11.96 10.12 3.57

StaticIm{*}a
Merge

4.78 3.09 7.19 2.64 8.15 6.06 10.26 4.66 5.14 11.80 10.03 4.20

StaticIm{*}a
Borderline

4.68 2.73 6.72 2.63 9.52 6.39 10.52 4.92 6.12 11.32 9.20 3.25

StaticIm{*}a
Rare

3.16 5.33 5.64 2.81 8.81 7.78 9.84 5.29 3.84 11.38 9.68 4.44

StaticIm5 {*}b 4.29 7.56 6.44 2.53 5.39 8.23 10.05 3.17 2.57 11.94 8.25 7.60

StaticIm3 {*}b 4.48 5.60 7.34 2.26 7.54 6.89 10.41 2.87 3.30 11.95 9.48 5.88

StaticIm1 {*}b 4.99 2.36 7.32 2.92 9.05 5.60 10.42 5.31 5.77 11.71 9.89 2.65

StaticIm07 {*}b4.80 1.93 7.21 3.25 9.76 5.38 10.44 5.49 6.15 11.48 9.81 2.29

StaticIm05 {*}b4.62 1.61 6.97 3.27 10.10 5.88 10.05 5.76 6.11 11.36 10.17 2.11

StaticIm03 {*}b4.65 1.31 7.03 3.18 9.37 6.17 9.56 5.97 6.16 11.61 11.00 1.99

All 4.64 3.39 7.05 2.90 8.54 6.36 10.15 4.76 5.01 11.68 9.77 3.75
a “StaticIm{*}a” refers to StaticIm{5/3/1/07/05/03}, which means the group includes all
artificial data streams of that type in static minority class ratio of 5%, 3%, 1%, 0.7%, 0.5%,
and 0.3% respectively.

b “{*}” refers to Split/Move/Merge/Borderline/Rare, which means the group includes all arti-
ficial data streams of the above five types of drifts with the same static minority class ratio.

- Smaller values for the rankings are better values.
- The p-values of Friedman tests are all ≤2.2E-16.
- Highlighted ranks denote significant superior performance.
- Underlined ranks denote the corresponding approach’s performance have no statistical sig-
nificance with SMOClust.

a lot of minority class examples, despite the minority class ratios were low.
Therefore, the advantage of SMOClust was not manifested. The sectors of
StaticIm5 and StaticIm3 on Figure 5 show that SMOClust usually performed
slightly worse than most existing approaches but it performed better than
OnlineOversamplingd, VFC-SMOTE and SMOTE-OB.

Considering all cases in Figure 5, we can see that, when the minority class
ratio decreases, SMOClust usually had a smaller margin of performance reduc-
tion than other approaches, except UOB. This shows that the aggressive nature
of undersampling may be generally more advantageous than oversampling
when the number of minority class examples in the data stream is extremely
low. Yet, we can still see from Figure 5 that SMOClust performed better than
UOB in most cases of Rare100 drift. This means that, when the minority class
has extreme low number of examples and is difficult to learn, SMOClust still
has more advantage than undersampling. One reason could be the fact that
the compared approaches focus on learning the most recent decision areas of
both classes, whereas SMOClust was designed to reinforce its knowledge in
past minority class decision areas. This means that SMOClust is likely to have
a better generalisation on the sub-areas of the minority class than existing
approaches.
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In the following sections, representative cases were chosen to discuss why
SMOClust performed better and worse than existing approaches respectively,
providing a more detailed understanding of the results.

4.3.1 Cases where SMOClust performed better

This section discusses why SMOClust performed better than most other
approaches in artificial data streams with severe class imbalance ratio when the
class imbalance ratio is extremely severe (minority class ratio ≤ 1% through-
out the stream). StaticIm1-Move7 stream was chosen from Figure 4 as the
representative case to discuss the behaviour of SMOClust in details.

As mentioned in Section 4.1, the artificial data streams have five input
attributes and a class label. Therefore, it is difficult to visualise the learnt
decision areas of the approaches and understand their behaviour in details.
Because of this, we created a version of the representative streams with two
input attributes and a class label while preserving the characteristics which
include the class imbalance ratio and the drift difficulty factors etc. Note that
we only created a single copy of each two-dimensional representative stream,
such that we can compare the data stream learning approaches with their
median predictive performance in thirty runs on the same data stream. Also,
the hyper-parameters of the approaches were tuned based on a separated ran-
dom two-dimensional artificial data stream, following the procedure explained
in Section 4.2.

