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Abstract—Concept drift and class imbalance are critical chal-
lenges in real-time data stream learning. Existing ensemble
methods use homogeneous diversity (models for the same con-
cept) to tackle these challenges but often overlook heterogeneous
diversity (models from different concepts), which could improve
adaptation, especially with scarce minority data. This paper
provides the first analysis of when and why each type of
diversity is beneficial for class-imbalanced data streams. To
enable this analysis, we introduce CDCMS.CIL, a novel class
imbalance learning framework for leveraging heterogeneous
diversity. Experiments based on 80 artificial and 9 real-world
data streams show that heterogeneous diversity can significantly
aid concept drift handling in highly imbalanced scenarios, while
homogeneous diversity is better during stable periods. These
findings provide crucial guidance for designing robust ensembles
for drifting class imbalanced data streams.

Index Terms—data stream learning, class imbalance, ensemble
diversity.

I. INTRODUCTION

The increasing volume of high-speed data streams neces-
sitates adaptive data stream learning algorithms. Real-world
data streams present two major challenges for machine learn-
ing systems. First, concept drift occurs when the underlying
data distribution changes over time, making existing models
obsolete [1]. Second, class imbalance arises when one class
significantly outnumbers others, leading to poor recognition
of minority class examples [2]. Examples include fraud de-
tection (rare fraudulent transactions, evolving fraud patterns)
[3], [4], intrusion detection (scarce malicious traffic, evolving
attack methods) [5], and medical diagnosis from sensor data
(infrequent critical health events, changing patient conditions)
[6]. Addressing both challenges simultaneously is particularly
difficult due to the scarcity of minority class data for updating
models after drifts [7].

To address these challenges, existing ensemble approaches
typically leverage homogeneous diversity, creating diverse
models that all represent the same concept with techniques like
Bagging or Boosting [8]–[10]. However, recent studies suggest
that heterogeneous diversity (maintaining models of different
concepts) may better address sudden and recurring drifts [11].
In drifting class-imbalanced data streams, this could aid post-
drift performance recovery by leveraging past knowledge when
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new minority examples are scarce. Yet, this scarcity could
also hinder the identification of relevant past models. Without
thorough research, the value of heterogeneous diversity for
class-imbalanced data stream learning is still uncertain.

This study provides the first investigation into whether,
when and why each type of diversity (homo/heterogeneous) is
beneficial for class-imbalanced data streams. Given the lack of
heterogeneous diversity approaches in this context, we propose
a novel framework designed for class-imbalanced data streams
to support the analysis. This framework facilitates strategies
for maintaining a heterogeneously diverse memory of models
in class-imbalanced data streams, including when to store new
models, replace existing models, and recover past models for
predictions. It leverages relevant past knowledge to adapt to
multiple types of drift in class-imbalanced scenarios while
overcoming limitations of existing diversity-based approaches
such as excessive memory usage [9], [12] and reliance solely
on a recent window of data [11], [13]. This study answers the
following research questions:

• RQ1: How to best leverage heterogeneous diversity for
class-imbalance data stream learning?

• RQ2: How helpful is heterogeneous diversity in the
context of imbalanced data streams (RQ2a)? When and
why is it beneficial or prone to failure (RQ2b)?

• RQ3: How helpful is homogeneous diversity in the
context of imbalanced data streams (RQ3a). When and
why is it beneficial or prone to failure (RQ3b)?

RQ1 is addressed through our proposed framework and
an investigation of its variations (e.g., weighting metrics,
resampling). Our findings suggest that time-decay G-Mean
and oversampling are often most effective for the proposed
framework. RQ2 and RQ3 are addressed by an extensive
evaluation of 9 approaches, including 7 existing diversity-
based approaches, 2 baselines, and our novel framework, on
80 artificial and 9 real-world data streams. Results indicate that
heterogeneous diversity is particularly beneficial for handling
concept drift in recurring and severely imbalanced scenarios,
while homogeneous diversity excels when concepts are stable.

Overall, the main contributions of this paper are:
• The first systematic analysis of when and why differ-

ent types of diversity (homogeneous/heterogeneous) are
helpful in the context of drifting class-imbalanced data
streams. Among other findings, heterogeneous diversity



improves concept drift adaptation especially for recurring
and severe drifts by effectively use of past relevant knowl-
edge. Homogeneous diversity is most effective during
stable concepts or mild drifts.

• The introduction of a novel heterogeneous diversity
framework (CDCMS.CIL) designed to address the gap in
drifting class-imbalanced data streams, which lacks such
kind of approaches. The approach obtained competitive
predictive performance against representative diversity-
based approaches and baselines on a wide range of
artificial and real-world datasets.

The rest of this paper is organised as follows. Section II
presents the problem formulation. Section III discusses related
work on diversity and approaches for drifting class-imbalanced
data streams. Section IV presents the proposed framework.
Section V presents the experimental study and results. Section
VI concludes the study and proposes future directions.

II. PROBLEM FORMULATION

In supervised learning, a data stream DS =
{(x1, y1), (x2, y2), . . .} is a potentially infinite sequence
of examples arriving in chronological order, where xt is a
feature vector and yt is the class label [1], [14]–[16]. The
underlying joint probability distribution Dt = P (xt, yt)
of DS is referred to as the concept [17]. Typically, the
concept of a stream changes over time (∃t,Dt ̸= Dt+1),
which is referred to as concept drift [1], [15], [16], and
can render existing models obsolete. For each new example
(xt, yt), we aim to update an ensemble learning system to
generalise to Dt (online data stream learning), potentially
with limited access to past examples. We assume the data
stream is class-imbalanced, i.e., the probability of seeing
examples from one class is much lower than from the others
(∃i, j, Pt(y

i) << Pt(y
j)) [7], [18]. This can significantly

impair the ability to recognise minority class examples.

