
1

Towards Reliable Online Just-in-time Software
Defect Prediction

George Cabral, Member, IEEE, Leandro L. Minku, Senior Member, IEEE

Abstract—Throughout its development period, a software
project experiences different phases, comprises modules with dif-
ferent complexities and is touched by many different developers.
Hence, it is natural that problems such as Just-in-Time Software
Defect Prediction (JIT-SDP) are affected by changes in the
defect generating process (concept drifts), potentially hindering
predictive performance. JIT-SDP also suffers from delays in
receiving the labels of training examples (verification latency),
potentially exacerbating the challenges posed by concept drift
and further hindering predictive performance. However, little is
known about what types of concept drift affect JIT-SDP and how
they affect JIT-SDP classifiers in view of verification latency.
This work performs the first detailed analysis of that. Among
others, it reveals that different types of concept drift together
with verification latency significantly impair the stability of the
predictive performance of existing JIT-SDP approaches, drasti-
cally affecting their reliability over time. Based on the findings,
a new JIT-SDP approach is proposed, aimed at providing higher
and more stable predictive performance (i.e., reliable) over time.
Experiments based on ten GitHub open source projects show
that our approach was capable of produce significantly more
stable predictive performances in all investigated datasets while
maintaining or improving the predictive performance obtained
by state-of-art methods.

Index Terms—Just-in-time Software Defect Prediction, Online
Learning, Concept Drift, Verification Latency, Class Imbalance
Learning.

I. INTRODUCTION

Defects in software are one of the main threats to software
development companies, increasing software costs and poten-
tially damaging companies’ reputations. A report created by
The Consortium for IT Software Quality (CISQ)1 revealed that
poor software quality costed $ 2.8 trillions in 2018 only in US.
This same report states that developers introduce on average
100 to 150 defects for every thousand of lines of code, among
which 10% can be considered serious. However, reducing
the number of software defects is challenging, especially
considering that the presence of defects can be associated
to multiple uncontrollable factors such as changes in the
development team and time to market, and exacerbated by
limited testing resources.

To help with improving software quality, methods for au-
tomatically detecting defect-inducing software changes based

G. Cabral is with the Department of Computing, Federal Rural University
of Pernambuco, BR, george.gcabral@ufrpe.br

L. L. Minku is with the School of Computer Science, The University of
Birmingham, UK, L.L.Minku@bham.ac.uk

This work was supported by EPSRC Grants No. EP/R006660/2 and
EP/P005578/1.

1https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-
2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf

on Machine Learning have been proposed [1], [2], [3]. These
methods are frequently referred to as Just-In-Time Software
Defect Prediction (JIT-SDP) [4], [5], [6] methods. They can
alert a software developer of potential defects associated
to their software change at commit time (i.e., just-in-time),
when the change is still fresh in the developer’s mind and
easier/cheaper to be inspected. In this way, software testing
and inspection can be done in a more cost-effective way,
contributing towards better software quality.

A key problem in most JIT-SDP studies is that they do
not respect the chronology of the available training data
when building JIT-SDP classifiers, i.e., their experiments may
use data that, in practice, would be unavailable to train the
classifier. As pointed out by Tan et. al. [7], this leads to over-
estimations of predictive performance, giving the impression
that JIT-SDP classifiers perform better than they would do in
real scenarios.

The reason for the overestimations of predictive perfor-
mance is twofold. First, JIT-SDP is affected by concept
drifts [8], [6], i.e., changes in the defect generating process.
These changes mean that JIT-SDP classifiers trained on data
generated at certain periods of time may be unsuitable for
later periods of time [6], because the training data generated
at earlier periods may not share the same underlying defect
generating process as the software changes produced at later
periods. Therefore, training a classifier with data from the
future could cause this classifier to perform well on future
commits, when in practice it would not have performed so
well due to the unavailability of data similar to the future data
for training.

Second, JIT-SDP suffers from verification latency [8]. This
refers to the fact that the label associated to a software change
arrives with a delay, rather than arriving at commit time. In
particular, a software change can only be labelled as defect-
inducing once a defect associated to it is found. And, it can
only be labelled as clean once enough time has passed for one
to be confident that this software change is not associated to
any defects. This issue has been overlooked by most existing
work [9], [5], [2]. When associated with concept drift, it
means that labelled training data coming from the same defect
generating process as the software changes being currently
predicted may be unavailable in practice, making it difficult
to adapt to concept drift and further hindering predictive
performance. The negative effects of that remain unnoticed
if verification latency is overlooked in an experimental study.

Existing studies that take chronology into account reveal
that the predictive performance of JIT-SDP classifiers gets
worse [6] and fluctuates over time [8] potentially as a result

2

of concept drift and exacerbated by verification latency. At
any given point in time, JIT-SDP classifiers may be perform-
ing very well or failing dramatically [8]. This is a serious
impediment for wider adoption in practice, as it renders JIT-
SDP classifiers unreliable even if the overall average predictive
performance across time would seem acceptable. Stability
of predictive performance is thus an important issue to be
considered when dealing with JIT-SDP. A reliable JIT-SDP
method should perform consistently well over time, i.e., it
should obtain stable and high predictive performance over
time.

Very few studies so far have considered concept drift and
verification latency in JIT-SDP [6], [7], [8], [10] and none
of them provide a detailed understanding of how different
types of concept drift affect predictive performance in JIT-
SDP in the presence of verification latency. None of them
have proposed methods to overcome the challenges posed by
verification latency in view of concept drift either. A detailed
understanding is essential for the proposal of strategies able
to respond to concept drifts in realistic scenarios that take
chronology and verification latency into account, creating
more reliable JIT-SDP classifiers. Our paper aims at providing
such understanding and proposing a novel approach to improve
the reliability of JIT-SDP classifiers.

We focus on online JIT-SDP, where new training examples
are produced over time and used to update classifiers. This
enables the adoption of strategies to potentially cope with
concept drift. With that in mind, this paper answers the
following Research Questions (RQs):

• (RQ1:) Which types of concept drift occur in online JIT-
SDP and how they affect the predictive performance of
existing online JIT-SDP methods in view of verification
latency? In particular, how do they affect the reliability
of existing online JIT-SDP methods?

• (RQ2:) In view of the knowledge provided by RQ1, how
to improve the reliability of online JIT-SDP classifiers, so
that they perform more consistently well over time? How
well such new method performs compared with existing
methods?

To answer RQ1, we carefully analyse the online JIT-
SDP classifiers and their predictive performance over time
taking verification latency into account, showing that there
is evidence supporting the existence of different types of
concept drift in JIT-SDP. We then highlight the strengths and
weaknesses of existing online JIT-SDP methods for tackling
these concept drifts, paying close attention to their reliability
over time. To answer RQ2, we propose a novel method able to
use the predictions given by the JIT-SDP classifier to decide
how to adapt to concept drift. The use of the predictions
rather than the true labels of the software changes means that
adaptation can commence even before the true labels of such
changes are revealed. The method also makes use of unlabelled
data to more efficiently recover from concept drifts. Our study
based on ten open source data sets shows that our proposed
method achieves better robustness to concept drift, leading
to more reliable JIT-SDP classifiers, i.e., classifiers able to
perform more consistently well through time than existing

online JIT-SDP methods.
Our paper provides the following novel contributions:
• the first detailed analysis of concept drift in online JIT-

SDP, revealing what types of concept drift are present;
• a detailed understanding of when and why existing online

JIT-SDP methods are unable to cope with certain types
of concept drift, which hinders their reliability;

• the first detailed analysis of the stability of online JIT-
SDP’s predictive performance over time, taking verifica-
tion latency into account;

• a novel online method (Prediction-Based Sampling Ad-
justment - PBSA) to cope with different types of concept
drift in the presence of verification latency in JIT-SDP,
leading to more reliable JIT-SDP classifiers.

This paper is further organized as follows: Section II pro-
vides basic definitions for online JIT-SDP. Section III presents
related work; Section IV introduces the datasets used in our
study; Section V thoroughly discusses the types of concept
drifts present in JIT-SDP and the effectiveness of state-of-art
methods for tackling them (RQ1). Section VI proposes our
new method to improve reliability and compares it to existing
methods (RQ2). Section VII presents threats to validity. Sec-
tion VIII presents conclusions and implications of this work.