Table 8 presents the their thirty runs average G-Mean on the two-
dimensional version of StaticIm1 Move7 stream. It shows that SMOClust
performed the best. These results are slightly inconsistent with the results of
the corresponding five dimensional stream in Figure 4, where SMOClust per-
formed slightly worse than UOB but similarly to OnlineUnderOverBagging.
Yet, in general, SMOClust still performed better than other approaches in both
two-dimensional and five dimensional versions of StaticIm1 Move7 stream.
This may indicate that SMOClust tends to perform better in low-dimensional
data stream. Anyhow, the detailed analysis presented in the following para-
graphs can still explain the characteristics of SMOClust and why it performed
better than most other approaches in this representative case.

Figure 6 presents the approaches’ predictive performance over time steps of
their median run4. To maintain readability, we omitted the predictive perfor-
mance of OOBd, UOBd, oOSd, oUnderOverBd, VFC-SMOTE, and SMOTE-
OB from Figure 6, as their performance fluctuates significantly throughout
the stream. For the comparison of SMOClust against these approaches, please
refer to the supplementary document. It shows that SMOClust performed the
best in most time steps. In particular, SMOClust maintained the predictive
performance to have at least 50% G-Mean on the class balanced holdout test
sets during the concept drift (from 70k to 100k time steps) and recovered from

4Median run refers to the run that leads to the median of predictive performances averaged
across time steps.
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Table 8: 30 Runs Average G-Mean on Two-Dimensional Version of Represen-
tative Artificial Data Streams where SMOClust Performed Better

Stream OOB UOB oOS
oUnder-
OverB

OOBd UOBd

StaticIm1 Move7 82.11% 76.3% 79.46% 85.26% 53.45% 56.94%

Stream oOSd
oUnder-
OverBd

SMO-
GauNoise

VFC-
SMOTE

SMOTE-
OB

SMOClust

StaticIm1 Move7 76.88% 45.12% 82.94% 1.04% 33.09% 91.23%
- Based on the average G-Mean, cells are highlighted in lime / light grey when SMO-

Clust performed better than the corresponding approach and cells are highlighted in

orange / dark grey cells when SMOClust performed worse than the corresponding

approach. The colour intensity scales with the absolute difference of average G-Mean

between the SMOClust and the approach of the column and the intensity reaches

the maximum when such difference is ≥ 10%.

the drift better than other approaches (the solid red line has a rapid recov-
ery since 100k time steps). In contrast, other approaches usually dropped to
around 0-20% G-Mean during the drift. This case showed the superior perfor-
mance achieved by SMOClust in handling severely class imbalanced drifting
data streams.

Fig. 6: Periodic Class Balanced Holdout Test G-Mean Against Time Steps in
Two-Dimensional StaticIm1 Move7
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Figures 7, 8 and 9 visualise the learnt decision areas of approaches at the
time steps right before and after concept drift (70k and 100k time steps) and
at the end (200k time steps) of the two-dimensional StaticIm1 Move7 stream
respectively. The yellow and green regions represent their learnt decision areas
of class 0 (majority class) and class 1 (minority class) respectively, while the
red and blue dots are the class 0 (majority class) and class 1 (minority class)
examples in the class balanced test set, corresponding to the time steps.

(a) OOB (b) UOB (c) oOS

(d) oUnderOverB (e) OOBd (f) UOBd

(g) oOSd (h) oUnderOverBd (i) SMOGauNoise

(j) VFC-SMOTE (k) SMOTE-OB (l) SMOClust

Fig. 7: Decision Areas Against Class Balanced Test Set at 70k Time Steps
(Before Drift) of Two-Dimensional StaticIm1 Move7
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First of all, we compare the learnt decision areas of the approaches at
the time steps right before concept drift (at 70k time steps). Figure 7 shows
that OOB, OnlineOversampling, OnlineUnderOverBagging, SMOGauNoise
and SMOClust had learnt decision areas which match the corresponding class
balanced test set. This explains why they performed the best before the drift
(0-70k time steps, Figure 6). Figure 7(i) and Figure 7(l) show that the learnt
decision areas of SMOClust were similar to SMOGauNoise because they both
have strategies to explore the minority class decision boundaries. The expan-
sion by SMOClust was slightly more aggressive than SMOGauNoise, with some
sub-areas linked together. Although the proposed synthetic minority over-
sampling strategy prioritises “safe” areas to generate synthetic minority class
examples, the strategy of using synthetic examples to train the stream cluster-
ing methods may contribute to such aggressiveness in exploring the minority
class decision boundaries.