III. RELATED WORK

A. Diversity for Drifting Class-balanced Data Streams

Existing work has shown that high levels of homogeneous
diversity help concept drift adaptation [19], lower levels are
better for stable periods [19], and heterogeneous memories
of past models representing different concepts can support
efficient learning of recurring concepts [13]. Several ensemble
data stream learning approaches have been proposed to exploit
different kinds of diversity for dealing with concept drift,
including approaches likely to result in homogeneous diversity
(e.g., Diversity for Dealing with Drift (DDD) [20], Adap-
tive Diversified Ensemble Selection Classifier (ADES) [21]
and Accuracy-and-Diversity-based Ensemble (ADE) [22]), and
heterogeneous diversity (e.g., Diversity Pool (DP) [13], Di-
versity and Transfer-based Ensemble Learning (DTEL) [23]
and Concept Drift handling based on Clustering in the Model
Space (CDCMS) [11]). Besides, some drift detection methods,
e.g., Diversity Measure Drift Detection Method (DMDDM)
[24], have also been proposed based on diversity. However,
none of the aforementioned studies were specifically designed

for class-imbalanced data streams, leaving the role of diversity
in this context undefined. It remains unclear if diversity would
play a similar role in class-balanced and imbalanced streams,
primarily due to the challenges posed by the scarcity minority
class examples. This scarcity may complicate recovery from
drifts in homogeneous ensembles and the identification of
distinct concepts in heterogeneous ensembles.

B. Approaches for Drifting Class-Imbalanced Data Streams

Addressing the joint challenge of concept drift and class-
imbalance is gaining increasing attention [25]. Most existing
ensemble methods rely on homogeneous diversity, where
ensemble members are diversified but aim to represent the
current concept. Oversampling and Undersampling Online
Bagging (OOB, UOB) [8] are pioneering homogeneous en-
semble approaches based on resampling whose performance
remains competitive against recent approaches [2]. Their vari-
ations OOBd and UOBd with drift detection methods can
be used to deal with real drifts [18]. Dynamic Weighted
Selective Ensemble (DWSE) [26] uses a dual-window system
to train and dynamically weight base learners on recent and
“hard” minority instances. Underperforming base learners are
replaced by new ones to adapt to drift, rendering DWSE
a homogeneous diversity approach. Noisy-Sample-Removed
Undersampling (NUS) [27] clusters and removes less infor-
mative majority instances before training. Its application in
generating varied datasets for ensembles of similar classifiers
makes it a homogeneous diversity approach.

Other methods involve generating synthetic minority class
examples. Continuous-SMOTE (C-SMOTE) [28] adapts the
offline SMOTE technique [29] for data streams using an adap-
tive window but can cause memory issues in the absence of
concept drift. Very Fast Continuous-SMOTE (VFC-SMOTE)
[30] addressed this by using a “sketch” data structure to
summarise past example and generating synthetic minority
examples SMOTE with Online Bagging (SMOTE-OB) [10]
integrates this strategy into OnlineUnderOverBagging [9],
benefiting from three data-level re-balancing strategies. Nev-
ertheless, all these approaches may generate noisy examples.
Alternatively, cost-sensitive learning is used by approaches
like Cost-sensitive Adaptive Random Forest (CSARF) [31],
an online ensemble that assigns weights to base learners
based on the Matthews Correlation Coefficient to address class
imbalance. Its ARF foundation inherently uses homogeneous
diversity.

Despite these developments, all approaches mentioned rely
on homogeneous diversity. The specific benefits of using di-
versity for drift adaptation in class-imbalanced streams remain
largely unexamined, and none of these methods have explored
the use of heterogeneous diversity.

IV. PROPOSED FRAMEWORK

This section proposes the first heterogeneous diversity
framework for drifting class-imbalanced data streams – Con-
cept Drift Handling Based on Clustering in the Model Space



for Class-Imbalanced Learning (CDCMS.CIL) 1. Section IV-A
presents an overview of CDCMS [11], as a prerequisite to
CDCMS.CIL. Section IV-B motivates and gives an overview
of the proposed CDCMS.CIL. Sections IV-C to IV-E explain
its diversity-based memory management strategies specifically
designed for class-imbalanced data stream learning.

A. Concept Drift Handling Based on Clustering in the Model
Space (CDCMS)

CDCMS [11] is an ensemble approach that employs di-
versity to address multiple types of concept drift in class-
balanced data streams. It comprises four key elements: a main
ensemble, a memory (repository) of past base learners, a
drift detector, and a recent window of examples. The main
ensemble, composed of online learning base learners, predicts
new instances through a weighted majority vote. The memory
stores a diverse set of past base learners which are not
active in prediction but can be useful if drift occurs. To deal
with gradual drifts, CDCMS periodically introduces a new
base learner to replace the least-performing one in the main
ensemble. To deal with abrupt drifts, it employs a drift detector
and a clustering in the model space strategy.

Upon drift detection, CDCMS clusters all past base learners
in the memory (a.k.a., clustering in the model space) based
on their predictions on the recent window of examples. Each
cluster represents a potentially different concept. It then forms
a heterogeneously diverse auxiliary ensemble (NH) with a
representative from each cluster. NH is then make predictions
alongside the main ensemble (NL) to mitigate post-drift
performance drops by leveraging various past concepts. To
form a new main ensemble post-drift, CDCMS first creates a
new base learner cn to learn alongside the old main ensemble
upon drift detection. At the b-th time steps since the drift
detection, cn is clustered with past learners to find those
relevant to the current concept, which are then reinstated to
form the new main ensemble. If cn forms a unique cluster,
the post-drift concept is deemed novel, and the new main
ensemble is built from scratch, initially with only cn.

To optimise the number of concepts within a limited mem-
ory, CDCMS employs a diversity-based memory management
strategy. When a base learner c must be moved from the main
ensemble to a full memory, CDCMS uses Yule’s Q-statistics
to identify the past base learner c′ that is most similar to c,
based on a similarity threshold θ. The learner (c or c′) trained
on more examples is retained. If no sufficiently similar past
model exists, c is discarded.

