
Diversity-Based Pool of Models for Dealing with
Recurring Concepts

Chun Wai Chiu, Leandro L. Minku
Department of Informatics, University of Leicester

University Road, Leicester, LE1 7RH, UK
Email: {cwc13,leandro.minku}@leicester.ac.uk

Abstract—Several data stream applications involve recurring
concepts, i.e., concept drifts that change the underlying distri-
bution of the data to a distribution previously seen in the data
stream. Examples include electricity price prediction and tweet
topic classification. In such scenario, it is useful to maintain a
pool of old models that could be recovered if their knowledge
matches the recurring concept well. A few existing online learning
approaches maintain such pools. However, there has been a little
investigation on what is the best strategy to maintain an online
learning pool with a limited size. We propose to make use of
diversity to decide which models to keep in the pool once the
pool reaches the maximum size. The motivation behind is that
a diverse pool is more likely to maintain a set of representative
models with considerably different concepts, helping to handle
recurring concepts. We perform experiments to investigate if,
when and why maintaining a diverse pool is helpful. The results
show that the use of diversity to maintain pools can indeed be
helpful to handle recurring concepts. However, the relationship
between diversity and accuracy in the presence of concept drift
is not straightforward. In particular, an initially good accuracy
obtained when using diversity can lead to a stronger subsequent
drop in accuracy than other strategies.

I. INTRODUCTION

With the growth of smart phones and tablet computers in
this digital era, the amount of data in our world is growing
faster than we could have imagined. With such large and ever-
growing quantity of data, it is difficult to store and wait for
knowledge extraction. Therefore, data have to be learnt in
sequential order as a data stream [1]. Data stream learning
[2] has been widely used in real-world applications, including
spam filtering [3], software engineering [4], credit card fraud
detection [5] and so on.

Data streams typically suffer changes in the underlying
distribution of the data. We refer to a change in the joint
probability distribution of the data as a concept drift [6],
whereas a given joint probability distribution is referred to as a
concept. Other terms have also been used in the literature. For
example, some authors refer to a change in the joint probability
distribution as a dataset shift, and a subcategory of dataset shift
that affect the class boundaries as a concept drift [7].

Data stream learning algorithms must be able to cope with
concept drift. In order to enable swift reaction to drifts, it is
frequently desirable for these algorithms to be online learning
algorithms. We define these as algorithms that operate in an
online learning scenario where each training example arrives

separately and is learnt as soon as it arrives [2]1. Therefore,
this paper focuses on online learning.

Recurring concepts refer to concepts that have been pre-
viously present in the data stream and then reappear. When
recurring concepts occur, it is worth using approaches that
maintain a pool of models representing different concepts seen
in the data stream [1]. This is because these approaches can
exploit the knowledge of stored models to handle recurring
concepts. Two important points for such type of approach are
to determine which model(s) in the pool to be used for learning
and making predictions (model selection strategy), and which
model(s) from the pool to eliminate once the maximum size of
the pool is reached (memory strategy). In terms of the memory
strategy, most work has used either a FIFO strategy where the
oldest models are removed [1] or an elitist strategy where
the least accurate models on the current concept are removed
[8]. However, such strategies are not always adequate. For
instance, the concept represented by old models may reoccur
in the future. Similarly, a model that performs poorly on the
current concept may be helpful for future concepts [9]. In
these cases, it would be better to keep these old or inaccurate
models in the pool.

With that in mind, we propose a memory strategy based
on diversity2. Intuitively, diversity can be seen as a level of
disagreement between models, even though there is no single
agreed definition of diversity for classification problems. The
idea of our approach is that diverse models represent various
concepts. Thus, if we maintain a pool with diverse models,
we reduce the risk of having only one or few concepts in the
pool. In other words, we increase the chances of having more
various concepts in the pool to handle recurring concepts.

Although there are papers studying different diversity mea-
sures and how they impact ensemble accuracy [9], [12], [13],
no previous study has provided a detailed investigation of
when and to what extent diversity can help as a memory
strategy for deciding which models to keep in a pool to deal
with non-stationary environments. To fill in this research gap,
this paper aims to answer the following research questions:
• RQ-MemStr: Can a pool memory strategy based on

diversity help to handle recurring concepts in comparison
with other memory strategies? When and why?

1This example may or may not be discarded after being learnt.
2This strategy has been preliminary investigated in [10], [11].

• RQ-Cmp: How does our diversity-based proposed ap-
proach perform in comparison with other known ap-
proaches designed for dealing with concept drift?

To answer RQ-MemStr, we compare the diversity memory
strategy against three other memory strategies through exper-
iments on data streams containing several different types of
recurring concepts, as well as data streams with no recurring
concepts. These memory strategies are: First In First Out
(FIFO), Least Recent Used (LRU), and Delete-Worst (Elitism).
Using the same set of data streams, the proposed approach
is then compared against five existing approaches to answer
RQ-Cmp: Hoeffding Tree with Naı̈ve Bayes at leaves (HTNB)
[14], Drift Detection Method Classifier (DDM) [15], Recurrent
Concept Drift (RCD) [1], Online Accuracy Update Ensemble
(OAUE) [16], Dynamic Weighted Majority (DWM) [8]. The
experiment results show the diversity memory strategy is
generally helpful to handle recurring concepts. However, the
relationship between diversity and accuracy in the presence of
concept drift is not straightforward. In particular, an initially
good accuracy obtained when using diversity can lead to a
stronger subsequent drop in accuracy than other strategies.

The rest of this paper is organised as follows. Section II
discusses related work on recurring concepts and other concept
drift recovery strategies. Section III presents our proposed
approach. Section IV presents the experimental study. Section
V presents conclusions and discusses future work.