Figures 7(a) and 7(c) show that OOB and OnlineOversampling learnt the
most compact minority class decision areas because they reuse the existing
minority class examples for oversampling. Figure 7(d) shows that the minor-
ity class decision areas of OnlineUnderOverBagging were slightly larger than
that of OOB and OnlineOversampling. Particularly, there were two green areas
linked together. This may be the result of using oversampling and undersam-
pling together, which managed to cover the true minority class clusters while
preserving some aggressiveness from undersampling. In contrast, Figures 7(b)
and 7(f) show that UOB and UOBd learnt a single cluster to aggressively
cover most minority class areas, considering the small majority class areas in
between as part of the minority class. This is likely to cost some predictive
performance in the majority class. Thus, we can see that UOB and UOBd per-
formed slightly worse than the other approaches before the concept drift (0-70k
time steps, Figure 6). However, Figure 5 shows that UOB performed slightly
better than SMOClust in the five-dimensional StaticIm1 Move7 stream, indi-
cating that the aggressive nature of undersampling may be an advantage in
learning the minority class when the feature space is sparse and presents very
few minority class examples. When the feature space is more compact, the
proposed strategy in SMOClust is more advantageous.

Considering OOBd, OnlineUnderOverBaggingd, VFC-SMOTE, and
SMOTE-OB, Figures 7(e), 7(h), 7(j), and 7(k) show that their learnt minor-
ity decision areas were very small which only covered a small proportion of
the true minority class areas. In the case of VFC-SMOTE, it predicted every
example as majority class at 70k time steps. As previously mentioned, their
predictive performance fluctuated a lot throughout the stream. So, it can be
deduced that they were greatly affected by false-positive drift detections.

Over the next paragraphs, we compare the predictive performance and
the decision boundaries of SMOClust against other approaches at the time
steps right after concept drift (at 100k time steps) and at the end of the data
stream (at 200k time steps), to understand how SMOClust handles concept
drift of moving minority class sub-clusters when the data stream is severely
class imbalanced.
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Figure 6 shows that the predictive performance of SMOClust fluctuated
during the drift (70k-100k time steps, Figure 6). Thus, it is likely that its base
learner had been reset several times due to drift detection. Yet, it was the
fastest approach to recovering predictive performance from the drift. Figure
8 presents the learnt decision boundaries right after the drift. It shows that
SMOClust and SMOGauNoise made the best attempt in adapting the drift.
They were able to cover most minority class sub-clusters at the new position,
especially SMOClust. The potential reason is that, although the base learner
of SMOClust is reset upon drift detection, the stream clustering methods are
not reset as they are expected to be drift adaptable. Therefore, SMOClust is
more robust to incremental and gradual drifts than SMOGauNoise, explaining
its rapid predictive performance recovery from the drift.

On the other hand, Figures 8(a), 8(b), 8(c), and 8(d) show that the learnt
minority class decision areas of OOB, UOB, OnlineOversampling and Online-
UnderOverBagging mainly retained at the pre-drift position because they are
not concept drift adaptable. Their concept drift adaptable counterparts , VFC-
SMOTE and SMOTe-OB did not handle the drift very well either. Figures
8(e), 8(f), 8(g), 8(h), 8(j), and 8(k) show that their learnt minority class deci-
sion areas only covered a few minority class sub-clusters at the post-drift
position, which is likely because their base learners had been reset for several
times caused by drift detection and they do not have any strategy to deal with
incremental and gradual drifts. As the result, they struggled to recover their
predictive performance from the drift, as shown in Figure 6.

Lastly, we compare the learnt decision areas of the approaches at the end
of the two-dimensional StaticIm1 Move7 stream. Figure 9 shows that OOBd,
SMOGauNoise and SMOClust are the best approaches in converging to the
post-drift position of minority class sub-clusters. In particular, a few green
areas of SMOClust and SMOGauNoise were slightly less compact than OOBd,
showing that SMOClust and SMOGauNoise had slightly better generalisation
than OOBd.

Figures 9(a), 9(c), and 9(d) show that OOB, OnlineOversampling and
OnlineUnderOverBagging managed to converge to the new concept after the
drift. However, they also retained a small portion of green areas which corre-
sponds to the pre-drift position of the minority class. This shows that OOB,
OnlineOversampling and OnlineUnderOverBagging can adapt to concept drift
involving minority class sub-cluster movement. However, they required a longer
period to adapt as they were hindered by the knowledge acquired pre-drift.
Meanwhile, Figures 9(e), 9(g), and 9(h) show that their concept drift adaptable
counterparts adapted better, except OnlineUnderOverBaggingd. While reset-
ting base learners helps to adapt to concept drift, OnlineUnderOverBaggingd
partly uses undersampling in its strategy to deal with class imbalance led to
some over-generalisation between the learnt minority class areas. UOB and
UOBd use undersampling to deal with class imbalance, thus Figures 9(a) and
9(f) show that they had the greatest over generalisation due to the aggressive
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(a) OOB (b) UOB (c) oOS