B. Overview and Motivation of the Proposed Approach

CDCMS uses a recent window of examples for model
retrieval via model space clustering upon concept drift detec-
tion. However, this window often lacks sufficient examples to
represent the decision regions of the current or past concepts.
This issue is exacerbated when minority class examples are
scarce, hindering the similarity analysis between base learners

1The source code of CDCMS.CIL is available at:
https://github.com/michaelchiucw/CDCMS.CIL/tree/main/Implementation

Fig. 1. Comparing similarities between base learners based on the most
recent sliding window of examples. Green triangles represent the majority
class examples and red circles the minority class examples in the sliding
window. Blue and orange areas represent the learnt decision areas of the
majority and minority class, respectively, for base learners c1, c2, c3, and c4.

during clustering in the model space. Fig. 1 illustrates this
issue. Intuitively, based on decision areas, c1 and c2 should be
clustered together, as should c3 and c4. Nonetheless, clustering
based on the predictions to the recent window incorrectly
groups c1, c2, and c3 together since they all classify the
window’s examples as the majority class. Base learner c4 ends
up isolated, as it classifies some examples as the minority
class. This strategy overlooks the fair consideration of each
base learner’s decision areas across both classes due to limited
coverage of examples, a problem that is exacerbated in class
imbalanced problems.

To address this limitation, CDCMS.CIL builds a sparse
representation of training examples for each base learner. This
representation captures the spatial distribution of examples
from both classes as learning progresses (Step 1 of Fig. 2).
This strategy considers each base learner and class individu-
ally, more accurately capturing decision areas and preventing
minority class examples to be confused with noise. This sparse
representation, encompassing all examples seen so far, better
represents various feature space regions than a recent window.
Upon drift detection, base learners make predictions to syn-
thetic examples created from this representation to determine
which base learner to recover from memory (Steps 2-3 of Fig.
2). This set of synthetic examples is called the projection set.
Clustering in the model space is then performed based on these
predictions (Step 4 of Fig. 2).

C. Sparse Representation of Past Data Stream Examples

To create the sparse representation, each base learner in
CDCMS.CIL is coupled with two stream clustering methods
(SC[]) that operate in the feature space, summarising training
examples from different classes as micro-clusters. Stream
clustering methods capable of adapting to concept drift and
constraining the number of micro-clusters are applicable. This
study employs CluStream [32], as it provides the necessary
capabilities. A micro-cluster (mc) typically includes the count
of data points and vectors representing the linear and squared



Fig. 2. Illustration of Clustering in the Model Space Strategy for Class-
Imbalanced Learning

sums of locally close examples in the feature space [33], [34].
As defined in [32], mc = (CF2x, CF1x, CF2t, CF1t, n). It
summarises n d-dimensional points {xt1 , . . . ,xtn}, where

CF2x =

(
n∑

i=1

(xti,1)
2, . . . ,

n∑
i=1

(xti,d)
2

)
,

CF1x =

(
n∑

i=1

xti,1, . . . ,

n∑
i=1

xti,d

)
,

CF2t =

n∑
i=1

(ti)
2, CF1t =

n∑
i=1

ti.

and ti denotes the timestamp of the i-th example within mc.
Hence, each base learner ci in CDCMS.CIL is associated with

MCclass
ci = {mc1, . . . ,mcKi

},
where Ki is the number of micro-clusters associated to ci and
class ∈ {0, 1}. The overall sparse representation is

S = {MC0
c1 ∪MC1

c1 ∪ . . . ∪MC0
cL ∪MC1

cL},
where c1, . . . , cL are all base learners in the system.

D. Clustering in the Model Space for Class-Imbalanced Data
Stream Learning

The centres of the micro-clusters composing the sparse
representation of the data stream can be seen as synthetic
examples forming a set that we call the “projection set” P :

P = {Υ0
c1 ∪Υ1

c1 ∪ . . . ∪Υ0
cL ∪Υ1

cL},
where Υ = {µi|∀µi ∈ MC} is a set of micro-clusters’ centres,
and µ = CF1x

n is the centre of a given micro-cluster.
The clustering in the model space strategy proposed in

this study clusters the base learners’ predictions on P . As
P covers the decision areas of both classes learnt by each
base learner, this strategy ensures a fair consideration of them.
Nonetheless, disparities in the number of micro-clusters of
each base learner and class may introduce bias. For instance,
some base learners may have more micro-clusters in the
majority class and / or have accrued more due to prolonged
exposure to the data stream. To address this, CDCMS.CIL
employs a round-robin method to oversample micro-cluster
centres within each set (MCclass

ci ), so that the total synthetic

Fig. 3. Illustration of the Diversity-based Memory Management Strategy for
Class-Imbalanced Learning

examples for each MCclass
ci equals Kmax = max(Ki). We

refer to this resampled projection set as P ′, i.e.,
P ′ = {RR(Υ,Kmax)|∀Υ} ∈ P}.

Once this is done, base learners in memory are prompted
to predict on P ′ (Step 3 of Fig. 2). Should this strategy is
triggered to identify and recover relevant past base learners
after b time steps from drift detection, the newly created base
learner is also prompted to predict on P ′. The prediction
correctness of each base learner ci on P ′ form a different
set of examples for clustering the base learners:

C = {zi}Li=1,

where zi ∈ {0, 1}M corresponds to the prediction correctness
of base learner ci on P ′, M = Kmax × 2L is the number of
projection examples in P ′, 1 (0) represents a correct (incorrect)
prediction, and L is the number of base learners. These
examples are called “clustering examples”.