II. RELATED WORK

Several approaches have been proposed to handle concept
drift [2], [6]. Here, we focus on online learning approaches.
Some existing work focuses on detecting concept drifts [15],
[17], [18]. For example, the Drift Detection Method (DDM)
[15] monitors the error rate of a model. It assumes that, with
the increasing number of examples in a stationary data stream,
the error rate of the model to the stream will decrease. If
the error rate of the model starts increasing, the DDM then
assumes a concept drift is very likely to be happening and
triggers a warning. If the error rate continues to increase
further, DDM triggers a drift detection. Approaches that use
drift detection methods, such as [15], [17], frequently reset the
predictive model upon drift detection. This means that they
cannot make use of previous knowledge if a given concept
reoccurs.

The most common way to handle recurring concepts is to
store past models representing different concepts in a pool, and
then exploit them if recurring concepts are identified. The Just-
In-Time classifier approach (JIT) [19], [20] is a notable ap-
proach that attempts to identify the concept to which examples
belong and maintain models representing different concepts in
a pool. It shows that exploiting information acquired in the past
helps to handle recurring concepts effectively. However, this
approach stores all the past concepts in the pool, which can
consume a lot of memory over time.

In order to maintain the pool with a limited size, memory
strategies can be used to decide which models to delete when
the maximum size of the pool is exceeded. For example, the

Recurrent Concept Drift (RCD) approach [1] uses a single
model as the representative to learn and make predictions.
It also uses a First In First Out (FIFO) memory strategy to
hold models with past knowledge, i.e., it deletes the oldest
model when the memory exceeds its maximum size. Each
past model is associated with a batch of data representing
the knowledge it holds. When a concept drift is detected, a
statistical test is used to compare the current batch of data
with the batches of data associated to each model. If a batch of
data associated to a model in the pool is similar to the current
batch, the corresponding model from the pool is selected
as the representative. Despite having a strong foundation on
statistical tests to detect recurring concepts, this approach
suffers from a weakness in terms of its FIFO memory strategy.
If a concept reoccurs after a long period, RCD cannot exploit
the previous knowledge to swiftly recover its performance.

Ensemble learning is another kind of approach that could
potentially handle recurring concepts. Although most ensem-
ble learning algorithms were not explicitly intended to handle
recurring concepts, they hold an ensemble of models which
could potentially contain knowledge from different concepts.
This can be beneficial when there are recurring concepts.
Online accuracy update ensemble (OAUE) [16] and Dynamic
Weighted Majority (DWM) [8] are two of such approaches.
They both maintain a weighted majority ensemble for making
predictions and their memory strategies also consist of deleting
the worst-performing models on the current concept. For
OAUE, the least accurate model in its ensemble is substituted
with a new model at every p (p > 0) time steps. For DWM, a
new model is added to its ensemble if the ensemble makes a
mistake, while the weight of an ensemble member is reduced
if it makes a mistake. DWM deletes models with weight less
than a predefined threshold, i.e., models that have performed
continuously poorly.

Diversity and Transfer based Ensemble Learning (DTEL)
[21] is a very recent batch-based approach to handle recurring
concepts. DTEL creates a new base model whenever a whole
new batch of training examples is received. When the ensem-
ble reaches its maximum size, the new base model will first
be added to the ensemble and an old model will be removed
from the ensemble based on a diversity measure. The weight
of each ensemble member is calculated based on the error
rate on the most recent batch. Even though DTEL also uses
diversity as the memory strategy, their work did not investigate
whether diversity is really helpful. Besides, this approach is
not an online learning approach.

Overall, no existing work used diversity as an online learn-
ing memory management strategy, and no existing work has
investigated whether diversity as a memory strategy can help
to handle concept drift.

III. PROPOSED APPROACH

To answer the research questions posed in section I, we
propose a new algorithm called Diversity Pool (DP) (Algo-
rithm 1). Its general idea is as follows. A pool of models
is maintained to handle recurring concepts. Predictions are

Algorithm 1 DP algorithm
Parameters: Buffer Size (b), Pool Size (p), Data Stream (S)
Variables: Representative Model (cr), Actual Buffer (ba), New
Model (cn), Model Pool (P)

1: cr ← Create(cn); P ← E ∪ cr
2: for each s ∈ S do
3: drift level← DDM(cr, s)
4: switch (drift level)
5: case WARNING:
6: SaveFIFO(ba, s)
7: P.updateModelsWeightwithExample(s)
8: train(cn, s)
9: case DRIFT :

10: if |E| < p then
11: P ← P ∪ cn; cr ← cn; Create(cn)
12: else
13: if |ba| ≥ b then
14: cbest ← getBestByEvaluation(P, ba)
15: cr ← decideRepresentative(cbest, cn, ba)
16: if cr == cn then
17: P.removeByDiversity()
18: P ← P ∪ cn; Create(cn)
19: end if
20: else
21: SaveFIFO(ba, s)
22: P.updateModelsWeightwithExample(s)
23: train(cn, s)
24: end if
25: end if
26: end switch
27: train(cr, s)
28: end for

made by selecting a single representative model from the pool.
Alternatively, if the approach is deemed not confident enough
to select a representative model, the pool is used as a weighted
majority vote ensemble and predictions are made based on it.
Besides, a method is used to detect concept drifts, i.e., DP
is an active [2] approach. New models are added to the pool
upon concept drift detection. Therefore, each model holds the
knowledge of a concept from the environment. One of the
key aspects of the algorithm is that this pool decides which
models to keep based on diversity [12]. This prevents the pool
from storing only similar models when it reaches its maximum
size. This increases its chances of holding useful models for
handling recurring concepts. Overall, the algorithm consists of
three components (online learning with concept drift detection,
model selection strategy and memory strategy), which are
described in more detail in sections III-A to III-C.