(d) oUnderOverB (e) OOBd (f) UOBd

(g) oOSd (h) oUnderOverBd (i) SMOGauNoise

(j) VFC-SMOTE (k) SMOTE-OB (l) SMOClust

Fig. 8: Decision Areas Against Class Balanced Test Set at 100k Time Steps
(After Drift) of Two-Dimensional StaticIm1 Move7

nature of undersampling. VFC-SMOTE and SMOTE-OB continued to strug-
gle, as shown in Figures 9(j) and 9(k), because of frequent false-positive drift
detections.

Short Summary: Through the pre-drift analysis, the ability of SMOClust in han-
dling stationary severely class imbalanced data streams presenting several minority
class sub-clusters is validated. In particular, it shows that SMOClust was able to
learn and explore the true decision boundaries despite the data stream presents
very few minority class examples. The post-drift analysis shows that SMOClust
was more robust in adapting incremental and gradual drift involving minority class
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(a) OOB (b) UOB (c) oOS

(d) oUnderOverB (e) OOBd (f) UOBd

(g) oOSd (h) oUnderOverBd (i) SMOGauNoise

(j) VFC-SMOTE (k) SMOTE-OB (l) SMOClust

Fig. 9: Decision Areas Against Class Balanced Test Set at 200k Time Steps
(End of Stream) of Two-Dimensional StaticIm1 Move7

sub-clusters movement than existing approaches. Although most of the approaches
converged to the new concept at the end of the data stream, SMOClust was the best
and the fastest approach in recovering predictive performance from the drift. The
inconsistent results between two and five-dimensional versions of this representa-
tive case indicate that SMOClust may be more advantageous in lower-dimensional
data streams.
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Table 9: 30 Runs Average G-Mean on Two-Dimensional Version of Represen-
tative Artificial Data Streams where SMOClust Performed Worse

Stream OOB UOB oOS
oUnder-
OverB

OOBd UOBd

StaticIm10 Rare100 70.61% 63.65% 69.14% 68.19% 65.49% 68.17%

Stream oOSd
oUnder-
OverBd

SMO-
GauNoise

VFC-
SMOTE

SMOTE-
OB

SMOClust

StaticIm10 Rare100 65.04% 64.98% 64.56% 54.64% 58.98% 70.32%
- Based on the average G-Mean, cells are highlighted in lime / light grey when SMO-
Clust performed better than the corresponding approach and cells are highlighted
in orange / dark grey cells when SMOClust performed worse than the correspond-
ing approach. The colour intensity scales with the absolute difference of average
G-Mean between the SMOClust and the approach of the column and the intensity
reaches the maximum when such difference is ≥ 10%.

4.3.2 Cases where SMOClust performed worse

This section discusses the situations where SMOClust performed worse than
other approaches, particularly in cases with concept drift leading to 100% rare
minority examples. StaticIm10 Rare100 stream was chosen from Table 4 as the
representative case to discuss the behaviour of SMOClust in detail. Following
the method of analysis in Section 4.3.1, we also created a two-dimensional
version of StaticIm10 Rare100 stream such that we can visualise and compare
the learnt decision boundaries of the approaches to understand their behaviour.

Table 9 presents the approaches’ thirty runs average G-Mean on the
two-dimensional StaticIm10 Rare100 stream. It shows that SMOClust per-
formed better than most other approaches. Figure 10, showing the G-Mean
of the approaches in their median run5 throughout the two-dimensional
StaticIm10 Rare100 stream, also supports the results on Table 9. Note that,
to improve readability, we have omitted the predictive performance of OOBd,
UOBd, oOSd, oUnderOverBd, VFC-SMOTE and SMOTE-OB from Figure 10,
similar to Figure 6, due to their values fluctuating significantly throughout the
stream. For a comparison of SMOClust against these approaches, please refer
to the supplementary document.

As these results are not consistent with the results of the five-dimensional
StaticIm10 Rare100 stream, shown in Table 6 and 7, we preliminary checked if
using a different set of random seeds or picking another case that involves drift
leading to 100% rare minority class examples would yield results that are con-
sistent with Table 6 and 7. Yet, it still shows that SMOClust performed similar
to or better than other approaches in two-dimensional StaticIm10 Rare100
stream. Thus, in this analysis, we focus on why SMOClust can handle con-
cept drift leading to 100% rare minority class examples than other approaches
when the data stream has only two dimensions while attempting to deduce
why it could not when the data stream has five dimensions.