Finally, CDCMS.CIL employs an offline clustering method
to cluster the model space based on C (Step 4 of Fig.
2). Following the methodology of [11], this work employs
Expectation Maximisation (EM) clustering with 10-fold cross-
validation to determine the number of clusters. Similar to
CDCMS, the clustering result is used either to form a het-
erogeneously diverse ensemble upon concept drift detection
or to identify and recover relevant past base learners after b
time steps after drift detection, depending on the context.

E. Diversity-based Memory Management Strategy for Class-
Imbalanced Learning

Any diversity-based memory management strategy to decide
which base learners to keep in the memory based on the most
recent sliding window of examples would suffer similar issues
to those of clustering in the model space outlined in Section
IV-B. To overcome this, we propose a new diversity-based
memory management strategy for class-imbalanced learning,
as illustrated in Fig. 3. CDCMS.CIL triggers this strategy
when a new base learner is created at regular intervals (b time
steps) to replace the least performing one (cworst) in the main
ensemble. This strategy determines whether cworst should be



stored in the memory when the memory is already full. In
particular, Yule’s Q-Statistics (Eq. 1) is employed to measure
the diversity level between cworst and each past base learner
cmemory
i in memory (Steps 1-2 of Fig. 3):

Q(ci, cj) =
N11N00 −N01N10

N11N00 +N01N10
, (1)

where Na,b is the number of resampled projection set exam-
ples where the classification by ci (cj) is a (b), a value of 1 (0)
represents a correct (incorrect) classification. Q varies between
1 and -1. Models that tend to classify the same (different)
examples correctly will have positive (negative) values of Q.

This strategy uses a smaller projection set p relevant only
to classifiers cworst and cmemory

i :
p = {Υ0

cworst
∪Υ1

cworst
∪Υ0

cmemory
i

∪Υ1
cmemory
i

}
The resampled projection set p′ is

p′ = {RR(Υ, kmax)|∀Υ ∈ p},
where
kmax = max(|Υ0

cworst
|, |Υ1

cworst
|, |Υ0

cmemory
i

|, |Υ1
cmemory
i

|).
Therefore, a vector of Q-Statistics’ results is obtained (Step 3
of Fig. 3):

Qall = {Q(cworst, c
memory
1 ), . . . , Q(cworst, c

memory
n )}

Next, the most similar past base learner in the memory
(csim) is found by max(Qall) (Step 4 of Fig. 3). Finally, we
check if Q(cworst, csim) ≥ θ to determine if they are similar
enough (Step 5 of Fig. 3). If they are, the one trained with
more examples is retained in the memory (Step 6 of Fig. 3).
Otherwise, cworst is discarded and csim is retained in memory.

V. EXPERIMENTS

The following approaches were analysed to answer RQ1-3:
• GH-VFDTd and HD-VFDTd [35]: Single-learner base-

lines using class-imbalance insensitive tree split criteria.
• Online Baggingd (OBd) [36]: A homogeneous diversity

ensemble baseline that is not specifically designed to
handle concept drift or class-imbalance in data stream
learning. The subscript “d” indicates the use of a drift
detection wrapper for handling concept drift [18].

• OOBd and UOBd [18]: Simple yet effective homogeneous
diversity approaches for class-imbalance data streams,
with a drift detection method to enable addressing con-
cept drifts affecting P (Y ) and P (Y |X).

• CSARF [31]: A state-of-the-art cost-sensitive homoge-
neous diversity ensemble for drifting class-imbalanced
data stream learning.

• VFC-SMOTE [30]: A state-of-the-art SMOTE method for
drifting class-imbalanced data stream learning. Online
Bagging was adopted as its base learner (homogeneous
diversity) for fair comparison.

• SMOTE-OB [10]: A state-of-the-art homogeneous di-
versity ensemble integrating random undersampling and
VFC-SMOTE’s data-level strategy into Online Bagging
for drifting class-imbalanced data stream learning.

• CDCMS.CIL: Our proposed approach, notable as the
only existing heterogeneous diversity approach for class-
imbalanced data streams.

A. Data Streams

For practical applicability assessment of heterogeneous and
homogeneous diversity, nine real-world streams were used:
Airline [37] containing 20 years of commercial flight records;
NOAA [38], with five decades of weather measurements;
Luxembourg [39], based on European Social Survey data
(2002-2007) about internet usage; Ozone [40], comprising air
quality data from Houston, Galveston, and Brazoria (1998-
2004); PAKDD2009 [41], feature credit scoring data from a
major Brazilian retail chain; the Amazon stream [42], with
labelled product reviews from 1998 to 2004; the Twitter stream
[43], consisting of annotated tweets collected between July and
December 2015; Covtype [44] detailing forest cover type of of
30 × 30m cells; INSECTS [45] contains flying data from three
insect species, collected via smart traps in a climate controlled
setting. Covtype and INSECTS were originally multi-class
problems. They have been adapted into several versions of
binary classification problems for this study as shown in the
supplementary material [46].

Although real-world data streams were used to demonstrate
practical performance of the approaches, their concept drifts
are unknown, offering limited insight into when and under
what circumstances homo/heterogeneous diversity contributes
to performance. For a deeper understanding of the benefits
and nuances of these diversity approaches, ten artificial data
streams from [11] with fully known characteristics were used.
Each stream has two variants: abrupt drift (1 time step) and
gradual drift (2k time steps). Drift severities and recurrence
are detailed in Tables I and II of [11]. We applied four
class-imbalance ratios to each variant (0.5:0.5, 0.7:0.3, 0.8:0.2,
0.9:0.1). Overall, 80 artificial streams (10×2×4) were adopted.

B. Experimental Setup

For the artificial streams (Sine, Agrawal, SEA, STAGGER
generators), hyper-parameters were tuned via grid search on
four random streams with the hyper-parameter combinations
shown in the supplementary material [46]. The configuration
with the highest average time-decay G-Mean over ten runs was
selected. The same tuning process was applied to the initial
10% of data for real-world streams. A limit of ten micro-
clusters per class per base learner was enforced.