A. Online Learning with Concept Drift Detection

The algorithm learns new training examples sequentially.
When a new training example is received, it is first used to
check whether concept drift has occurred, based on a concept
drift detector such as DDM [15] or EDDM [17] (line 3). If the

drift detection method triggers a “warning” alarm (line 5), the
algorithm uses a FIFO buffer to store incoming examples (line
6). At the same time, a new model is created and starts learning
new examples (line 8). If the drift detection method triggers a
“drift alarm” (line 9), the algorithm will decide whether to use
the new model or retrieve an old model as representative for
learning and making predictions. The new model will always
be used as the representative when the maximum size of the
pool is not reached yet. The procedures followed upon drift
detection are explained in sections III-B and III-C.

Besides being used to detect concept drift, each new exam-
ple is also used to train the representative model of the pool
(line 27). The strategy for selecting a representative model is
explained in section III-B.

B. Model Selection Strategy

When a drift is detected, the algorithm uses the new model
as representative and stores it into the pool if the maximum
size of the pool is not reached yet (line 10-11). Otherwise,
it uses the buffer to evaluate the models in the pool (line
14). The best-stored model in terms of accuracy on the buffer
is compared with the accuracy of the new model on the
buffer (line 15). If the accuracy of the new model is within a
95% confidence interval of the best-stored model’s accuracy,
the best-stored model is selected as the new representative.
Otherwise, the new model is used as the representative model
and stored while an old model is discarded from the pool based
on diversity (line 16-18) as explained in section III-C.

The model selection strategy is conservative but enables
us to focus our analysis done to answer RQ-MemStr on
the effectiveness of the diversity memory strategy itself. In
particular, if the diversity strategy leads to worse predictive
performance than other strategies, we can be confident that this
is due to a poor behaviour of the diversity memory strategy
itself but not a poor behaviour of the model selection strategy.

We have performed extra experiments with a less conserva-
tive strategy which compares the time-decayed test accuracy
of old models on all examples since the warning level against
the time-decayed prequential accuracy of the new model. We
use these experiments to complement our analysis and will
explicitly mention when we do so.

It is worth noting that concept drifts may be abrupt, causing
the warning period to be shorter than the size of the FIFO
buffer (line 13). In this case, when a drift is detected, the
algorithm uses the whole pool as a weighted majority vote
ensemble with the weights obtained during warning period
(line 7). The algorithm keeps storing the incoming examples
(line 21), weighting the stored models with the incoming
examples (line 22) and training the new model (line 23)
until the buffer is full. Then, the approach is assumed to be
confident enough to select a single model from the pool as
representative, using the procedure described above.

C. Pool Memory Strategy Based on Diversity

The algorithm considers that the pool has a maximum size.
This makes sense for applications with limited memory and

time constraints, or applications where the data stream has a
high incoming rate. Thus, a mechanism is needed to decide
which model to delete once the pool reaches the maximum
size and a new model has to be added. We refer to this
mechanism as “memory strategy”. The memory strategy used
in this algorithm simulates the possible diversity levels of the
pool after removing each of its existing models. After that,
the algorithm deletes the model that leads to the state with
the highest diversity. The time complexity of the simulation
depends on the size of the pool and the diversity measure
used. Therefore, applications with very strict time constraints
should use smaller pool sizes and/or diversity measures that
are faster to compute. Multi-threading can also be used to
enable the simulations run in parallel, in order to reduce the
overall computational time.

Diversity is calculated based on the FIFO buffer explained
in section III-B. This strategy could potentially be modified to
avoid the need for storing this buffer by updating the diversity
measures whenever a new example arrives. Even though the
term diversity is popularly used, there is no single definition
or measure of it for classification problems [22]. Thus, both
Yule’s Q-statistics and Entropy Measure [12] were investigated
as potential diversity measures for our memory strategy. Other
diversity measures could be investigated as future work.

Considering two classifiers Di and Dk, Yule’s Q-statistics
(Q) is shown in Eq. 1 [12]:

Qi,k =
N11N00 −N01N10

N11N00 +N01N10
(1)

where Na,b is the number of examples where the classification
by Di is a and the classification by Dk is b, 1 represents
a correct classification and 0 represents a misclassification.
Q varies between 1 and -1. Models that tend to classify the
same examples correctly will have positive values of Q, while
those which recognise different examples incorrectly will have
negative values of Q. For a pool containing L models, Eq. 2
shows the calculation of the averaged Q statistics (Qav) over
all pairs of models, which is used as a diversity measure:

Qav =
2

L(L− 1)

L−1∑
i=1

L∑
k=i+1

Qi,k (2)

Eq. 3 shows the diversity calculation based on the Entropy
Measure (E), suggested by Kuntcheva and Whitaker [12]:

E =
1

N

N∑
j=1

1

(L− dL/2e)
min{l(zj), L− l(zj)} (3)

where N refers to the number of examples in the FIFO buffer
explained in section III-B; L is the size of the pool; zj is
the j-th example in the FIFO buffer; and l(zj) is the number
of models from the pool that correctly classify zj . E varies
between 0 and 1, where 0 indicates no diversity and 1 indicates
the highest diversity [12].

TABLE I
DATA STREAMS

Data
Stream

Concept Drift Sequence Width of
the Drifts

Pool
Size

A1 f2→f5→f3→f6→f1→f4→f1→f4→f1→f4 20,000 4
A2 f1→f2→f1→f3→f1 20,000 3
A3 f2→f6→f3→f6→f2 20,000 3
A4 f4→f2→f1→f3→f4 20,000 3
A5 f9→f8→f10→f7→f8→f7→f8→f7 1 3
A6 f1→f3→f6→f5→f4 20,000 3
A7 f7→f8→f9→f10 1 3
A8 f2→f5→f4→f6 20,000 3
A9 f1→f8→f3→f10→f9 1 3
S1 f3→f1→f2→f4→f3 20,000 4
S2 f5→f3→f1→f2→f4 20,000 3
S3 f5→f1→f4→f3→f2 1 3
“Ai” and “Si” refer to i-th data stream using Agrawal and SEA as stream type
respectively. Coloured rows (lime / light grey) represent that the stream contains
recurring concepts. fn represents the n-th function of the stream type, i.e., f1
in A1 is referring to the first function of the Agrawal generator.