II. PROBLEM FORMULATION

Definition 1 (commit time step) A sequential index rep-
resenting the order of arrival of software changes in terms of
their commit time. Each software change is a test example
requiring a prediction at commit time.

Definition 2 (test example) A test example x⃗i is a software
change represented by a vector of features x⃗i that needs to be
predicted as clean or defect-inducing.

In this work, we adopt the software change features pro-
posed by Kamei et al. [5], as they have been vastly adopted
by JIT-SDP literature [9], [6], [3], [2], [8] and shown to be
suitable for practical scenarios [8], [10]. These features are:
(1) NS - number of modified subsystems; (2) ND - number of
modified directories; (3) - NF - number of modified files; (4)
Entropy - distribution of modified code across each file; (5)
LA - lines of code added; (6) LD - lines of code deleted; (7)
LT - lines of code in a file before the change; (8) FIX - flag
indicating if the change is a defect fix; (9) NDEV - number
of developers that touched the files; (10) AGE - average time
interval between last and current change; (11) NUC - number
of unique last changes to the files; (12) EXP - developer
experience; (13) REXP - recent developer experience; and (14)
SEXP - developer experience on a subsystem.

Definition 3 (training time step) A sequential index
representing the order of arrival of training examples. Each
training example is used for updating the JIT-SDP classifier
as soon as it becomes available.

It is important not to confuse time step with Unix times-
tamp. A Unix timestamp is a moment in time measured in
terms of number of seconds elapsed since the Unix Epoch on
January 1st, 1970 at UTC, whereas a time step is a sequential
index representing order of arrival.

Definition 4 (training example) A training example si =
(x⃗i, yi) is a software change represented by a vector of features

3

x⃗i and its respective class label yi, where i is the training time
step. The features are the same as the ones described in the
definition of test example. The class label can be either clean
(represented by 0) or defect-inducing (represented by 1).

Definition 5 (verification latency) Verification latency is
the delay for obtaining the label (clean or defect-inducing) of
a software change. Consider a software change committed at a
Unix timestamp ui. The label corresponding to this software
change can only become available at a Unix timestamp uk

(s.t. uk > ui). This is because, at commit time, it is unknown
whether this software change truly will or will not induce
defects. Indeed this is the reason why software changes have
to be predicted as clean or defect-inducing at commit time in
JIT-SDP. Therefore, verification latency is in practice inherent
to the JIT-SDP problem.

To take this into account, we adopt the framework proposed
by Cabral et al. [8], which produces labels based on the cases
below, where w is a parameter called waiting time:

• No defect is found to be induced by the software change
during w days after its commit – it will be labeled as
clean once w days have passed, producing a clean training
example;

• A defect is found to be induced by the software change in
t < w days after its commit – it will be labeled as defect-
inducing once t days have passed, producing a defect-
inducing training example; and

• A defect is found to be induced by the software change
after t > w days from its commit – it will be first labeled
as clean once w days have passed and used to produce a
clean training example, and then it will be labeled as
defect-inducing once t days have passed and used to
produce a defect-inducing training example.

Definition 6 (class imbalance) A problem where the num-
ber of training examples of a given class is much smaller than
the number of training examples of another class is referred
to as a class imbalanced problem.

JIT-SDP is typically a class imbalanced problem where the
defect-inducing class is a minority. For instance, the proportion
of examples of the defect-inducing class of the data sets used
in this study is shown in Table I, which is presented in Section
IV. If not treated, class imbalance can cause classifiers to over-
emphasize the majority class in detriment of the minority class
[11].

Definition 7 (online learning) Consider a data stream
composed of training examples ordered by the time they were
produced S = {(x⃗i, yi)}∞i=1, where i is the training time
step. Online learning maintains a classifier f̂ that is updated
whenever a new training example (x⃗i, yi) ∈ S becomes
available. Such update may or may not require access to
previous training examples (x⃗j , yj), where j < i, depending
on the machine learning algorithm being used.

Whenever a prediction is required for a new software
change, the most up-to-date classifier f̂ is used. This up-
to-date classifier is the one trained on all training examples
(x⃗i, yi) produced before the prediction is required. Therefore,
chronology is always respected, i.e., predictions are never
made by using classifiers trained on data that would not yet

have been available in practice. Therefore, online learning
reflects practical JIT-SDP environments.

Definition 8 (concept) A concept is a joint probability dis-
tribution (pt(x⃗, y) = pt(y|x⃗)pt(x⃗) = pt(x⃗|y)pt(y)) underlying
a machine learning problem at a given time step t. In JIT-SDP,
this can be seen as the status of the defect generating process
underlying commit time step t. It represents the underlying
function that captures the relationship between features and
classes, the chances of observing examples from each class
and the chances of observing each feature value.

Definition 9 (concept drift) A concept drift takes place
when the concept changes over the time, i.e., pt(x⃗, y) ̸=
pt+∆(x⃗, y), where ∆ ̸= 0. There are different types of
concept drift, based on the component of the joint probability
distribution that they affect [11]:

1) Changes in the proportions of examples of each
class [8]. These proportions are represented by the
prior probabilities of the classes, i.e., p(y). In a class
imbalanced problem, such changes are referred to as
class imbalance evolution [8].

2) Evolving probability of observing different feature
values given the class, i.e., p(x⃗|y). Such evolution can
be of one or both of the following types:

• Changes in how likely an example is to belong to a
given class (defect-inducing or clean) given its fea-
ture values, i.e., in the posterior probabilities p(y|x⃗).
These concept drifts mean that changes described by
features that would typically be associated to the
clean class may now be associated to the defect-
inducing class, or vice-versa.

• Changes in the frequency of observing different
feature values, i.e., changes in the probability dis-
tribution of the features p(x⃗). These concept drifts
mean that the typical values of the features vary
over time.

One of the typical side-effects of concept drifts is that
they cause drops in the predictive performance of classifiers,
resulting in unstable predictive performance over time [12].
Fluctuations have been observed in previous JIT-SDP work
that consider chronology or online scenarios [8], [10], [6].
However, to be adopted in practice, a JIT-SDP classifier
must attempt to minimize these fluctuations (i.e., yield a
stable predictive performance) while maximizing its predictive
performance over time. Combining a high and stable predictive
performance over time produces a more reliable classifier.

Definition 10 (reliability) We define reliability of a classi-
fier as a combination of a high and stable predictive perfor-
mance. Consider a 2-dimensional space formed by the stan-
dard deviation and the average of the predictive performance
through time, respectively. To maximize reliability, one has to
minimize the first dimension while maximizing the second.

III. RELATED WORK

A. JIT-SDP

Many studies have been conducted investigating different
aspects of the JIT-SDP problem, such as effort-aware JIT-SDP

4

[4], [5], local vs. global JIT-SDP classifiers [3] and cross-
project JIT-SDP [13], [9].

Effort-aware JIT-SDP [4], [5] takes into account the work-
load generated to the software quality assurance team. This
task involves maximizing the classifier accuracy while mini-
mizing the software quality assurance team’s effort. The effort
is often proportional to the number of lines of code modified
by a change [5]. Chen et al. [2] formalized JIT-SDP as a
multi-objective optimization problem to conduct Effort-aware
JIT-SDP. They used the number of bugs found and their
corresponding lines of code changed as objectives to be max-
imized and minimized, respectively [14]. Both performance
objectives were optimized over six open source datasets,
however, the results still suggests room for improvements w.r.t.
the performance on the clean class.

Yang et al. [3] evaluated the effectiveness of local [15],
[16] vs. global JIT-SDP methods. Local methods cluster the
whole training data into regions composed of similar training
examples and then create separate classifiers to learn training
examples from each region. Global methods create a single
classifier that learns all training examples. The study con-
ducted on six open source datasets found that global methods
produce better JIT-SDP classifiers.