The approaches were evaluated by averaging the time-
decay G-Mean, class 0 recall and class 1 recall over thirty
runs [47]. Time-decay G-Mean was chosen as the primary
evaluation metric as it is unbiased for class-imbalanced data
[48], capturing both class 1 recall and false-positives (through
class 0 recall). Metrics were measured prequentially, sampled
every 500 time steps, except for the shorter NOAA and Ozone
streams (every 50 steps) and Luxembourg (every 10 steps). A
fading factor of 0.999 was used to give more weight to recent
performance [47]. Friedman and Nemenyi tests were used to
check for statistical significance at the 0.05 level.

C. RQ1: How to Best Leverage Heterogeneity

To address RQ1, we examined the predictive performance
of CDCMS.CIL using different weighting metrics in the main



(a) Time-decay G-Mean

(b) Time-decay Class 0 (majority class) recall

(c) Time-decay Class 1 (minority class) recall

Fig. 4. Critical difference of Nemenyi post-hoc test of CDCMS.CIL with
different weighting metrics and resampling strategies across all streams.
Smaller rank indicates better performance. P-values of Friedman tests are
all ≤ 2.2× 10−16. No significant difference was found between approaches
linked by horizontal bars.

ensemble with various resampling methods for training. Vari-
ations are denoted as “CDCMS.CIL{weighting metric}

{resampling method}”, where
“Preq. Acc.”, “GMean”, “OS”, and “US” refer to prequential
accuracy, time-decay G-Mean, oversampling, and undersam-
pling, respectively. The absence of ’OS’ or ’US’ indicates
no resampling. This analysis assesses the need for a class-
imbalance insensitive weighting metric and resampling to fully
exploit heterogeneous diversity within CDCMS.CIL.

The Nemenyi post-hoc critical differences in Fig. 4 show
that the weighting metric choice has limited impact on over-
all predictive performance. Fig. 4(a) shows that, across all
data streams, variations using time-decay G-Mean marginally
outperformed those using prequential accuracy in time-decay
G-Mean ranks, with no significant difference observed when
coupled with oversampling. Weighting with time-decay G-
Mean generally led to better (worse) minority (majority) class
recall compared to prequential accuracy (Figs. 4(c) and 4(b)).

Regarding resampling, oversampling was generally more
effective for CDCMS.CIL in terms of time-decay G-Mean
(see Fig. 4(a)). CDCMS.CILPreq. Acc.

OS and CDCMS.CILGMean
OS

achieved significantly higher time-decay G-Mean than others,
with no significant difference between these two. In con-
trast, undersampling was not beneficial; CDCMS.CILPreq. Acc.

US
and CDCMS.CILGMean

US had significantly lower time-decay G-
Mean, compared to their oversampling counterparts (Figs. 4(c)
and 4(b)). This was mainly due to low class 0 recall, despite
CDCMS.CILGMean

US ’s high class 1 recall.
Overall, CDCMS.CILGMean

OS is typically preferred among the
explored variations, achieving the highest G-Mean (alongside
CDCMS.CILPreq. Acc

OS ) and only slightly lower minority class

TABLE I
FRIEDMAN RANKS OF APPROACHES IN

TIME-DECAY G-MEAN, CLASS 0, AND CLASS 1 RECALLS

Groups GH-
VFDTd

HD-
VFDTd

Oza-
Bagd

OOBd UOBd CSARF VFC-
SMOTE

SMOTE-
OB

CDCMS
.CILGMean

OS
Time-Decay G-Mean

Grouped by imbalance ratio (Artificial data streams)
0.5:0.5 5.90 5.98 3.23 3.99 5.04 4.42 8.16 6.18 2.12
0.7:0.3 6.49 6.65 6.33 3.15 3.84 4.53 7.45 4.11 2.44
0.8:0.2 6.88 7.36 6.84 2.74 2.93 4.77 7.37 2.93 3.18
0.9:0.1 7.25 7.64 6.23 3.19 2.40 4.47 7.26 2.48 4.09

Grouped by concept drift speed (Artificial data streams)
Abr. 6.49 6.78 5.34 3.23 3.71 4.83 7.44 4.51 2.67
Grad. 6.77 7.04 5.98 3.30 3.39 4.26 7.68 3.34 3.25

Real-world streams (Aggregated)
Real 5.74 5.79 6.10 4.39 5.51 1.78 8.54 2.24 4.92

Grouped by streams
Sine 7.99 8.27 6.18 2.46 3.83 2.21 6.40 4.68 2.97
Agr. 5.73 5.67 4.78 4.15 3.83 6.38 8.94 2.52 2.99
SEA 7.57 7.62 7.34 2.64 3.53 4.46 6.72 2.03 3.09
STA. 6.13 7.30 5.21 2.91 2.74 3.30 6.79 7.88 2.75
All 6.46 6.69 5.74 3.48 3.93 4.02 7.75 3.60 3.33

Time-Decay Class 0 (Majority Class) Recall
Grouped by imbalance ratio (Artificial data streams)

0.5:0.5 5.82 5.92 3.84 4.77 5.10 3.71 7.73 5.98 2.13
0.7:0.3 3.76 3.49 1.56 6.32 8.42 3.97 4.47 8.15 4.87
0.8:0.2 3.74 3.53 1.78 6.25 8.58 4.31 3.35 8.29 5.18
0.9:0.1 3.30 3.24 2.01 6.05 8.55 4.83 3.15 8.44 5.44

Grouped by concept drift speed (Artificial data streams)
Abr. 4.29 4.24 2.34 5.82 7.53 3.89 4.95 7.99 3.95
Grad. 4.02 3.85 2.25 5.88 7.79 4.52 4.40 7.44 4.85

Real-world streams (Aggregated)
Real 4.39 4.67 3.73 4.89 7.03 5.79 2.53 7.00 4.97
All 4.20 4.16 2.57 5.66 7.54 4.51 4.26 7.58 4.51