IV. EXPERIMENTS

This section presents the experiments performed to evaluate
the proposed approach and answer the research questions
posed in section I. Massive Online Analysis (MOA) framework
[23] was chosen as the platform to perform experiments.
The approach’s source code is available at https://github.
com/michaelchiucw/DiversityPool. Section IV-A presents the
data streams. Section IV-B presents the experimental setup.
Sections IV-C and IV-D present the experiment results.

A. Data Streams

We created several artificial data streams based on MOA’s
Agrawal and SEA generators [24], [25]. The use of artificial
data streams allows us to specify not only the concept drift
point and width but also the sequence of concepts in the data
stream. This enables us to gain a more detailed understanding
of when our approach helps or is detrimental. We will extend
this analysis to real-world data streams as a future work.

The Agrawal data consist of nine numerical input attributes
and one binary categorical output. The available concepts
used to compose our data streams are the same as those
used by [24]. The SEA data consist of three numerical input
attributes (the last of them is an irrelevant attribute) and one
binary categorical output. The 1st to 4th functions available
to represent concepts in our data streams are the same as
those used by [25], which use thresholds 8, 9, 7, and 9.5,
respectively. We added a 5th function using threshold 4.
Concept drifts were simulated by connecting two data streams
with different concepts by using a sigmoid function to decide
the probability of examples coming from the old and new
concepts during the transitional period [23]. The details of all
data streams are shown in table I.

B. Experimental Setup

The base learner used by the approaches in the experiments
was Hoeffding Tree with Naı̈ve Bayes at leaves (HTNB) [14].
To answer RQ-MemStr, several variations of the proposed
approach using different memory strategies were compared:

• Diversity: keep models that lead to a more diverse pool,
as explained in section III.

• First In First Out: delete oldest model.
• Least Recently Used: delete model least recently used.
• Elitism: delete the model that performs worst over the

FIFO buffer explained in section III-A.

To answer RQ-Cmp, the proposed approach using the
diversity memory strategy was compared against five well
known existing approaches. The approaches and the reasons
for choosing these approaches are listed below:

• HTNB [14]: to analyse how the proposed approach com-
pares to its base learner.

• DDM [15]: to see if the proposed approach improves over
an approach that resets the system upon drift detection.

• RCD [1]: to see how the proposed approach compares
to another online learning approach designed to handle
recurring concepts.

• OAUE [16] and DWM [8]: to see how the proposed
approach compares to ensemble approaches for non-
stationary environments. Although these approaches were
not explicitly intended to handle recurring concepts,
ensembles can be seen as pools of models.

We performed Friedman tests with a level of significance
of 0.05 to compare the prequential accuracies of different
approaches on each data stream separately. This enables us
to identify which specific data streams the proposed approach
helped with or was detrimental. Accuracy was measured
prequentially, i.e., each example is used to test the approach
first and then to train the model [23]. A fading factor of 0.999
was used to make past examples less important to the current
accuracy. Each group compared by the test corresponds to a
different memory strategy or approach, and each observation
within a group corresponds to the prequential accuracy sam-
pled at every 1000th example of the data stream. Nemenyi
post-hoc tests were performed to identify which specific pairs
of groups are significantly different.

To choose parameters for the compared algorithms, we
created two artificial data streams (one for Agrawal and
one for SEA) containing a random sequence of concepts,
where the concept drift points and widths were also randomly
selected. For the approaches using drift detection method,
DDM and EDDM were tested. For the proposed approach,
diversity measure was tested with Q-statistics and Entropy.
For all parameters which are related to example batch size or
evaluation period, the values tested were 200, 400, 600, 800,
and 1000. The values of k for the k-Nearest Neighbour used
as the statistical test in RCD were 1, 3, 5, and 7, while the p-
value was tested with 0.01 and 0.05. The parameters that lead
to the highest average prequential accuracy for Agrawal and
SEA were then chosen to be used with data streams A1-A9 and
S1-S3, respectively. In particular, DDM and Entropy Measure
were selected as the best-performing drift detection method
and diversity measure respectively, for use with our proposed
approach. The base learner, HTNB, and the drift detection
methods were run with default MOA parameters [23].

(a) Data Stream A3 (b) Data Stream A4

(c) Data Stream A6

Fig. 1. Comparison of Memory Strategies

C. Comparison of Memory Strategies

This section presents the analysis done to answer RQ-
MemStr, explained in section I. Table II shows the means,
standard deviations, and results of the Friedman and Nemenyi
tests to compare the prequential accuracy of the proposed
approach using four different memory strategies on each data
stream. This table shows that the diversity memory strategy
obtained similar or better prequential accuracy in all cases,
except for data stream A5 (in comparison to LRU). The elitism
strategy was frequently worse than the diversity strategy, being
the least recommended strategy.

Fig. 1 presents the prequential accuracy of the memory
strategies over time for three data streams (A3, A4 and A6),
as representative cases where the diversity strategy performed
similarly most of the time, better and worse for some different
periods of time w.r.t. other strategies. Plots for other data
streams were omitted due to space constraints. In general, all
memory strategies have the same performance at the early
stage of all streams because the maximum memory size had
not been reached yet for any of them. They just used a newly
created model as the representative model after the concept
drifts. Once the maximum memory size was reached, their
performance started to have differences, depending on the data
stream. Even though the diversity strategy did not typically
present large accuracy improvements w.r.t. other strategies, it
was the most consistent one among the best strategies in all
data streams. This means that, in practice, diversity may be a
safer strategy to adopt when the underlying characteristics of
the data stream are not known in advance.