Other studies investigated the use of cross-project data in
JIT-SDP [9], [13]. Kamei et al. [9] were the first ones to
investigate cross-project data in JIT-SDP. They used 11 open
source projects and among their findings, they confirm that the
cross-project approach can be useful for projects with limited
historical data. Catolino et al. investigated 14 mobile projects,
with number of software changes ranging from 193 to 13067.
Among their findings is the fact that the features LA, LD,
ND, NF, NUC and NDEV better contribute to identify defect-
inducing software changes. In cross-project JIT-SDP, training
data includes data generated by projects other than the project
of interest. It was initially believed to be particularly beneficial
in the initial phase of a project, when there is not enough
within-project data to build a suitable within-project classifier.
More recent work has found that it can also be useful for
prolonged periods of time as will be discussed in Section III-C.

Most studies use resampling strategies to cope with class-
imbalance in JIT-SDP [2], [13], [9], [3]. In particular, under-
sampling of training examples of the clean class is frequently
used to avoid the learning algorithm over-emphasizing this
class in detriment of the defect-inducing class [2], [9], [3].

All studies above investigate JIT-SDP in an offline learning
scenario where a JIT-SDP classifier is built based on a pre-
existing training set, and then is applied on a given project.
These studies ignore the chronology of the data. Few studies
take chronology into account; these will be discussed in
Sections III-B, III-C and III-D.

B. Analysis of Concept Drift in JIT-SDP

A big challenge in studying concept drift is that, for real
world problems, we have no access to the true underlying
statistical distribution. Therefore, concept drifts must be in-
ferred based on the data being received over time and in their
respective classifiers. McIntosh and Kamei [6] investigated the

presence of concept drift in JIT-SDP. They showed that (i) JIT
classifiers lose a large proportion of predictive performance
after one year; (ii) the predictive importance of most families
of features fluctuates over time, suggesting that the properties
of defect-inducing changes tend to evolve as projects age. Both
findings are strong evidence that concept drift occurs. How-
ever, this paper does not investigate which types of concept
drift occur in JIT-SDP, which is important for proposing novel
JIT-SDP methods that are able to better handle concept drift.
It does not consider verification latency in the analysis either.

Cabral et.al. [8] analyzed the proportion of examples of
the clean and defect-inducing class over time based on an
exponential smoothing function of the class labels. They found
that such proportion varies over time, i.e., there is class imbal-
ance evolution. It means that the severity of class imbalance
varies over time, and sometimes the defect-inducing class can
even become a minority, hindering the predictive performance
of existing JIT-SDP methods. They also found that existing
JIT-SDP methods that discard old data (i.e., sliding windows
[6]) are detrimental to the predictive performance compared
to methods that adopt other mechanisms to deal with concept
drift. This suggests that old training examples do not always
become detrimental to predictive performance. In particular,
there may be recurrent concepts in JIT-SDP, i.e., concepts that
are valid for certain periods of time and reappear again at later
periods. However, their study has not analyzed other types of
concept drift than drifts affecting the proportion of clean and
defect-inducing examples.

The literature provides high level evidences of concept drift
in JIT-SDP, notwithstanding, a deeper understanding of which
specific types of concepts drifts occur and how they affect JIT-
SDP is necessary to guide the development of more effective
JIT-SDP classifiers.

C. Dealing with Concept Drift in JIT-SDP

To deal with concept drift in JIT-SDP, McIntosh and Kamei
[6] suggested the use of the most recent window of training
examples (i.e., sliding windows) to build JIT-SDP classi-
fiers. Wang et.al. [17] introduced two general purpose online
resampling methods for tackling class imbalance evolution,
namely improved Oversampling Online Bagging (OOB) and
improved Undersampling Online Bagging (UOB). They relied
on the assumption that making the class proportions even by
oversampling examples of the majority class and undersam-
pling examples of the minority class, respectively, is sufficient
for solving this issue. These methods were investigated in
the context of JIT-SDP by Cabral et al. [8]. They showed
that this strategy is insufficient for JIT-SDP, as large gaps
between the recall on the clean and defect-inducing classes
may still occur when adopting this method. They proposed
Oversampling Rate Boosting (ORB) [8], which further adjusts
the resampling rate based on the level of imbalance in the
predictions given by a classifier. They found that this leads to
an advantage in predictive performance over OOB, UOB [17]
and Sliding Window [6] methods in JIT-SDP. However, their
proposal carries a weakness of resampling only the most recent
labeled change. As there is verification latency in JIT-SDP,

5

this most recently labeled change may already be outdated
and unrepresentative of the current concept. Moreover, OOB,
UOB and ORB only have strategies to deal with concept drifts
affecting the proportion of examples of each class, and do not
attempt, even indirectly, to deal with other types of concept
drift in JIT-SDP.

More recently, Tabassum et al. [10] showed that cross-
project data generate better classifiers throughout the whole
development cycle (not only in the beginning of the project)
when considering online JIT-SDP. Such data can also alleviate
drops in predictive performance that may be caused by concept
drifts. However, their study focused on investigating cross-
project learning and has not investigated the issue of concept
drift itself in JIT-SDP.

D. Verification Latency in JIT-SDP

To the best of our knowledge, Tan et al. [7] was the
first work to alert the software engineering community about
the verification latency problem in JIT-SDP. They showed
that ignoring chronology and verification latency leads to
overoptimistic estimations of the predictive performance in
JIT-SDP. They recommended the use of a method that can be
updated with incoming chunks of training examples to learn
JIT-SDP classifiers over time while taking verification latency
into account. However, their study assumes that the delay to
receive the labels from all examples from both classes is fixed,
which has more recently been shown to be unrealistic in JIT-
SDP [8]. In addition, they do not propose strategies to deal
with concept drift, or strategies to overcome the challenges
posed by verification latency.

Cabral et al. [8] showed that the delay for assigning the
correct label of a training example in JIT-SDP may vary from
days to years, which may negatively impact the classifier’s
predictive performance when there is concept drift. However,
they have not proposed any strategy to improve classifiers’
predictive performance in the presence of verification latency.
Tabassum et al. [10] also took verification latency into account,
but did not propose methods to overcome this issue.

Overall, even tough existing studies are aware of verification
latency, none of them proposed strategies to overcome the
low predictive performance that may be caused by verification
latency when there is concept drift.

IV. DATASETS

We have used the same ten GitHub open source projects
as in previous work [8]. This number of projects is in line with
other existing studies in the area [7], [9]. These projects were
chosen among projects with more than 5 years of duration,
rich history (at least around ∼8k software changes) and good
defect-inducing changes ratio (∼20% overall).

The defect-inducing software changes were obtained by
using the tool Commit Guru [18].

The most commonly used features in the literature (pre-
sented in Section II) are retrieved by Commit Guru. These
features have shown to perform well in JIT-SDP research [5],
[9], [6]. Commit Guru was also configured to retrieve the
defect discovery delay, i.e., the time taken (verification latency)

TABLE I: Datasets’ statistics

Dataset
Number Defect-

Period
Median defect

of inducing discovery
changes proportion delay (in days)

Fabric8 13,003 20% 04/2011 - 05/2017 40
JGroups 18,316 17% 09/2003 - 11/2017 117
Camel 30,517 20% 03/2007 - 11/2017 29
Tomcat 18,877 28% 03/2006 - 12/2017 201
Brackets 17,310 23% 12/2011 - 08/2017 139.5
Neutron 19,450 24% 01/2011 - 11/2017 103
Spring 8,691 27% 11/2007 - 10/2017 416.5Integration
Broadleaf 14,911 17% 12/2008 - 09/2017 43
Nova 48,937 25% 05/2010 - 01/2018 97
NPM 7,892 18% 09/2009 - 09/2017 113

to discover the label of a defect-inducing change. This was set
as the difference between (i) the change time stamp and (ii)
the time stamp of its associated fix change.

Table I shows specific information for each dataset. The
median of the defect discovery delay suggests that the projects
Tomcat (201 days) and Spring-Integration (416.5 days) are
highly affected by verification latency. In theory, the larger the
verification latency, the longer the delay in receiving training
examples of the minority class. This poses an extra challenge
to JIT-SDP. Not only JIT-SDP has relatively few examples of
the defect-inducing class, but also these examples may already
be obsolete (due to concept drift) when they arrive. If an
obsolete defect-inducing example is used to update a JIT-SDP
classifier, it might add irrelevant, or even noisy, information.