Time-Decay Class 1 (Minority Class) Recall
Grouped by imbalance ratio (Artificial data streams)

0.5:0.5 5.36 5.44 3.33 3.99 4.86 5.01 7.61 6.30 3.11
0.7:0.3 6.72 7.02 6.77 3.59 1.66 5.22 7.43 3.10 3.50
0.8:0.2 6.92 7.43 6.93 3.20 1.64 5.20 7.38 2.60 3.69
0.9:0.1 7.32 7.63 6.37 3.51 1.82 4.74 7.20 2.08 4.33

Grouped by concept drift speed (Artificial data streams)
Abr. 6.47 6.83 5.53 3.47 2.60 5.32 7.31 4.09 3.39
Grad. 6.69 6.94 6.16 3.67 2.39 4.77 7.50 2.96 3.93

Real-world streams (Aggregated)
Real 5.90 5.78 6.57 4.73 4.47 2.22 8.36 2.09 4.88
All 6.68 6.89 6.00 3.84 2.29 4.40 7.32 4.92 3.79
- The p-values of Friedman tests are all ≤ 2.2× 10−16.
- Highlighted ranks denote significant superior performance.
- “Abr”: Aburpt; “Grad.”: Gradual; “Agr.”: Agrawal; “STA.”: STAGGER;

recall than the top variation. The top time-decay G-Means
achieved by this variation were consistently observed across
different imbalance ratios and drift speeds (plots omitted due
to space constraints). CDCMS.CILGMean

US might be considered
if minority class recognition is critical. For highly imbalance
ratios (e.g., 0.9:0.1), CDCMS.CILPreq. Acc

OS is recommended, as
it achieves the highest time-decay G-Mean in this scenario.

D. RQ2a&3a: The Benefit of Hetero/Homogeneous Diversity

RQ2a and RQ3a are answered by analysing the predictive
performance of the proposed heterogeneous diversity frame-
work (CDCMS.CIL), five existing homogeneous diversity
class-imbalanced learning approaches and three baselines as
listed at the beginning of Section V. Based on the findings in
Section V-C, we focus on CDCMS.CILGMean

OS .
Fig. 5(a) shows that CDCMS.CILGMean

OS , which lever-
ages heterogeneous diversity, outperformed non-diversity ap-
proaches (GH-VFDTd and HD-VFDTd) and all but one homo-
geneous ensemble (OOBd). Although no statistically signifi-
cant difference was found between the time-decay G-Mean of
CDCMS.CILGMean

OS and OOBd (Fig. 5(a)), CDCMS.CILGMean
OS



(a) Time-decay G-Mean

(b) Time-decay Class 0 (majority class) recall

(c) Time-decay Class 1 (minority class) recall

Fig. 5. Critical difference of Nemenyi post-hoc test between approaches
across all streams. Smaller rank indicates better performance. P-values of
Friedman tests are all ≤ 2.2 × 10−16. No significant difference was found
between approaches linked by horizontal bars.

more consistently achieved higher ranks across a wider range
of imbalance ratios and concept drift speeds (see Table I).

Homogeneous diversity was also advantageous. Most class-
imbalance-focused homogeneous diversity approaches (OOBd,
UOBd, CSARF, SMOTE-OB) attained top ranks in at least
one factor. Notably, OzaBagd, a homogeneous approach that
was not designed for class-imbalanced learning, outperformed
cost-sensitive decision trees (GH-VFDTd and HD-VFDTd) in
this context, as shown in Fig. 5(a). These findings emphasise
diversity is a crucial factor, possibly more so than cost-
sensitive methods in class-imbalanced data stream leaning.

Comparing VFC-SMOTE and SMOTE-OB, both employ
the same synthetic minority generation strategy, but VFC-
SMOTE generally performed worse than SMOTE-OB and
even OzaBagd. This suggests that applying oversampling in-
dependently to each ensemble member (SMOTE-OB) may be
more effective for diversity than applying it to the whole
ensemble (VFC-SMOTE). Therefore, effectively integrating
diversity and class-imbalance strategies is likely more crucial
for handling class-imbalance in drifting streams than the sole
efficacy of the class-imbalance strategy.

Class-wise performance analysis across all data streams
(Figs. 5(b), 5(c)) shows that approaches relying purely on
diversity (OzaBagd), solely on cost-sensitivity (HD-VFDTd,
GH-VFDTd), or applying class-imbalance strategies less inte-
grally (VFC-SMOTE), performed worse on the minority class

Fig. 6. Critical difference of Nemenyi post-hoc test between approaches in
time-decay G-Mean across all STAGGER2 streams. Smaller rank indicates
better performance. P-values of Friedman tests are all ≤ 2.2 × 10−16. No
significant difference was found between approaches linked by horizontal bars.

(class 1) than the majority (class 0). Conversely, other methods
performed better on Class 1. This finding highlights that
strategies effectively integrating data-level or cost-sensitive
techniques with diversity are better at learning the minority
class, thus improving time-decay G-Means.

E. RQ2b&3b: When and Why Are Heterogeneous and Homo-
geneous Diversity Helpful/Detrimental

This section provides a detailed analysis of the predictive
performance of the approaches to investigate when heteroge-
neous and homogeneous diversity are beneficial or detrimental
in handling class-imbalanced data streams with concept drift,
addressing RQ2b and RQ3b. We use the STAGGER2, SEA2
and PAKDD2009 as representative cases for investigation, as
they cover different situations where heterogeneous diversity
was more / less helpful than homogeneous approaches. As
these situations can also be found on the other data streams,
the explanations of the approaches’ behaviours on other data
streams is similar.