In order to provide a better understanding of the reasons
behind these results, we discuss in more detail cases where
diversity performed better, worse and similarly to the best
among the other strategies.

a) Cases where the diversity strategy performed better:
Fig. 1(b) shows that diversity was the most beneficial in data
stream A4. In particular, diversity recovered its prequential

TABLE II
MEMORY STRATEGY COMPARISON – MEAN, STANDARD DEVIATIONS, FRIEDMAN TEST AND NEMENYI TEST RESULTS

Data
Stream

Recurring
Concepts?

Mean of Prequential Accuracy with Fading Factor 0.999
Across the Data Stream (Standard Deviation)

Friedman
Test

p-value

Nememyi Post Hoc Test
p-value

Diversity FIFO LRU Elitism Diversity
vs FIFO

Diversity
vs LRU

Diversity
vs Elitism

A1 Yes 84.359% (11.302%) 84.094% (11.322%) 84.094% (11.322%) 84.362% (11.300%) 7.522E-07 0.541 0.541 0.303
A2 Yes 97.233% (6.548%) 97.017% (7.555%) 97.017% (7.555%) 94.994% (8.367%) <2.2E-16 0.44 0.44 5.5E-14
A3 Yes 90.581% (9.494%) 90.581% (9.494%) 90.581% (9.494%) 90.581% (9.494%) 1.00 - - -
A4 Yes 93.468% (8.021%) 89.637% (9.569%) 89.637% (9.569%) 89.689% (9.436%) <2.2E-16 3.0E-14 3.5E-14 1.6E-13
A5 Yes 98.335% (1.768%) 98.501% (1.612%) 98.500% (1.609%) 98.504% (1.613%) <2.2E-16 1.00 1.6E-09 0.82
A6 No 87.912% (10.475%) 87.792% (12.569%) 87.792% (12.569%) 87.794% (12.566%) 4.982E-06 0.0474 0.0474 0.0028
A7 No 98.320% (1.820%) 98.256% (1.780%) 98.320% (1.813%) 98.268% (1.783%) <2.2E-16 1.5E-06 0.9788 0.0010
A8 No 80.143% (8.694%) 80.143% (8.693%) 80.143% (8.693%) 79.827% (8.539%) <2.2E-16 1.00 1.00 4.4E-0.7
A9 No 98.951% (2.213%) 98.593% (2.217%) 98.953% (2.214%) 98.716% (2.443%) <2.2E-16 0.731 0.077 2.2E-10
S1 Yes 98.297% (2.194%) 98.297% (2.194%) 98.297% (2.194%) 98.297% (2.194%) <1.00 - - -
S2 No 98.961% (1.129%) 98.961% (1.129%) 98.961% (1.129%) 98.908% (1.185%) 3.683E-11 0.8861 0.8861 3.4E-05
S3 No 98.945% (1.204%) 99.027% (1.040%) 99.028% (1.056%) 99.053% (1.003%) 0.4422 - - -
“Ai” and “Si” refer to i-th data stream using Agrawal and SEA as stream type respectively. Cells with bold text represent the best performance in the data stream. Coloured
Nemenyi p-value cells represent that there is significant difference (p-value ≤ 0.05) and the diversity strategy performed better (lime or light grey) / worse (orange or dark
grey) based on the mean and standard deviation of its prequential accuracy. Nemenyi p-value cells in white represent no significant difference.

TABLE III
STATE OF DIVERSITY POOL P

(a) Data Stream A4
Example Period P [0] P [1] P [2] Actual Concept

0 - 199,810 0(f4) - - f4
199,810 - 201,919 0(f4) 1(f2) - f2
201,919 - 394,594 0(f4) 1(f2) 2(f2) f2
394,594 - 594,128 0(f4) 1(f2) 3(f1) f1
594,128 - 594,386 0(f4) 3(f1) 4(f1) f1
594,386 - 594,925 0(f4) 3(f1) 4(f1) f1
594,925 - 600,859 0(f4) 3(f1) 5(f1) f1
600,859 - 601,431 0(f4) 3(f1) 6(f3) f3
601,431 - 601,823 0(f4) 3(f1) 6(f3) f3
601,823 - 788,649 0(f4) 6(f3) 7(f3) f3
788,649 - 799,364 0(f4) 6(f3) 8(f3) f3

799,364 - 1,000,000 0(f4) 6(f3) 8(f3) f4

(b) Data Stream A6
Example Period P [0] P [1] P [2] Actual Concept

0 - 171,261 0(f1) - - f1
171,261 - 171,682 0(f1) 1(f1) - f1
171,682 - 175,383 0(f1) 1(f1) 2(f1) f1
175,383 - 175,786 0(f1) 1(f1) 2(f1) f1
175,786 - 190,502 0(f1) 2(f1) 3(f1) f1
190,502 - 190,615 0(f1) 2(f1) 3(f1) f1
190,615 - 193,250 2(f1) 3(f1) 4(f1) f1
193,250 - 193,453 2(f1) 3(f1) 4(f1) f1
193,453 - 197,003 2(f1) 4(f1) 5(f1) f1
197,003 - 197,347 2(f1) 4(f1) 5(f1) f1
197,347 - 201,681 2(f1) 4(f1) 5(f1) f1
201,681 - 387,518 2(f1) 4(f3) 5(f1) f3
387,518 - 394,373 4(f3) 5(f1) 6(f3) f3
394,373 - 394,485 5(f1) 6(f3) 7(f3) f3
394,485 - 395,046 5(f1) 6(f3) 7(f3) f3
395,046 - 395,771 5(f1) 6(f3) 8(f3) f3
395,771 - 396,264 5(f1) 6(f3) 8(f3) f3
396,264 - 597,296 5(f1) 8(f3) 9(f6) f6
597,296 - 798,344 5(f1) 9(f6) 10(f5) f5