V. (RQ1:) ANALYSIS OF CONCEPT DRIFT IN JIT-SDP
AND ITS EFFECT ON THE RELIABILITY OF EXISTING

JIT-SDP METHODS

A. Experimental Setup

To answer RQ1, besides investigating the types of concept
drift outlined in Section II that may be present in JIT-SDP, we
will also analyze how these types of concept drift affect pre-
dictive performance (and in particular reliability) of existing
JIT-SDP methods. Previous work [6], [8] has already analyzed
class imbalance evolution in JIT-SDP and shown that JIT-
SDP methods that assume a fixed proportion of examples of
each class p(y) over time fail to achieve acceptable predictive
performance over time. Therefore, this section will concentrate
mainly on concept drifts affecting p(y|x⃗) and p(x⃗).

The datasets introduced in Section IV and the following
methods will be investigated, using Hoeffding Trees [19] as
base learners: i) Oversampling-based Online Bagging (OOB)
[17]; ii) Undersampling-based Online Bagging (UOB) [17];
iii) Oversampling-based Online Bagging Sliding Windows
(OOB-SW) [6]; and iv) Oversampling Rate Boosting (ORB)
[8]. These methods were chosen because they form the state-
of-the-art in online within-project JIT-SDP [8]. The analysis
presented in Section V-B is a detailed analysis to identify the
factors responsible for sudden, significant drops in predictive
performance – among them, concept drifts of type p(y|x⃗)
and p(x⃗). It will thus concentrate on two datasets (Camel
and Tomcat) that are representative of different types of
concept drift, and ORB, which is the method that obtained

6

the best within-project JIT-SDP predictive performance in non-
stationary environments so far [8]. Section V-C will provide
an overall discussion of all four methods. All methods fully
respect the chronology of the data, including verification
latency. Therefore, our entire analysis respects chronology and
takes verification latency into account. We focus on within-
project JIT-SDP as the use of cross-project data would prevent
the identification of concept drifts, given that cross-project
approaches use a mix of data that comes from potentially dif-
ferent defect generating processes to train JIT-SDP classifiers.

1) Performance Metrics: The evaluation metrics used
for assessing the classifiers’ predictive performances are the
recalls on the clean (rec(0)) and defect-inducing (rec(1))
classes, the average of the absolute differences between re-
calls for each time step (|rec(0) − rec(1)|) and the g-mean
(
√
rec(0)× rec(1)). The metrics rec(0), rec(1) and g-mean

were adopted because they were recommended as unbiased
metrics for evaluating predictive performance in class im-
balance learning studies [20], different from other metrics
such as precision and F1-score [21], [20]. This is particularly
important in online class imbalance learning [17], where the
imbalance ratio may vary over time. The metric |rec(0) −
rec(1)| enables us to quantify the similarity of the recalls on
both classes and was also adopted in Cabral et al. [8]’s study.
Small values for this metric assure that the strategy adopted
for coping with class imbalance is effective, i.e., the improved
predictive performance on the minority class is not at the cost
of a worse performance on the majority class. A large value
indicates a high bias towards one of the classes, making the
classifier unreliable to practitioners. It is important to note that
rec(0) = 1−FalseAlarmsRate, where FalseAlarmsRate
is the ratio of clean software changes that have been classi-
fied as defect-inducing. Therefore, FalseAlarmsRate is also
taken into account by the evaluation metrics used in this study.
We have not adopted Area Under the ROC Curve (AUC)
because it incorporates several threshold values that are not
meaningful in practice, having been recently discouraged in
the context of software defect prediction [22].

The recalls are computed in a prequential way and with
a fading factor, as recommended for online learning studies
in the presence of concept drift [23]. This enables tracking
changes in the predictive performance over time. As in previ-
ous work [8], [10], [17], [11], the fading factor was θ = 0.99.
Too large (small) θ causes the prequential performance to vary
wildly (have almost imperceptible variations) over time. The
value of θ = 0.99 enables a good trade-off between tracking
changes in performance while preventing wild variations.

2) Parameters Choice: For tuning the classifiers’ param-
eters, a grid search based on the execution of each dataset
up to the commit time step 5000, using g-mean as evaluation
criterion, was conducted based on the following values, where
values in bold face are the ones most often included in the
parameter configuration that led to top g-mean across datasets
and were thus chosen for the experiments2: ensemble size
(n) = {10,20,30,40}; decay factor (θ′) = {0.9,0.99,0.999};
and waiting period (ω) = {90,180}. For OOB(FixedIR), the

2Some parameters are shared among the methods but were tuned separately.

imbalance ratio was fixed at commit time step 500. For the
OOB-SW, sliding windows of size 90 and 180 days were
tested. The values tested for the ORB parameters were: moving
average window size = {50, 100, 200}; th = {0.3, 0.4, 0.5};
l0 = {5, 10, 15}; l1 = {6, 12, 18}; m = {1.5, 2.0, e}; and n
= {3, 5, 7}. Finally, thirty runs are conducted with different
random seeds using the chosen parameters for each method
and dataset.

The comparisons among the methods were supported by
the Scott-Knott multiple comparison procedure to separate the
methods into non-overlapping groups, regarding each overall
performance metric, as suggested by Menzies et al. [24]. This
test was conducted considering the total number of experi-
ments (i.e., 10 datasets times 30 executions for each method).
Vargha and Delaney’s nonparametric A12 effect size [25] was
used to ensure that groups can only be split by the Scott-
Knott test if the effect sizes between them are not insignificant.
Therefore, we will refer to this Scott-Knott procedure as Scott-
Knott-A12. As suggested in previous work [25], [24], A12
<0.56, ≥ 0.56, ≥ 0.64 and ≥ 0.71 are considered insignificant,
small, medium and large, respectively.

B. Investigating Concept Drifts in JIT-SDP

Previously, Cabral et al. [8] have shown that concept drifts
in p(y) occur in JIT-SDP, requiring strategies to tackle it.
In this section, we thus concentrate mainly on investigating
whether concept drifts in p(y|x⃗) and p(x⃗) (which may or
may not happen simultaneously with changes in p(y)) also
occur, and whether this would require coping strategies that
are unavailable in existing JIT-SDP methods. Such analysis is
presented in Sections V-B1 and V-B2.

Both Sections V-B1 and V-B2 will make use of two rules ex-
tracted from Hoeffding Trees generated by the ORB approach
as case studies. Figure 1 shows the periods of time associated
to the creation and evolution of these rules. Note that the
number of test examples is different from the number of
training examples in each quarter. This is because verification
latency causes test examples to become available for training
only at a later date. Equation 1 depicts the rule investigated in
Fig. 1-a) which is part of a Hoeffding Decision Tree generated
for the Camel dataset:

EXP ≤ 677.31 ∧ND > 1.18 ∧NDEV ≤ 10.27∧
REXP ≤ 960.1 =⇒ DEFECT − INDUCING

(1)

We note the following behavior for this rule:
1) Blue region (quarters 1 to almost the end of 24th):

the parent of this rule accumulated data gathered from
around 24 quarters to finally create it. Throughout this
period, a total of (70 clean, 42 defect-inducing) changes
were used to create this rule (sum of values in brackets
corresponding to training examples in the blue region of
the plot). Despite the smaller number of defect-inducing
changes used to create this rule, ORB’s oversampling
mechanism assigned the defect-inducing class to this
rule as a strategy to deal with class imbalance.

2) Green region (end of quarter 24 to quarter 25): after its
creation, this rule was further reinforced by being trained
on (2 clean, 5 defect-inducing) training examples. Note

7

that, in quarter 25, it was used to predict only 5 examples
(3 clean, 2 defect-inducing), i.e., 60% error rate.

3) White region, quarter 26: in order to conduct our analy-
sis of the presence of concept drift, we stopped training
this rule from this quarter onward, so that it remained
unaltered during the performance drop observed during
quarter 27. This enables us to check whether a rule that
was created in the past remains suitable over time.