1) STAGGER2 Streams: The benefit of heterogeneous
diversity is highlighted in STAGGER2 streams. Fig. 6 shows
CDCMS.CILGMean

OS , UOBd and OOBd as top overall performers
across the these streams. Fig. 7 shows CDCMS.CILGMean

OS
maintained consistent performance. In contrast, other ap-
proaches showed significant post-drift drops and slow recovery
(e.g., SMOTE-OB on all STAGGER2 streams, and CARFF
and UOBd on IR=0.9:0.1).

Log analysis revealed CDCMS.CILGMean
OS correctly detected

all STAGGER2 concept drifts. For the first and second drifts, it
successfully identified them as drifts to new concepts, forming
a new main ensemble (NL) from scratch or by reusing relevant
past models. This was enabled by its sparse representation and
stream clustering (Section IV-C), which captured the spatial
distributions of both classes under class-imbalance, allowing
accurate retrieval of relevant past models. For the last recurrent
drift, the model effectively recognised and recovered models
of the first concept, highlighting the clustering strategy’s po-
tential in handling class-imbalance (Section IV-D). However,
during the severe class-imbalanced gradual drift (STAGGER2-
gradual 0.9:0.1), it misidentified the transitional period as an
independent concept, recovering models from this phase and
achieving only average performance recovery (see Fig. 7(h)).

The heterogeneous diverse NH ensemble, formed by com-
bining models through clustering, mitigated performance drops
after abrupt and recurrent drifts, as evident by our analysis



(a) Abrupt, IR=0.5:0.5 (b) Abrupt, IR=0.7:0.3 (c) Abrupt, IR=0.8:0.2 (d) Abrupt, IR=0.9:0.1

(e) Gradual, IR=0.5:0.5 (f) Gradual, IR=0.7:0.3 (g) Gradual, IR=0.8:0.2 (h) Gradual, IR=0.9:0.1

Fig. 7. Time-decay G-Mean of Homo/Heterogeneous Approaches on STAGGER2

Fig. 8. Performance of Homo/Heterogeneous Approaches on Agrawal3-abrupt
0.8:0.2 (Time-decay G-Mean)

of the logs. In STAGGER2-gradual 0.9:0.1 (Fig. 7(h)), a 0.54
weight to NH reduced post-drift performance decline, demon-
strating how heterogeneous diversity supports transitions in
imbalanced scenarios, despite sub-optimal recovery due to
transitional model retrieval.

OOBd and UOBd also ranked highly. Despite lacking
heterogeneous diversity, they both performed similarly to
CDCMS.CILGMean

OS . This is likely due to the stream’s simplic-
ity, which may not require special strategies to handle drifts.
On the complex Agrawal stream (Fig. 8), OOBd faced signif-
icant post-drift performance drops, while CDCMS.CILGMean

OS
leveraged past models effectively.

2) SEA2 Streams: Homogeneous diversity was more
influential in SEA2 streams. CDCMS.CILGMeanOS achieved
competitive G-Mean performance with most approaches in
SEA2 IR=0.5:0.5, 0.7:0.3, and 0.8:0.2 (Figs. 9 and 10). How-
ever, in severely imbalanced SEA2 streams (0.9:0.1), it was
outperformed by UOBd and SMOTE-OB, though it performed
similarly to CSARF and OOBd.

Analysis of CDCMS.CILGMeanOS logs revealed minimal
concept drift detection in SEA2 streams, likely due to the low
severity of the SEA drifts. Therefore, the activation and impact
of CDCMS.CIL’s heterogeneous diversity strategy was limited.
Even when activated, its effect was minimal due to the low

Fig. 9. Critical difference of Nemenyi post-hoc test between approaches in
time-decay G-Mean across all SEA2 streams. Smaller rank indicates better
performance. P-values of Friedman tests are all ≤ 2.2×10−16. No significant
difference was found between approaches linked by horizontal bars.

drift severity. CSARF may have faced a similar issue of drift
detection, hindering its drift adaptation mechanisms.

The infrequent use of heterogeneous diversity means perfor-
mance relied primarily on applying class-imbalance learning
strategies within a homogeneously diverse ensemble. These
strategies can be implemented at two levels: the ensemble
level, where the training data is balanced for the ensemble
as a whole; and the base learner level, where the balance is
adjusted individually for each constituent base learner, poten-
tially allowing for deeper integration with diversity. Figs. 10(c)
and 10(d) shows that VFC-SMOTE, which applies a class-
imbalanced strategy at the ensemble level, was less effective
in SEA2 IR=0.8:2 and 0.9:1, indicating class-imbalance strate-
gies might be better applied at the base learner level through
methods like cost-sensitive learning or data subsetting, which
introduce diversity. SMOTE-OB and UOBd performed well
in SEA IR=0.9:0.1, likely benefiting from undersampling for
severely imbalanced data streams [18]. SMOTE-OB slightly
outperformed UOBd, which is attributed to its use of both
oversampling and undersampling at the base learner level, a
strategy that tends to yield better diversity.

A related scenario is the Luxemburg stream, where stable
time-decay G-Means across the stream suggests the absence
of concept drifts. This favoured approaches that do not rely



(a) Abrupt, IR=0.5:0.5 (b) Abrupt, IR=0.7:0.3 (c) Abrupt, IR=0.8:0.2 (d) Abrupt, IR=0.9:0.1

Fig. 10. Time-decay G-Mean of Homo/Heterogeneous Approaches on SEA2 abrupt drifts (the results were very similar for gradual drifts)

Fig. 11. Critical difference of Nemenyi post-hoc test between approaches
in time-decay G-Mean on PAKDD2009. Smaller rank indicates better perfor-
mance. P-value of Friedman test ≤ 2.2 × 10−16. No significant difference
was found between approaches linked by horizontal bars.

(a) Time-decay G-Mean (b) Prequential Accuracy

(c) Time-decay Recall in Class 0 (d) Time-decay Recall in Class 1

Fig. 12. Time-Decay G-Mean of Homo/Heterogeneous Approaches on
PAKDD2009

on drift detection, and was detrimental to approaches that do,
such as CDCMS.CIL, which can be negatively affected by
false positive drift detections.