798,344 - 1,000,000 5(f1) 9(f6) 11(f4) f4
Format: {numberi}(f{numberj}), where i refers to the index of the models
created and j refers to the concept that was active when they were created. The
coloured cells (lime or light grey) indicate the representative model in the time
period analysed. When all models from the pool P are highlighted, this means
that a weighted majority ensemble was used, rather than a single representative
model.

accuracy a lot better than all other strategies after the concept
drift around 800k examples. The concepts of 2nd and 4th
Agrawal functions are by definition very similar to each other
but quite distinct from 1st and 3rd functions. According to
concept change sequence of stream A4 shown in table I, the
knowledge of the 4th function at the beginning of the stream

should have been forgotten by the strategy of FIFO, LRU and
elitism by the time the concept of the 4th function starts to
recur. The knowledge of the 2nd function was also forgotten
due to false alarms given by the drift detection method and
the memory strategies themselves. In contrast, the diversity
strategy, as shown in table III(a), still holds the knowledge of
the 4th function despite the false alarm. Hence, it can exploit
the previous knowledge of the function to make predictions
when the concept of the 4th function reoccurred. Therefore,
it has a better performance recovery w.r.t. other strategies,
confirming that the original reason for adopting the diversity
memory strategy can indeed help to handle concept drift.

b) Cases where the diversity strategy performed worse:
Fig. 1(c) shows that diversity strategy has a significant under-
performance for a long period (around 400k examples to 600k
examples) in data stream A6. According to table I, stream A6
has a drift point at 400k examples, with a transitional period
of 10k examples before and after. The concepts surrounding
that drift point are 3rd and 6th Agrawal functions which are
quite distinct by definition. A closer look reveals that a concept
drift detection was performed at 396,264 examples when using
the diversity strategy while the concept drift detection for the
other strategies was at 400,928 examples. All strategies created
a new model as representative after that drift detection. The
earlier drift detection suffered by the diversity strategy means
that this new model was trained with around 3.7k examples
more likely to belong to the old concept, resulting in a lower
performance on the new concept (400k examples to 600k
examples). Even though there is no direct link between the
diversity strategy itself and the under-performance, given that
the diversity strategy is the only difference between these
approaches, we further investigate why the diversity strategy
indirectly led to worse accuracy.

Through a closer look at the memory state of the diversity
strategy throughout the data stream A6 (table III(b)) and
Fig. 1(c), we can observe that the diversity strategy success-
fully made use of old models around the first drift, achieving
higher and more stable accuracy in some short periods of time
during the second concept. The more stable accuracy made

the concept drift detector more likely to detect drifts during
the second concept. This led to some false alarms during the
second concept (200k examples to 400k examples), and to the
early drift detection corresponding to the third concept (400k
examples to 600k examples). This earlier drift detection, in
turn, resulted in worse accuracy during the third concept, as
explained in the previous paragraph. This shows that, even
though diversity can help as expected and demonstrated in
stream A4, its increased accuracy can sometimes lead to a
subsequent worse accuracy.

c) Cases where the diversity strategy performed simi-
larly: Table II shows the performance of the diversity strategy
does not have a significant difference w.r.t. FIFO and LRU in
most cases. A representative example is shown in Fig. 1(a). In
several cases, the difference in prequential accuracies between
diversity and elitism is not very large either. This is an
expected behaviour for half of the streams, which present no
recurring concepts. For the other half, a closer look shows
that this frequently happens because the approach creates a
new model as the representative for the new concept, rather
than retrieving a model from the pool. Therefore, all memory
strategies behave similarly despite the memory content being
different. This is expected, given that the model selection
strategy used by the proposed approach is conservative. As
explained in section III-A, this enables us to focus our analysis
on the behaviour of the memory strategies themselves, rather
than biasing it to the model selection strategy.

We have also performed extra experiments with a less
conservative model selection strategy as explained in section
III-A. However, it did not lead to improvements in the pre-
quential accuracy of the proposed approach. A potential reason
behind is that the less conservative strategy retrieves models
which are not similar enough to the new concept, hindering
the approach’s accuracy. As we can see, the model selection
strategy can highly influence the usefulness of the diversity
memory strategy. As future work, we will investigate different
model selection strategies to identify which of them is the
most adequate for use with diverse pools.

D. Comparison against Existing Approaches

This section presents the analysis to answer RQ-Cmp, posed
in section I. Table IV presents the means, standard deviations,
and results of the Friedman and Nemenyi tests to compare the
prequential accuracies of DP against existing approaches. It
shows that DP performed better than its base learner, HTNB.
HTNB assumes that the data stream does not present concept
drift [14]. Therefore, it is not surprising that it performed
worse than DP, which uses a drift detection method.

As shown on table IV, there is no significant difference
between the performance of DP and DDM in most data
streams presenting no recurring concept. This is an expected
behaviour because, in the absence of recurring concepts, DP
will always use the newly created model as the representative
learner after concept drifts. For the data streams presenting
recurring concepts with several distinct concepts before the
recurrence (stream A2-A4), DP performed better than DDM.

This is consistent with the fact that DP maintains a pool of
models to handle recurring concepts. DP performed worse than
DDM in two data streams only (A5 and S1).