4) Red region, quarter 27: this rule was exceptionally
activated to predict 200 software changes (167 clean, 33
defect-inducing), yielding a false alarm rate of 83.5%.

Equation 2 presents the rule generated in the period depicted
in Fig. 1-b) which is part of a Hoeffding Tree generated by
ORB for the Tomcat dataset:

NDEV > 3.1 ∧ LD ≤ 2679.4 ∧ND > 1.82 ∧ LA ≤ 2062∧
NDEV ≤ 8.91 =⇒ DEFECT − INDUCING

(2)

We note the following behavior for this rule:
1) Blue region (almost whole quarter 1): the rule was

created based on (1 clean, 12 defect-inducing) examples
in a time interval smaller than one quarter.

2) Green region (small part from the end of quarter 1 to 23):
after its creation, this rule was triggered to predict only
one example (the clean test example in the 2nd quarter)
and then remained without being used for predictions
for 21 quarters (around 5 years, from quarters 3 to
23). However, in this period, this rule remained being
reinforced by the presentation of (2 clean, 105 defect-
inducing) training examples. The significantly higher
number of software changes used for training but not
for testing is explained by the verification latency. In this
case, the software changes corresponding to the defect-
inducing training examples were committed before time
step 4000, when the underlying defect generating pro-
cess was still generating software changes that matched
this rule.

3) White region, quarters 24 to 27: for the same reason
as the training for the Camel dataset was stopped dur-
ing quarter 26, the Tomcat training was stopped from
quarters 24 to 27.

4) Red region, quarter 28: despite this rule having remained
unused for prediction for 21 quarters, it suddenly started
being activated again in quarter 28 by an exceptionally
high number of changes (95 clean, 16 defect-inducing),
yielding to a false alarm rate of 85.6%.

We can see that these rules have been trained on a large
number of examples (119 for Camel and 120 for Tomcat,
as summarized in Table II). Therefore, they are unlikely to
have been generated simply as a result of noise. For Tomcat,
the training examples strongly support the defect-inducing
class. For Camel, the defect-inducing training examples used
to create the Camel rule consisted of approximately 40% of
the total number of examples used to train this rule. Given that
the overall percentage of defect-inducing examples in Camel
is 20%, it is likely that this rule should indeed support the
defect-inducing class. Therefore, it is likely that these rules
do represent part of the true defect generating process that
was active during the time period corresponding to when the

software changes corresponding to these training examples
were committed.

We can also see that, in both cases and especially for
Tomcat, these defect-inducing rules faced a period of time
when they were not triggered very often by test examples
(green and white regions), and later on started to be triggered
very often by clean software changes (red regions), leading to
a high rate of false alarms. The fact that these rules became
unsuitable over time is related to concept drift in p(y|x⃗), and
is further discussed in Section V-B1. The fact that these rules
are triggered often by test examples during some periods but
not during others is related to concept drifts in p(x⃗), and is
discussed in Section V-B2.

1) p(x⃗|y)p(x⃗|y)p(x⃗|y) Concept Drift Affecting p(y|x⃗)p(y|x⃗)p(y|x⃗): A concept drift
of type p(y|x⃗) means that a class previously assigned to a
specific region of the feature space may have changed. This
type of concept drift cannot be proved in real world problems
since the true underlying data distribution is unavailable.
However, certain statistics obtained from the data produced
by the distribution can strongly suggest the presence of this
type of concept drift. We will use such information to support
our analysis in this section.

As explained in the beginning of Section V-B, both the
defect-inducing rules presented in Equations 1 and 2 were
supported by a large number of training examples, as shown
in Table II. Nevertheless, later on these rules started being
triggered very often by clean test examples and played an
important role in the severe drops in g-mean observed in
the 27th quarter for Camel and 28th quarter for Tomcat (red
regions in Fig. 1). The overall test accuracy during these
periods is shown in Table II. Therefore, even though these
rules were initially suitable, they became unsuitable.

It is worth noting that overfitting can also potentially lead
to poor predictive performance on test examples, but it is
unlikely that the test predictive performance would suddenly
and drastically drop as observed in the last quarters of Figure 1
as a result of overfitting. Therefore, the above mentioned cases
present areas of the feature space genuinely associated to the
defect-inducing class in the past, that became representative of
the clean class. This strongly suggests that there was a drift
affecting p(y|x⃗).

None of the existing JIT-SDP methods has strategies to
tackle this type of concept drift satisfactorily, including the
online learning methods. In particular, OOB, UOB and ORB
do not have any strategy to delete obsolete rules from the
classifier. Therefore, they depend on a very large number
of training examples representing the new concept to arrive
before adaptation is successfully completed, yielding such big
drops in predictive performance as those shown in Figure 1,
which can compromise the reliability of JIT-SDP classifiers.
Despite having the ability to remove old rules, Sliding Window
methods [6] have already been shown to be inadequate as each
classifier is trained on a limited number of changes, hindering
predictive performance [8]. Therefore, none of the existing
JIT-SDP methods can adequately deal with projects affected
by concept drifts in p(y|x⃗).

2) p(x⃗|y)p(x⃗|y)p(x⃗|y) Concept Drift Affecting p(x⃗)p(x⃗)p(x⃗): Despite having
been created based on a good number of training examples, the

8

0
20

40
60

80
10

0

6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000

(5
,1

)

(7
,3

)

(3
,4

)

(0
,2

)

(2
,2

)

(0
,1

)

(2
,3

)

(2
,3

)

(0
,0

)

(0
,1

)

(0
,0

)

(0
,0

)

(1
,0

)

(5
,0

)

(1
,0

)

(5
,2

)

(1
,4

)

(2
,2

)

(2
,0

)

(1
,1

)

(5
,2

)

(1
5,

3)

(2
,7

)

(9
,1

)

(0
,3

)

(2
,2

)

(4
,1

2)

(8
4,

33
)

Commit Time Step

P
re

d
ic

ti
ve

 P
er

fo
rm

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27

Quarter (from the parent rule creation commit time step)

(3
,2

)

(7
9,

19
)

(1
67

,3
3)

0
20

40
60

80
10

0

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000

(1
,1

2)

(0
,3

)

(1
,1

3)

(1
,2

3)

(0
,1

3)

(0
,6

)

(0
,2

)

(0
,4

)

(0
,1

)

(0
,5

)

(0
,7

)

(0
,2

)

(0
,2

)

(0
,3

)

(0
,3

)

(0
,1

)

(0
,0

)

(0
,3

)

(0
,2

)

(0
,3

)

(0
,1

)

(0
,0

)

(0
,1

)

(0
,7

)

(0
,4

)

(0
,1

)

(0
,0

)

(0
,2

)

(0
,1

2)

Commit Time Step

P
re

d
ic

ti
ve

 P
er

fo
rm

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27

Quarter (from the parent rule creation commit time step)

(1
,0

)

(7
,1

) (9
5,

16
)

b)

a)

(clean, defect-inducing) training examples (clean, defect-inducing) test examples

Blue regions (time interval producing training examples used to create the rule), green regions (time interval where the rule is used both for prediction and
for further training) and red regions (time interval the rule is used only for predictions) corresponding to the rules depicted in Equations 1 and 2, for Camel
and Tomcat, respectively. Vertical dashed line intervals consist of a period of a quarter of a year. The green, orange and black lines represent ORB [8]’s
rec(0), rec(1) and g-mean, respectively. Values in brackets (clean,defective) provide the total number of software changes satisfying the rule in a quarter
according to their labeling and commit times for the training and testing examples, respectively.

Fig. 1: Predictive performance of the JIT-SDP classifier and training / test information corresponding to the rules presented in
Equations 1 and 2 belonging to the classifier, for Camel (a) and Tomcat (b), respectively.