Figures 11, 12 and 13 visualise the learnt decision areas of the approaches
at the time steps right before and after concept drift (70k and 100k time steps)

5Median run refers to the run that leads to the median of predictive performances averaged
across time steps.
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Fig. 10: Periodic Class Balanced Holdout Test G-Mean Against Time Steps
in Two-Dimensional StaticIm10 Rare100

and at the end (200k time steps) of the two-dimensional StaticIm10 Rare100
stream respectively. The yellow and green regions represent their learnt deci-
sion areas of class 0 (majority class) and class 1 (minority class) respectively,
while the red and blue dots are the class 0 (majority class) and class 1 (minor-
ity class) examples in the class balanced test set which corresponds to the time
steps.

Figure 10 shows that all approaches performed very well during the pre-
drift period (0-70k time steps). Figure 11 reveals that it is because they
learnt the decision boundary of the pre-drift concept very well, as the minor-
ity class was just a single cluster. While most approaches learnt an oval
shape decision boundary, UOB, UOBd and SMOTE-OB learnt a rectangu-
lar shape, which could be due to the use of undersampling. VFC-SMOTE
learnt a peculiar shape decision boundary which would cause more frequent
false-positive drift detections. These may have been due to minority class
examples generated by VFC-SMOTE with considerable amount of noise.
Meanwhile, SMOTE-OB adopts the same strategy as VFC-SMOTE for gen-
erating synthetic minority class examples but simultaneously incorporating
undersampling to address class imbalance. This integration of undersampling
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might explain why SMOTE-OB more successfully circumvented the issue
encountered by VFC-SMOTE.

(a) OOB (b) UOB (c) oOS

(d) oUnderOverB (e) OOBd (f) UOBd

(g) oOSd (h) oUnderOverBd (i) SMOGauNoise

(j) VFC-SMOTE (k) SMOTE-OB (l) SMOClust

Fig. 11: Decision Areas Against Class Balanced Test Set at 70k Time Steps
(Before Drift) of Two-Dimensional StaticIm10 Rare100

Figure 10 shows that the predictive performance of the approaches dropped
to below 60% G-Mean and started to differ since the concept drift began (70k
time steps). While most approaches’ predictive performance fluctuated with
large magnitude, SMOClust’s predictive performance was relatively steady,
bouncing between 50%-60% G-Mean. UOB performed poorly since the drift
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began at 70k time steps until the drift was close to finishing at 100k time steps,
indicating that undersampling struggled in dealing with this drift without the
help of a concept drift detector.

Figure 12 presents the learnt decision boundaries of the approaches right
after the drift (100k time steps). It shows that OOB, OnlineOversampling,
OnlineUnderOverBagging, OnlineOversamplingd, SMOGauNoise, SMOTE-
OB and SMOClust learnt very complex decision areas, indicating that they
made great efforts to learn all the areas that spawn rare minority class exam-
ples belonging to the post-drift concept. However, only approaches with a
concept drift detector were able to forget the old area of the minority class
at the top left corner. This shows that, although this drift was gradual, con-
cept drift detection was important in helping the system to forget irrelevant
past knowledge. In contrast, approaches without a drift detector retained the
oval minority class cluster at the top left corner which belongs to the pre-drift
concept. Most of them struggled to perform well since the drift started at 70k
time steps, as shown in Figure 10. OOB was an exception in terms of predic-
tive performance. However, the fact that it retained the knowledge about the
pre-drift minority class areas makes it disadvantageous in dealing with other
types of drift, as discussed in Section 4.3.1.

Comparing the learnt decision areas of SMOClust against other
approaches with drift detector (OOBd, UOBd, OnlineOversamplingd,
OnlineUnderOverBaggingd, VFC-SMOTE, SMOTE-OB and SMOGauNoise),
it can be observed that the learnt minority class areas of SMOClust were com-
plex and covered the feature space spawning minority class examples the most.
While OnlineOversamplingd’s, SMOGauNoise’s and SMOTE-OB’s were also
complex (see Figures 12(g), 12(i) and 12(k)), they either did not cover the fea-
ture space spawning minority class examples as much as SMOClust’s did or
exhibited over-generalisation. The fact that OnlineOversamplingd only reuses
the recently seen minority class example for oversampling likely leads to over-
fitting to such most recent area. SMOGauNoise also has a strategy to explore
the decision boundaries of the minority class, but such strategy only explores
the area around the recently seen minority class example. This could be dis-
advantageous when false-positive drift detections were triggered, resetting the
base learner. SMOTE-OB’s over-generalisation could be explained by the use
of undersampling and noisy minority class examples generated. SMOClust, on
the other hand, does not have this disadvantage because the stream cluster-
ing methods are not reset upon drift detection. This makes it more robust to
false-positive drift detections than other approaches. As the drift was gradual,
OOBd, UOBd and OnlineUnderOverBaggingd likely also suffered from multi-
ple drift detection, as Figures 12(e), 12(f) and 12(h) show that the learnt a
simple decision boundary right after the drift.