Table IV also shows that DP performed better than RCD in
most data streams. This is a very positive result for DP because
both DP and RCD were designed to handle recurring concepts.
DP lost to RCD in only one data stream (A6) which presents
no recurring concept. DP also has better average prequential
accuracies and lower standard deviations than RCD, especially
in data streams presenting recurring concepts. A possible
reason behind can be the difference in memory strategy (RCD
uses FIFO while DP uses diversity). The benefits of using
diversity over FIFO have been discussed in section IV-C.
Another possible reason is that RCD’s model selection strategy
may be retrieving less adequate models than DP’s conservative
strategy. It is also worth mentioning that RCD used a differ-
ent detection method (EDDM) from our approach (DDM).
However, we have performed several extra experiments on
RCD using DDM. They show that using DDM in RCD leads
to worse prequential accuracy than using EDDM. Thus, the
reason behind the worse performance obtained by RCD is not
due to the difference in drift detection method.

Table IV shows that DP performed worse than OAUE and
DWM in data streams A1 and A8. It also shows that there
is no significant difference between the performance of DP
and DDM in these data streams, suggesting that the model
selection strategy may not have retrieved models from the
pool. The pool and its diversity memory strategy, therefore,
could not help with handling recurring concepts. This can be
the potential reason for DP’s under-performance in these two
data streams. Meanwhile, OAUE and DWM use ensembles
to make predictions, which may help them to achieve better
performance than DP in these two data streams.

V. CONCLUSION

Recurring concepts are common in most real-world applica-
tions. Successfully dealing with them will facilitate machine
learning algorithms to adapt to such changes by exploiting
previous knowledge. A possible way to handle recurring
concepts is by maintaining a pool of past models. This paper
contributes to the advancement of this area by investigating a
novel diversity strategy to decide which models to keep in the
pool once the pool reaches its maximum size.

We show that maintaining a pool of diverse models can
improve accuracy when there are recurring concepts (RQ-
MemStr). However, the relationship between a diverse pool
and the accuracy of the system is much more complex than one
may initially have thought. In particular, the higher accuracy
achieved through the diversity strategy can sometimes trigger
a subsequent poorer accuracy. We also show that our proposed
approach, which uses diversity as memory strategy, performed
particularly well against existing approaches on data streams
with recurring concepts (RQ-Cmp). In most cases, it per-
formed better than RCD and DWM, which are approaches
that directly or indirectly handle recurring concepts. It also
performed similar to or better than DDM, which does not

TABLE IV
COMPARISON AGAINST EXISTING APPROACHES – MEAN, STANDARD DEVIATIONS, FRIEDMAN TEST AND NEMENYI TEST RESULTS

Data
Stream

Recurring
Concepts?

Mean of Prequential Accuracy with Fading Factor 0.999
Across the Data Stream (Standard Deviation)

Friedman
Test

p-value

Nememyi Post Hoc Test
p-value

DP HTNB DDM RCD OAUE DWM DP vs
HTNB

DP vs
DDM

DP vs
RCD

DP vs
OAUE

DP vs
DWM

84.359% 69.170% 84.581% 83.906% 92.988% 89.871%A1 Yes (11.301%) (8.612%) (11.211%) (14.391%) (8.926%) (11.374%) <2.2E-16 <2.2E-16 0.126 9.3E-08 <2.2E-16 <2.2E-16

97.233% 82.134% 96.383% 91.629% 95.418% 92.302%A2 Yes (6.548%) (13.602%) (7.611%) (13.248%) (9.243%) (12.123%) <2.2E-16 <2.2E-16 6.6E-09 <2.2E-16 0.653 5.2E-14

90.581% 75.255% 88.331% 82.172% 93.895% 88.200%A3 Yes (9.494%) (6.792%) (10.008%) (14.324%) (7.939%) (9.192%) <2.2E-16 <2.2E-16 0.0098 3.1E-14 <2.2E-16 0.9847

93.468% 79.019% 91.423% 76.172% 93.700% 87.204%A4 Yes (8.021%) (12.432%) (8.605%) (10.693%) (8.069%) (10.802%) <2.2E-16 <2.2E-16 6.1E-14 <2.2E-16 4.0E-13 <2.2E-16

98.335% 86.611% 98.484% 97.210% 98.087% 97.165%A5 Yes (1.768%) (8.165%) (1.620%) (3.438%) (2.421%) (3.526%) <2.2E-16 <2.2E-16 3.7E-08 <2.2E-16 <2.2E-16 <2.2E-16

87.912% 72.865% 85.498% 89.844% 93.283% 87.358%A6 No (10.475%) (19.424%) (12.290%) (10.831%) (9.083%) (13.210%) <2.2E-16 <2.2E-16 8.2E-06 7.0E-14 <2.2E-16 7.4E-11

98.320% 88.097% 98.273% 96.180% 97.971% 97.130%A7 No (1.820%) (8.254%) (1.795%) (3.669%) (2.888%) (4.737%) <2.2E-16 <2.2E-16 0.52 5.1E-14 5.2E-14 6.0E-14

80.143% 72.137% 80.143% 75.968% 87.771% 83.560%A8 No (8.694%) (6.883%) (8.694%) (11.808%) (10.676%) (12.151%) <2.2E-16 <2.2E-16 1.00 <2.2E-16 <2.2E-16 5.9E-14

98.951% 91.103% 98.971% 98.114% 98.704% 97.156%A9 No (2.213%) (10.224%) (2.095%) (4.091%) (2.848%) (6.811%) <2.2E-16 <2.2E-16 1.00 <2.2E-16 6.6E-12 4.8E-14

98.297% 95.782% 98.819% 98.067% 98.705% 98.823%S1 Yes (2.194%) (4.120%) (1.338%) (2.133%) (2.103%) (1.275%) <2.2E-16 <2.2E-16 1.3E-11 7.3E-14 2.9E-14 1.1E-13