TABLE II: Examples used for training/testing two different rules before and after the large performance drop depicted in the
red region of Figure 1. Numbers in brackets represent the number of used clean and defect-inducing changes.

rule #training examples for creation #training examples for reinforcement total #training examples test accuracy(1) test accuracy(2)

a - Camel (70|42) (2|5) (72|47) 40% (3|2) 16.5% (167|33)
b - Tomcat (1|12) (2|105) (3|117) 0% (1|0) 14.4% (95|16)

The rules were created at time steps 23749 and 4498, for camel and tomcat, respectively.
(1) a - camel, from commit time step 23750 to 24787 (0.28 years); and b - tomcat, from commit time step 4499 to 16155 (5.46 years), corresponding to the

green region in Fig. 1.
(2) a - camel, from commit time step 25656 to 26711 (0.25 years); and b - tomcat, from commit time step 17646 to 17934 (0.25 years), corresponding to the

red region in Fig. 1.

rules presented in Equations 1 and 2 and discussed in Section
V-B1 were not triggered very often by test examples right
after their creation (green regions in Fig. 1). In total, they were
triggered 3+2 = 5 times for Camel (over a 0.28 years period -
25th quarter) and 1+0 = 1 times for Tomcat (over a 5.46 years
period - 2nd quarter). Hence, even though they became poor
rules right after their creation (see test accuracy(1) in Table
II), this did not lead to an overall poor predictive performance
of the classifier since they were not triggered very often by
test examples.

However, as discussed in the beginning of Section V-B,
these rules suddenly started being triggered very often by
test examples during later periods (red regions, and white

region for camel, in Fig. 1). In total, they were triggered
167+33 = 200 times for Camel and 95+16 = 111 times for
Tomcat (over 0.3 years for both cases). As feature values that
were previously not commonly observed now became more
common, this means that there was a concept drift affecting
p(x⃗). In particular, we can observe at least two sudden drifts in
p(x⃗) associated to these periods of time in Figure 2 (red dashed
lines). As the rules in Equations 1 and 2 became unsuitable due
to the concept drift affecting p(y|x⃗) (as explained in Section
V-B1), the fact that the concept drift in p(x⃗) caused this rule
to be triggered more often by test examples contributed to the
large performance drops observed in Figures 1-a) and 1-b).

This problem inevitably affects any method that does not

9

7000 11000 15000 19000 23000 27000 31000

0

30

60

90

120

150

180

4000 6000 8000 10000 12000 14000 16000 18000

0

3

6

9

12

15

18

21

N
D

E
V

 (C
am

e
l)

N
D

E
V

 (
To

m
ca

t)

Commit Time Step

Fig. 2: NDEV feature values during periods discussed for the
rules in Equations 1 and 2.

have strategies to eliminate or deactivate old rules, such as
ORB, OOB and UOB. Depending on the window size, the
sliding window method recommended by McIntosh and Kamei
[6] would be unaffected by old rules, as it would eliminate
them. However, due to verification latency, it would still take
time to learn new rules corresponding to the new region of the
feature space where software changes started to appear. This
is because training examples corresponding to these software
changes arrive with a delay. Therefore, this method would still
take time to recover from concept drifts in p(x⃗).

Besides activating rules that became unsuitable due to drifts
affecting p(y|x⃗), sudden concept drifts affecting p(x⃗) may
also activate rules that have been generated as a result of
noise or rules that over-generalize to areas of the space that
were not seen at training time, potentially leading to further
performance drops.

In addition to sudden drifts, there are also many gradual
drifts in p(x⃗). For instance, it is reasonable that as software
matures, the experience of the developers (EXP), the num-
ber of developers who have changed the modified files in
the past (NDEV) and the number of prior changes to the
modified files (NUC) increase. As shown in Figure 3, gradual
increases/decreases of the feature values can be observed over
time for several features of the analyzed datasets. This type
of concept drift thus seems to be quite common in JIT-SDP,
potentially more common than drifts in p(y|x⃗).

A side effect of this type of concept drift is that newly
created rules can become obsolete very quickly, since they
represent areas of the input space that are not visited anymore
in the near future. For instance, Figure 1-a) shows that the rule
from Equation 1 became obsolete soon after it was created. In
particular, this rule was used only once right after its creation
and remained unused for 5.46 years (Table II).

Such gradual feature evolution emphasizes the importance
of adopting online learning methods that update classifiers
as soon as labeled examples become available, given that
the prediction task often requires new rules to describe new
areas of the feature space. It also highlights the challenges
posed by verification latency, as training examples may already
be unrepresentative of the feature values of current software

Nova

0 10000 20000 30000 40000 50000
0

200

400
a)

Brackets

0 2000 4000 6000 8000 10000 12000 14000 16000
0

40

80

b)

Camel

0 4000 8000 12000 16000 20000 24000 28000
0

1000
2000
3000

c)

Fabric8

0 1000 3000 5000 7000 9000 11000 13000
0

10000
20000
30000

d)

Commit Time Step

N
D

E
V

N
D

E
V

N
U

C
E

X
P

Fig. 3: Example of evolution through time for some features
values and datasets.

changes by the time they are generated. For instance, in
Tomcat, the green region of Fig. 1 shows the presence of many
training examples but almost no test example. This means that,
when those training examples became available, the regions of
the feature space that they covered were not much activated
by test examples anymore.

C. Predictive Performance Reliability

As discussed in Sections V-B1 and V-B2, the various types
of concept drift, associated to the weaknesses of resampling
strategies, are linked to large performance drops and, con-
sequently, large predictive performance variations over time.
Therefore, we expect that existing JIT-SDP methods will suffer
from lack of reliability. They may not perform consistently
well over time, i.e., their predictive performances may not be
high and stable. This section thus analyses the reliability of
OOB, UOB, OOB-SW and ORB.

Previous work has already compared the average predictive
performance of OOB, UOB, OOB-SW and ORB [8]. In partic-
ular, it identified that ORB outperformed the other approaches
in terms of g-mean and |rec(0)−rec(1)| based on Scott-Knott-
A12. In the current paper, we expand that analysis to discuss
reliability, including the stability of predictive performance
over time. The average predictive performance obtained in
Cabral et al. [8]’s work is reproduced in Table III of this
paper. The results of our additional statistical test corroborate
those from Cabral et al. [8], confirming that ORB was better
ranked than OOB, UOB and OOB-SW in terms of g-mean
and |rec(0) − rec(1)|, and that even though OOB and UOB
achieved top average rec(1) this was at the cost of a low
average rec(0).

Achieving a good result in terms of |rec(0) − rec(1)| is
particularly important so that (1) improvements in the ability to
identify defect-inducing changes are not at the cost of a large
number of false alarms, which would reduce practitioners’
trust in the method, and (2) a good rec(0) does not come at
the cost of missing a large number of defect-inducing changes,
which would render the method useless. However, we hereby
note that even ORB still obtained a |rec(0) − rec(1)| larger
than 20 in half of the datasets (JGroups, Brackets, Spring
Integration, Nova and NPM). This means that, while one of the

10

TABLE III: Performance results for literature methods.
Dataset Classifier rec(0) rec(1) |rec(0)-rec(1)| g-mean

Fabric

OOB 50.24 [-b] 74.45 [b] 28.50 [-b] 59.04 [-b]
UOB 42.28 [-b] 83.70 [b] 43.91 [-b] 57.07 [-b]

OOB-SW 73.32 [b] 46.36 [-b] 47.73 [-b] 50.74 [-b]
ORB 60.35 68.36 20.59 60.93

Jgroups

OOB 59.38 [-b] 56.67 [-b] 28.13 [-b] 54.71 [-b]
UOB 73.78 [b] 45.12 [-b] 36.81 [-b] 55.09 [-b]

OOB-SW 81.50 [b] 35.33 [-b] 57.51 [-b] 47.95 [-b]
ORB 62.65 56.73 17.79 57.76

Camel

OOB 57.06 [-b] 73.99 [b] 25.47 [-b] 62.90 [-b]
UOB 55.57 [-b] 71.28 [s] 29.27 [-b] 60.35 [-b]

OOB-SW 71.67 [b] 40.38 [-b] 64.61 [-b] 40.29 [-b]
ORB 60.74 70.41 17.03 63.63

Tomcat

OOB 59.82 [*] 61.75 [-b] 29.42 [-b] 57.28 [-b]
UOB 68.48 [b] 50.04 [-b] 33.69 [-b] 55.18 [-b]