Figure 13 presents the learnt decision boundaries of the approaches at the
end of the two-dimensional StaticIm10 Rare100 stream (at 200k time steps).
While most approaches continued to further improve their learnt decision
boundaries since the drift had finished, Figures 13(h) and 13(l) show that
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(a) OOB (b) UOB (c) oOS

(d) oUnderOverB (e) OOBd (f) UOBd

(g) oOSd (h) oUnderOverBd (i) SMOGauNoise

(j) VFC-SMOTE (k) SMOTE-OB (l) SMOClust

Fig. 12: Decision Areas Against Class Balanced Test Set at 100k Time Steps
(After Drift) of Two-Dimensional StaticIm10 Rare100

OnlineUnderOverBaggingd and SMOGauNoise did not improve as much as
other approaches, meaning that they suffered from false-positive drift detec-
tions during the post-drift period. Besides, UOB, UOBd, and SMOTE-OB
exhibited an extensive and predominantly continuous decision area for the
minority class, demonstrating the aggressiveness of undersampling. However,
in the case of SMOTE-OB, the approach’s synthetic minority class generation
strategy exacerbates this aggressiveness.

From this analysis, it has been shown that SMOClust managed to for-
get the pre-drift concept and adapt to drift leading to 100% rare minority
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(a) OOB (b) UOB (c) oOS

(d) oUnderOverB (e) OOBd (f) UOBd

(g) oOSd (h) oUnderOverBd (i) SMOGauNoise

(j) VFC-SMOTE (k) SMOTE-OB (l) SMOClust

Fig. 13: Decision Areas Against Class Balanced Test Set at 200k Time Steps
(End of Stream) of Two-Dimensional StaticIm10 Rare100

class examples and more robust to false-positive drift detections than other
approaches in the two-dimensional StaticIm10 Rare100 stream. However, the
experiment with the five-dimensional StaticIm10 Rare100 stream presents dif-
ferent results (Figure 4). It shows that SMOClust only performed better than
OnlineOversamplingd but worse or similar to most other approaches. One
potential reason is the fact that two-dimensional space is more compact than
five-dimensional space, the rare minority class examples have a lot less space
to randomly spawn, which means they are likely to spawn at the locations
that had already been learnt and covered by SMOClust using micro-clusters.
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Therefore, SMOClust can predict their class label correctly. However, five-
dimensional space is sparser than two-dimensional space, meaning that new
rare minority class examples are less likely to spawn at previous locations.
Therefore, SMOClust struggled to make correct predictions to new rare minor-
ity class examples. Another potential reason is that the stream clustering
method may be less effective in data streams with more dimensions. For exam-
ple, it may create some minority class micro-clusters that overlap with the
majority class region because of the sparsity of the feature space. Therefore,
the aforementioned advantage of SMOClust in dealing with drift could not
be manifested. Anyhow, future work is needed to further confirm whether
SMOClust tends to perform better in data streams with fewer dimensions.

Short Summary: This analysis shows that SMOClust managed to adapt to concept
drift leading to 100% rare minority class examples and was robust to multiple drift
detection during gradual drift as well as false-positive drift detections when the data
stream has only two dimensions. However, the experiments with the corresponding
five-dimensional stream present a different set of results, as the stream clustering
methods used by SMOClust might not perform well when the data stream has more
dimensions.

4.3.3 Results with Two-Dimensional Artificial Data Streams

To investigate whether SMOClust performs better in lower-dimensional data
streams, we performed additional experiments on the same artificial data
streams presented in Section 4.1, but with only two input features. We
also created a randomised two-dimensional data stream for the purpose of
hyper-parameter tuning, following the procedure described in Section 4.3.

Figure 14 presents the difference in average G-Mean (based on thirty
runs) between compared approaches and SMOClust on two-dimensional arti-
ficial data streams in the form of a heat-map. Green cells indicate results
favourable to SMOClust, whereas red cells indicate results favourable to the
compared approach. For a comprehensive table of the predictive performance
of the approaches, please refer to the supplementary document. Compared to
Figure 4, there are fewer red cells in this figure, indicating that SMOClust
generally performed better in the lower-dimensional version of the same set
of data streams. In particular, the sections of the heat-map corresponding to
StaticIm30 and StaticIm10 data streams, which were mostly reddish in Figure
4, are mostly greenish in Figure 14.