98.961% 97.353% 98.931% 98.579% 98.529% 98.651%S2 No (1.129%) (2.952%) (1.188%) (1.327%) (2.050%) (1.411%) <2.2E-16 <2.2E-16 0.30756 <2.2E-16 5.5E-14 <2.2E-16

98.945% 95.826% 98.942% 98.593% 98.248% 98.615%S3 No (1.204%) (4.390%) (1.166%) (1.347%) (2.317%) (1.622%) <2.2E-16 <2.2E-16 1.00 5.4E-14 <2.2E-16 5.0E-11

“Ai” and “Si” refer to i-th data stream using Agrawal and SEA as stream type respectively. Cells with bold text represent the best performance in data stream. Coloured
Nemenyi p-value cells represent that there is significant difference (p-value ≤ 0.05) and the proposed approach performed better (lime or light grey) / worse (orange or dark
grey) based on the mean and standard deviation of its prequential accuracy. Nemenyi p-value cells in white represent no significant difference.

have mechanisms to handle recurring concepts. It performed
sometimes better and sometimes worse than OAUE.

Future work includes further investigation on how the
diversity memory strategy interacts with other model selection
strategies and diversity measures, and how it performs on real-
world data streams. Improvements by integrating the proposed
approach with other strategies to cope with false alarms and
beneficial mechanisms from OAUE can also be investigated.

REFERENCES

[1] P. M. G. Jr and R. S. M. de Barros, “RCD: A Recurring Concept Drift
Framework,” Pattern Recognit. Lett., vol. 34, no. 9, pp. 1018–1025,
2013.

[2] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in Nonsta-
tionary Environments: A Survey,” IEEE CIM, vol. 10, no. 4, pp. 12–25,
2015.

[3] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A Case-based
Technique for Tracking Concept Drift in Spam Filtering,” Know.-Based
Syst., vol. 18, no. 4-5, pp. 187–195, 2005.

[4] L. L. Minku and S. Hou, “Clustering Dycom: An Online Cross-Company
Software Effort Estimation Study,” in PROMISE, 2017, pp. 12–21.

[5] A. D. Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit Card Fraud Detection: A Realistic Modeling and a Novel
Learning Strategy,” IEEE TNNLS, pp. 1–14, 2018.

[6] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woniak,
“Ensemble Learning for Data Stream Analysis: A Survey,” Inf Fusion,
vol. 37, pp. 132–156, 2017.

[7] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrguez, N. V. Chawla, and
F. Herrera, “A Unifying View on Dataset Shift in Classification,” Pattern
Recognition, vol. 45, no. 1, pp. 521–530, 2012.

[8] J. Z. Kolter and M. A. Maloof, “Dynamic Weighted Majority: A New
Ensemble Method for Tracking Concept Drift,” in IEEE ICDM, 2003,
pp. 123–130.

[9] L. L. Minku and X. Yao, “DDD: A New Ensemble Approach for Dealing
with Concept Drift,” IEEE TKDE, vol. 24, no. 4, pp. 619–633, 2012.

[10] W. Zheng, “Tracking Recurring Concept Drift with Classifier Pruning
Strategy,” Master’s thesis, School of Computer Science, University of
Birmingham, 2011, supervisor: Leandro Minku.

[11] C. W. Chiu, “Machine Learning for Applications with Recurring
Changes,” Bachelor’s Thesis, Department of Informatics, University of
Leicester, 2017, supervisor: Leandro Minku.

[12] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Classi-
fier Ensembles and Their Relationship with the Ensemble Accuracy,”
Machine Learning, vol. 51, no. 2, pp. 181–207, 2003.

[13] L. L. Minku, A. P. White, and X. Yao, “The Impact of Diversity on
Online Ensemble Learning in the Presence of Concept Drift,” IEEE
TKDE, vol. 22, no. 5, pp. 730–742, 2010.

[14] P. Domingos and G. Hulten, “Mining High-speed Data Streams,” in
KDD, 2000, pp. 71–80.

[15] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with Drift
Detection,” in Adv in A.I., A. L. C. Bazzan and S. Labidi, Eds., 2004,
pp. 286–295.

[16] D. Brzezinski and J. Stefanowski, “Combining Block-based and Online
Methods in Learning Ensembles from Concept Drifting Data Streams,”
Information Sciences, vol. 265, pp. 50–67, 2014.

[17] M. Baena-Garcı́a, J. Del Campo-Ávila, R. Fidalgo, and A. Bifet, “Early
Drift Detection Method,” in IWKDDS, 2006, pp. 77–86.

[18] C. Alippi and M. Roveri, “Just-in-Time Adaptive Classifiers - Part I:
Detecting Nonstationary Changes,” IEEE TNN, vol. 19, no. 7, pp. 1145–
1153, 2008.

[19] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time Ensemble of
Classifiers,” in IJCNN, 2012, pp. 1–8.

[20] C. Alippi and G. Boracchi and M. Roveri, “Just-In-Time Classifiers for
Recurrent Concepts,” IEEE TNNLS, vol. 24, no. 4, pp. 620–634, 2013.

[21] Y. Sun, K. Tang, Z. Zhu, and X. Yao, “Concept Drift Adaptation by
Exploiting Historical Knowledge,” CoRR, 2017.

[22] E. K. Tang, P. N. Suganthan, and X. Yao, “An Analysis of Diversity
Measures,” Machine Learning, vol. 65, no. 1, pp. 247–271, 2006.

[23] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
Online Analysis,” JMLR, vol. 11, pp. 1601–1604, 2010.

[24] R. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A Perfor-
mance Perspective,” IEEE TKDE, vol. 5, no. 6, pp. 914–925, 1993.

[25] W. N. Street and Y. Kim, “A Streaming Ensemble Algorithm (SEA) for
Large-scale Classification,” in KDD, 2001, pp. 377–382.