3) PAKDD2009: Fig. 11 shows that CSARF,
CDCMS.CILGMean

OS , and SMOTE-OB performed the best
on time-decay G-Mean in PAKDD2009, with no significant
difference among them. Fig. 12(a) further shows that CSARF
maintained consistently high time-decay G-Mean throughout
the stream. CDCMS.CILGMean

OS performed in a range similar
to SMOTE-OB, often surpassing it before the 30k-th time
step. Both occasionally achieved performance comparable to
CSARF. Most other approaches struggled to perform well.

Figs. 12(c) and 12(d) provide the class-wise details. Ma-

jority class performance (Fig. 12(c)) fluctuated for most ap-
proaches, suggesting potential concept drifts or unstable class-
imbalanced learning strategies. Minority class performance
(Fig. 12(d)) was notably better for CDCMS.CILGMean

OS , CSARF,
and SMOTE-OB, which have deeper integration of diversity
and class-imbalance strategies. Notably, CDCMS.CILGMean

OS
gradually improved its minority class recall throughout the
stream, rising from around 60% to nearly 80%. In contrast,
SMOTE-OB exhibited a reverse trend, with minority class
recall dropping from over 80% to as low as 60%. CSARF
showed a modest improvement in minority class recall, briefly
catching up with SMOTE-OB around the 35k-th time step.
These results highlight CDCMS.CILGMean

OS ’s efficacy in en-
hancing minority class performance in PAKDD2009 and,
again, imply that heterogeneous diversity may be particularly
beneficial for minority class performance during drifts.

VI. CONCLUSION

This study investigated the impact of homogeneous and het-
erogeneous diversity in drifting class-imbalanced data streams
and introduced CDCMS.CIL, a heterogeneous diversity en-
semble. Experiments revealed that CDCMS.CIL best leveraged
heterogeneous diversity for optimal performance when using
time-decay G-Mean weighting combined with oversampling,
but suggest undersampling for applications requiring accu-
rate minority class identification, and time-decay prequen-
tial accuracy with oversampling for extreme class-imbalance
(RQ1). Heterogeneous diversity in CDCMS.CIL significantly
improved adaptation to recurring and severe concept drifts
by leveraging past models, often surpassing other approaches.
However, its effectiveness was hindered by false-positive drift
detections and mistaking gradual drifts for past concepts,
especially under severe imbalance. In contrast, homogeneous
diversity was effective during stable concepts or mild drifts
(RQ2). Our findings indicate that role of diversity in handling
drifting class-imbalanced data streams may be even more
critical than that of class-imbalance strategies, and that a
deep integration of diversity and class-imbalance strategies
is crucial to achieve top performance. For example, applying
class-imbalance strategies at the base learner level enhanced
performance by promoting greater diversity (RQ3).

Future work will focus on reducing CDCMS.CIL’s de-
pendency on drift detection, improving its robustness, and
analysing computational complexity. The use of a wide range
of datasets suggests real-world applicability, but further analy-



ses with more data streams would enhance the generalisability
of the conclusions.
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[1] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
Survey on Concept Drift Adaptation,” ACM Computing Survey, vol. 46,
no. 4, 03 2014.

[2] G. Aguiar, B. Krawczyk, and A. Cano, “A survey on learning from
imbalanced data streams: taxonomy, challenges, empirical study, and
reproducible experimental framework,” Mach. Learn., 2023.

[3] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit card fraud detection: A realistic modelling and a novel learning
strategy,” IEEE TNNLS, pp. 1–14, 09 2017.

[4] Kanika, J. Singla, A. K. Bashir, Y. Nam, N. U. Hasan, and U. Tariq,
“Handling class imbalance in online transaction fraud detection,” Com-
puters, Materials & Continua, vol. 70, no. 2, pp. 2861–2877, 2022.

[5] F. Jemili, K. Jouini, and O. Korbaa, “Intrusion detection based on
concept drift detection and online incremental learning,” IJPCC, vol. 21,
no. 1, pp. 81–115, Jan 2025.

[6] A. A. Toor, M. Usman, F. Younas, A. C. M. Fong, S. A. Khan,
and S. Fong, “Mining massive e-health data streams for iomt enabled
healthcare systems,” Sensors, vol. 20, no. 7, 2020.

[7] S. Wang, L. L. Minku, and X. Yao, “A Systematic Study of Online
Class Imbalance Learning With Concept Drift,” IEEE TNNLS, vol. 29,
no. 10, pp. 4802–4821, 2018.

[8] ——, “Resampling-Based Ensemble Methods for Online Class Imbal-
ance Learning,” IEEE TKDE, vol. 27, no. 5, pp. 1356–1368, 2015.

[9] B. Wang and J. Pineau, “Online bagging and boosting for imbalanced
data streams,” IEEE TKDE, vol. 28, no. 12, pp. 3353–3366, 2016.

[10] A. Bernardo and E. D. Valle, “SMOTE-OB: Combining SMOTE and
Online Bagging for Continuous Rebalancing of Evolving Data Streams,”
in BigData, 2021, pp. 5033–5042.

[11] C. W. Chiu and L. L. Minku, “A Diversity Framework for Dealing
With Multiple Types of Concept Drift Based on Clustering in the Model
Space,” IEEE TNNLS, vol. 33, no. 3, pp. 1299–1309, 2022.

[12] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE TKDE, vol. 25, no. 10, pp. 2283–
2301, 2013.

[13] C. W. Chiu and L. L. Minku, “Diversity-Based Pool of Models for
Dealing with Recurring Concepts,” in IJCNN, 07 2018, pp. 2759–2766.

[14] L. L. Minku, Transfer Learning in Non-stationary Environments: Meth-
ods and Applications, 01 2019, pp. 13–37.
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