Figure 14 also confirms the trend shown in Figure 4, showing that SMO-
Clust tends to outperform other approaches in severely class-imbalanced data
streams. To further validate this trend in lower-dimensional data streams, we
performed further experiments on the same set of single factor drift artifi-
cial data streams, but with enforced extremely severe class imbalance ratios
(minority class ratio 0.3% to 5%, as summarised in Table 3). The results
are presented in Figure 15 in the form of a heat-map, using the same colour
scheme as Figure 14. Similarly, please refer to the supplementary document
for a comprehensive table of the predictive performance of the approaches.
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StaticIm30_Split3
StaticIm30_Move3

StaticIm30_Merge3
StaticIm30_Split7

StaticIm30_Move7
StaticIm30_Merge7

StaticIm30_Borderline20
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Fig. 14: Difference in Average G-Mean Against SMOClust on Two-
Dimensional Class Imbalanced Artificial Data Streams Based on 30 Runs
(Green cells indicate SMOClust performed better; Red cells indicate SMO-
Clust performed worse; Grey horizontal lines separate different groups of data
streams, i.e., StaticIm{30/10/1}, Imbalance Ratio Drift, Double Factor, and
Complex Factor)
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Fig. 15: Difference in Average G-Mean Against SMOClust on Two-
Dimensional Severely Class Imbalanced Artificial Data Streams Based on 30
Runs (Green cells indicate SMOClust performed better; Red cells indicate
SMOClust performed worse; Grey horizontal lines separate different groups of
data streams, i.e., StaticIm{5/3/1/07/05/03}



Springer Nature 2021 LATEX template

50 SMOClust

Figure 15 presents more solid green cells than Figure 14, indicating that
SMOClust performed better than other approaches in extremely severe class-
imbalanced data streams, even in the lower-dimensional case. Additionally, the
fact that Figure 15 has more green cells than Figure 5 supports the conclusion
that SMOClust tends to perform better in lower-dimensional data streams.

4.4 Results with Real-world Data Streams

This section presents the analysis done to compare the predictive performance
of SMOClust against nine existing approaches in real-world data streams.
Experiments with real-world data streams allow us to obtain a general idea of
SMOClust’s predictive performance in practical applications, where the class
imbalance ratio, the position and the type of the concept drifts are unknown.
Table 10 presents the Friedman rankings of approaches’ G-Mean on real-world
data streams group by factors.

Table 10: Statistical (Friedman) Ranking of prequential G-Mean on Real-
World Streams Grouped by Factors

Groups OOB UOB oOS
oUnder-
OverB

OOBd UOBd oOSd
oUnder-
OverBd

SMO-
Gau-
Noise

VFC-
SMO-
TE

SMO-
TE-
OB

SMO-
Clust

Luxum-
bourg

5.43 8.83 2.03 7.33 5.43 10.27 2.03 7.33 2.97 11.87 6.23 8.23

NOAA 1.80 5.80 5.00 1.93 6.10 8.27 10.73 6.97 12.00 9.67 3.13 6.60
Ozone 3.27 2.68 9.25 3.93 6.10 2.82 9.02 7.53 10.70 12.00 2.30 8.40

PAKDD-
2009

5.90 2.43 1.20 6.43 8.00 6.97 2.37 7.67 10.70 10.30 4.03 12.00

Covtype 2.79 6.60 9.34 3.33 5.44 5.23 11.56 6.40 9.95 9.89 2.81 4.66
INSECTS 5.59 9.39 7.26 6.28 1.23 8.58 3.75 2.54 5.91 11.29 4.77 11.41
Amazon 1.93 8.43 4.23 11.93 4.57 3.43 6.50 6.93 7.93 10.47 1.07 10.57
Twitter 1.90 5.37 8.43 3.87 2.57 4.07 8.50 4.97 10.53 10.47 5.33 12.00

All 3.7593 7.0417 7.325 5.0074 4.2778 6.4083 7.712 5.4963 8.5574 10.5778 3.6444 8.1926
- The p-values of Friedman tests are all ≤2.2E-16.
- Highlighted ranks denote significant superior performance.
- Underlined ranks denote the corresponding approach’s performance have no statistical significance
with SMOClust.

Table 10 shows that the overall top-ranked approaches on real-world
data streams are OOB, OOBd and SMOTE-OB whereas SMOClust usually
achieved low rankings. SMOClust only achieved a relatively better ranking
in Covtype streams than in other streams. Considering all real-world data
streams, SMOClust performed similarly to OnlineOversamplingd and SMO-
GauNoise. Following the analysis method in Section 4.3, we also compared the
thirty runs average prequential G-Mean of the approaches on each real-world
data stream in Figure 16 to further evaluate the predictive performance of
SMOClust in real-world data streams.