OOB-SW 65.20 [b] 52.30 [-b] 35.93 [-b] 54.53 [-b]
ORB 59.43 64.37 16.08 60.18

Brackets

OOB 49.11 [-b] 89.49 [b] 41.90 [-b] 63.94 [m]
UOB 54.59 [-b] 83.10 [b] 32.98 [b] 64.24 [b]

OOB-SW 56.29 [-b] 79.82 [b] 42.80 [-b] 61.68 [-b]
ORB 61.68 77.15 36.01 63.66

Neutron

OOB 69.71 [-b] 91.89 [b] 23.97 [-b] 79.32 [-b]
UOB 58.83 [-b] 92.45 [b] 38.41 [-b] 70.73 [-b]

OOB-SW 73.83 [-b] 83.08 [b] 20.49 [-b] 76.74 [-b]
ORB 79.89 81.12 13.98 79.93

Spring
Integration

OOB 62.48 [-b] 53.74 [b] 47.28 [-b] 48.12 [-b]
UOB 55.65 [-b] 59.31 [b] 37.58 [b] 52.19 [*]

OOB-SW 45.55 [-b] 79.88 [b] 39.52 [-b] 56.12 [b]
ORB 74.33 44.31 37.30 52.20

Broadleaf

OOB 59.25 [-b] 68.33 [m] 33.40 [-b] 60.07 [-b]
UOB 59.32 [-b] 62.69 [-b] 43.26 [-b] 55.46 [-b]

OOB-SW 78.21 [b] 34.73 [-b] 71.02 [-b] 37.00 [-b]
ORB 61.60 67.00 19.17 61.97

Nova

OOB 68.54 [-b] 86.27 [b] 24.34 [-b] 75.41 [-b]
UOB 65.56 [-b] 90.84 [b] 27.60 [-b] 75.94 [m]

OOB-SW 66.41 [-b] 85.90 [b] 33.66 [-b] 72.85 [-b]
ORB 75.44 79.78 20.28 75.57

NPM

OOB 37.92 [-b] 74.89 [b] 49.68 [-b] 46.17 [-b]
UOB 38.27 [-b] 72.83 [b] 48.90 [-b] 45.87 [-b]

OOB-SW 55.56 [s] 62.75 [-b] 43.68 [-b] 50.53 [-b]
ORB 55.25 63.95 31.74 54.26

Ranking

OOB 2 1 2 2
UOB 2 1 3 2

OOB-SW 1 3 4 3
ORB 1 2 1 1

Table adapted from [8]. Symbols [*], [s], [m] and [b] represent insignificant,
small, medium and big A12 effect size against ORB. Presence/absence of
the sign “-” in the effect size means that the corresponding approach was
worse/better than ORB. The groups’ rankings with smaller numbers indicate
better ranks according to Scott-Knott-A12 test [26].

recalls on these datasets may have been typically very good,
the other was more than 20 units worse, which is undesirable
in practice, affecting ORB’s reliability. Other methods with
higher |rec(0)− rec(1)| would be even more unreliable.

Next, we analyze the stability of the predictive performance
over time. Aggregating the performance metrics across time
through averaging can overlook considerable periods of time
with poor performance. Therefore, it is important to check how
the predictive performance of JIT-SDP methods varies through
time.

Hence, when designing a classifier, a visual analysis of
the performance through time is important to understand the
reliability of a JIT-SDP method.

Table IV shows the standard deviations of the predictive per-
formances through time. The standard deviations can roughly
summarize a method’s stability. As shown by Scott-Knott-A12,
ORB’s ranking in terms of standard deviation of g-mean and
|rec(0)− rec(1)| were not better than that of OOB and UOB,
despite being better than that of OOB-SW. Therefore, despite
achieving a better ranking in terms of the average g-mean
and |rec(0) − rec(1)|, ORB did not really lead to ranking

TABLE IV: Standard deviations through time for all classifiers.
Dataset Classifier rec(0) rec(1) |rec(0)-rec(1)| g-mean

Fabric

OOB 16.79 [-s] 11.60 [b] 20.33 [b] 11.96 [b]
UOB 16.41 [*] 10.29 [b] 19.63 [b] 12.51 [b]

OOB-SW 25.34 [-b] 27.14 [-b] 30.46 [-b] 16.53 [-m]
ORB 15.31 18.35 22.75 16.08

Jgroups

OOB 22.24 [-b] 15.26 [-b] 20.22 [-b] 11.82 [-b]
UOB 18.32 [-b] 14.61 [-b] 19.58 [-b] 10.61 [s]

OOB-SW 22.58 [-b] 22.09 [-b] 25.58 [-b] 12.77 [-b]
ORB 14.09 13.36 17.36 10.71

Camel

OOB 18.84 [-b] 11.48 [b] 21.15 [-b] 10.21 [b]
UOB 19.98 [-b] 13.58 [-b] 20.75 [-b] 9.55 [b]

OOB-SW 31.06 [-b] 33.81 [-b] 29.26 [-b] 17.28 [-b]
ORB 14.58 11.87 19.45 10.80

Tomcat

OOB 20.07 [-b] 18.02 [-b] 21.49 [-b] 10.72 [-b]
UOB 19.83 [-b] 16.89 [-b] 21.35 [-b] 9.77 [s]

OOB-SW 23.91 [-b] 17.99 [-b] 21.71 [-b] 9.28 [b]
ORB 15.48 10.00 18.04 9.66

Brackets

OOB 14.80 [b] 9.47 [b] 18.01 [b] 15.37 [b]
UOB 18.09 [-b] 13.69 [b] 23.98 [-s] 15.55 [b]

OOB-SW 22.77 [-b] 22.88 [b] 24.54 [-b] 16.43 [b]
ORB 16.25 25.29 23.81 18.57

Neutron

OOB 12.00 [-b] 8.65 [b] 13.20 [-b] 9.66 [-b]
UOB 21.76 [-b] 12.32 [m] 21.25 [-b] 18.64 [-b]

OOB-SW 15.22 [-b] 13.78 [-b] 17.60 [-b] 11.57 [-b]
ORB 7.42 12.51 11.34 6.14

Spring
Integration

OOB 30.72 [-b] 28.71 [-b] 30.97 [-b] 19.21 [-b]
UOB 25.14 [-b] 20.39 [b] 21.78 [b] 12.94 [b]

OOB-SW 24.10 [-b] 14.69 [b] 29.34 [-m] 16.29 [b]
ORB 18.74 21.39 28.91 17.57

Broadleaf

OOB 23.67 [-b] 16.05 [-b] 20.08 [-b] 11.41 [b]
UOB 25.06 [-b] 23.03 [-b] 20.04 [-m] 10.18 [b]

OOB-SW 28.78 [-b] 35.66 [-b] 29.43 [-b] 19.65 [-b]
ORB 15.01 14.49 18.74 12.64

Nova

OOB 16.20 [-b] 12.17 [b] 16.47 [b] 12.54 [b]
UOB 14.84 [b] 9.33 [b] 15.66 [b] 12.64 [b]

OOB-SW 17.93 [-b] 19.49 [-b] 17.83 [s] 14.58 [-b]
ORB 15.13 15.57 17.93 13.96

NPM

OOB 27.86 [-b] 18.41 [b] 29.56 [-b] 16.67 [-b]
UOB 28.60 [-b] 19.00 [b] 28.69 [-b] 16.36 [-b]

OOB-SW 32.84 [-b] 21.57 [-b] 29.90 [-b] 18.15 [-b]
ORB 22.87 19.98 26.96 14.80

Ranking

OOB 2 1 1 1
UOB 2 1 1 1

OOB-SW 3 3 2 2
ORB 1 2 1 1

Symbols [*], [s], [m] and [b] represent insignificant, small, medium and big
A12 effect size against ORB. Presence/absence of the sign “-” in the effect
size means that the corresponding approach was worse/better than ORB.
The groups’ rankings with smaller numbers indicate better ranks according
to Scott-Knott-A12 test [26].

improvements over OOB and UOB in terms of the stability of
such metrics.