Figure 16 shows that SMOClust usually performed similar or better than
other approaches in NOAA and Covtype streams while it performed worse than
other approaches in Ozone, PAKDD2009, INSECTS, Amazon, and Twitter
streams. Recalling the discussion in Section 4.1 on estimated characteristics
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Fig. 16: Difference in Average G-Mean Against SMOClust on Real-World
Data Streams Based on 30 Runs (Green cells indicate SMOClust performed
better; Red cells indicate SMOClust performed worse)

of real-world streams, NOAA and Covtype streams mainly consist of safe and
borderline minority class examples with different movements of minority class
clusters and the minority class ratios throughout Covtype streams are usually
very low (except Covtype(c1={1-6}) and Covtype(c1=1)). As discussed in Section
4.3, these are the characteristics of a data stream that SMOClust is likely
to perform similar or better than other approaches, especially when the class
imbalance ratio is severe, such as Covtype(c1=3) stream. Thus, we can see from
Figure 16 that the rows of NOAA and Covtype streams mainly consist of
saturated green cells and pale red cells.

On the other hand, Table 5 shows that Ozone, PAKDD2009, INSECTS,
Amazon, and Twitter streams consist of large proportions of rare and outlier
minority class examples. Based on the discussion in Section 4.3.2, SMOClust
could not handle rare and outlier minority class examples very well, except
when the dimensionality of the data stream was low or compact. Thus, it is
not surprising to see a lot of red cells on these data streams.

To summarise the result of experiments with real-world data streams, the advantage
of the proposed synthetic minority class oversampling strategy in SMOClust is
manifested in severely class imbalanced data streams with high proportions of safe
and borderline minority class examples with concept drifts of different movements
of minority class sub-clusters. On the downside, SMOClust could not handle rare
and outlier minority class examples very well. These findings are consistent with
the result of experiments with artificial data streams.
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5 Conclusion

The main contribution of this work is the proposed stream clustering based
synthetic minority oversampling approach, called SMOClust (RQ1). This
method helps the learning system to strategically explore different decision
areas of the minority class and to be robust to false-positive drift detections
(RQ1). To evaluate the predictive performance and the characteristics of SMO-
Clust, experiments with artificial data streams concerning different types of
concept drift difficulties were performed. The results show that SMOClust per-
formed particularly well in severely class imbalanced data streams with high
proportions of safe and borderline minority class examples (RQ2). It also han-
dles concept drifts of different movements of minority class clusters better than
other existing approaches (RQ2). However, when the data stream presents high
proportions of rare and outlier minority class examples, SMOClust becomes
disadvantageous (RQ3).

To further understand the reason behind the experiment results on artifi-
cial data streams, additional experiments with representative two-dimensional
artificial data streams were performed. However, it shows that SMOClust man-
aged to handle rare minority class examples better than other approaches in
these two-dimensional cases. This indicates that the reason why SMOClust
could not handle rare cases very well on the corresponding five-dimensional
stream was likely because of the stream clustering methods did not perform
well in higher-dimensional space. In other words, SMOClust may be more
advantageous when the dimensionality of the data stream is not high.

Lastly, we validated the performance of SMOClust on different real-world
data streams. To facilitate the analysis of the experiment results of this part
of the study, we estimated the characteristics of the real-world data streams,
following the procedure adopted by [16]. Based on the estimated characteristics
and the experiment results, we concluded that the SMOClust behaved similarly
to the experiments with artificial data streams (RQ3).

As for future work, an investigation of new strategies to better handle
large proportions of rare and outlier minority class examples is one poten-
tial direction. For example, strategies to generate synthetic minority examples
for oversampling in a more diverse manner without introducing a significant
amount of noise or creating artificial concept drifts could be proposed. Addi-
tionally, extending the idea of SMOClust to deal with multi-class classification
tasks could also be an area to investigate in the future. Furthermore, the pro-
posed synthetic minority oversampling strategy in this work could be adapted
for use with other complex data stream learning systems easily as it is a
drift adaptable data-level method to address class imbalance in data stream
learning. For example, it could be incorporated into an explicit drift han-
dling approach which exploits relevant past knowledge to handle concept drifts
[41, 42] or an ensemble approach which evolves themselves to adapt to concept
drifts [60, 61]. Apart from these, a comprehensive study to compare SMOClust
against more approaches for learning drifting class imbalanced data streams
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(e.g., CSARF [24], ROSE [25] etc.) and with more data sets could also be a
potential future work.
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