The analysis above shows that the better ranked average g-
mean and |rec(0)−rec(1)| results achieved by ORB compared
with OOB, UOB and OOB-SW do not mean that its difference
in recalls was good enough through time. There were varia-
tions of the performance metrics over time that caused ORB to
present significant drops in predictive performance over time.
Such lack of stability in the predictive performance over time
means that, at any given point in time, a classifier may be
performing very well or failing dramatically, hindering their
adoption in practice. Therefore, existing JIT-SDP methods still
need to be improved.

Considering Table III, ORB obtained the best overall per-
formance (i.e., based on the Scott-Knott-A12 analysis for
metrics gmean and |rec(0) − rec(1)|). However, in order to
have a better understanding on how these results can indicate
whether or not these classifiers may be adopted in practice,
it is important to analyze the results from Table III together
with the variation of the |rec(0)−rec(1)| through time in Fig.
4. This is because a top rank in terms of |rec(0) − rec(1)|

11

Fig. 4: Absolute difference between the recalls (|rec(0) −
rec(1)|) trough time for ORB. The x axis corresponds to the
commit timestep ×10−3.

does not mean that such |rec(0) − rec(1)| is good enough.
In particular, aggregating the performance metrics across time
into a single metric value can hide considerable periods of time
with poor performance. Fig. 4 shows many periods where the
classifier is not reliable due to high values in |rec(0)−rec(1)|.
Hypothetically, a |rec(0)−rec(1)| higher than 30 may indicate
that the classifier has an accuracy of 80% for clean commits
and 50% for defect-inducing ones. In Fig. 4 the timestep
periods Fabric8 from ± 7500 to ± 11000, Tomcat from ±
17800 to ± 19000, Camel from ± 1500 to ± 12000 and
Nova from ± 1000 to ± 12000 are some of the representative
examples of periods where the classifier is unreliable.

RQ1: Section V-B reveals that JIT-SDP suffers from various
types of concept drift. Due to verification latency, most types
of concept drift cannot be diagnosed in time for an effective
reaction, leading to variations and drops in predictive perfor-
mance over time, which negatively affect the reliability of JIT-
SDP methods. Section V-C confirms that reliability issues are
present in all datasets investigated in this study.

VI. (RQ2) IMPROVING THE RELIABILITY OF ONLINE
JIT-SDP CLASSIFIERS

The findings from RQ1 (Section V) show that new methods
to improve JIT-SDP’s reliability are desirable, in view of issues
caused by concept drift and verification latency. The current
section answers RQ2 by building on the knowledge obtained
through RQ1 to propose a new JIT-SDP method aimed at
improving reliability. Section VI-A briefly explains how the
findings from RQ1 led us to the design of an approach able to
detect and react earlier to concept drifts in JIT-SDP. Section
VI-B explains the proposed approach, called Prediction-Based
Sampling Adjustment (PBSA), in detail.

A. Leveraging the Findings from RQ1 to Improve JIT-SDP

Section V thoroughly discusses the different types of con-
cept drifts affecting JIT-SDP and makes explicit the weak-
nesses of the existing methods regarding these concept drifts.
Among the reasons for their poor performance is the fact that
they monitor concept drifts relying on the true classes labels,
but, due to verification latency, that is is not a suitable strategy
for JIT-SDP. Therefore, we need a timely strategy to detect
these drifts.

In this work, all observed changes in p(y|x⃗) turned defect-
inducing areas in the hyperspace into clean areas and occurred
at the same time as changes in p(x⃗) that caused a high
number of software changes fall in these areas abruptly. This
situation leads to a shift in the predictions made by the
JIT-SDP classifier. Specifically, a much higher proportion of
software changes may start being predicted as defect-inducing
when such concept drifts occur. Such shift involves only the
predictions made by the JIT-SDP classifier. Detecting it would
not require us to wait for the arrival of the true class labels
corresponding to these software changes. Therefore, keeping
track of the proportions of predictions of each class is a
potential way to detect this type of concept drift in JIT-SDP.

Our observations from RQ1 show that changes in p(x⃗) are
likely to be very common in JIT-SDP. It is possible that they
occur together with 3 different situations:

• An area in the input space may be associated to an
incorrect label as a consequence of an overgeneralization
of the classifier. If this area suddenly becomes very
populated due to a change in p(x⃗), predictions based
on such incorrect label are likely to cause a shift in the
predictions made by the JIT-SDP classifier, causing it to
either predict the clean or the defect-inducing class more
often than expected. Such concept drift could thus also
be detected by tracking the proportions of predictions of
each class.

• An area in the input space may be associated to an
incorrect label as consequence of a rule created from
noise, leading to the same previously mentioned situation.

• An area in the input space may have been previously
labeled as consequence of noise or overgeneralization,
but this label may actually be correct. A change in
p(x⃗) causing this area to become very populated would
not lead to a shift in the predictions made by the JIT-
SDP classifier. Monitoring concept drifts by tracking the
proportions of predictions of each class would thus be
unlikely to detect such change in p(x⃗). However, that is
not a problem, because this change is not detrimental to
the predictive performance of the JIT-SDP classifier.

Therefore, our proposed approach will track the predictions
given by the classifier in order to achieve earlier detection and
reaction to concept drift in JIT-SDP.

B. Prediction-Based Sampling Adjustment (PBSA)

Given that JIT-SDP is a binary classification problem, a
plausible strategy to track the proportion of predictions of each
class is to monitor the moving average of predictions:

12

maŷ =

∑t
i=t−ws+1 ŷi

ws
. (3)

where ws is the size of the sliding window, t is the current
commit time step, and ŷi is the prediction of the classifier to
the software change produced at commit time step i (0 for the
clean class and 1 for the defect-inducing class).

As JIT-SDP is a class imbalanced problem, monitoring maŷ
means monitoring the class imbalance ratio of the predictions
provided by the classifier. This monitoring can be performed in
real time (without delay) so that a significant deviation from an
expected classifier’s behaviour (in this case, an expected class
imbalance ratio in the predictions) might provide an earlier
indication of the need for adjusting the classifier.

Given that JIT-SDP is a class imbalanced problem, our
approach is based on the following assumption:

Assumption 1: Given that JIT-SDP is a class imbalanced
problem, the moving average of the predictions (maŷ) must
be skewed towards the majority class (i.e., the clean class).

PBSA manipulates the training procedure to maintain maŷ
within a given acceptable/expected interval around a target
value th for the moving average. If maŷ moves outside this
interval, this indicates a suspected concept drift, requiring
adjustments to avoid drops in predictive performance. Such
adjustments are made through a concept drift recovery mech-
anism that is explained later in this section.

The target value th is set by taking Assumption 1 into ac-
count. In particular, given that the clean class (0) is a majority,
th should be smaller than 0.5. In a perfect scenario, th should
match the true class imbalance ratio exactly. However, this is
unrealistic given that there will always be some errors in the
predictions. Therefore, th should be set closer to 0.5 than the
true imbalance ratio, so that we allow an accepted level of
error in the majority class for the sake of increasing rec(1).
For example, given a true class imbalance ratio of 3:7, setting
a target maŷ to 40% implies in accepting an error of at least
10% in the majority class for the sake of increasing rec(1).

The interval around th is set based on a parameter p which
represents the percentage of allowed deviation from th. The
lower boundary of the interval is set to th1 = th - (th * p)
and the upper boundary to th0 = th + ((1 - th) * p). Figure 5
shows an example of maŷ over time for the Tomcat dataset,
where th = 0.4 and p = 0.2, resulting in lower and upper
boundaries of 0.32 and 0.52, respectively.

To detect meaningful deviations from the interval, let −→maŷ
be a vector containing the last ws moving averages of the pre-
dictions maŷ . PBSA only triggers the concept drift recovery
mechanism if avg(−→maŷ) is placed outside the boundaries of
the interval.

The concept drift recovery mechanism consists in per-
forming a recovery training with recent examples from the
“opposite” class from the biased class. In particular:

• If the skew is towards predicting the clean class, the
recovery training is performed with examples from the
defect-inducing class sampled from a defect-inducing
pool containing all training examples labeled as defect-
inducing seen so far, sorted by their training time steps.

Commit Time Step

P
re

d
ic

ti
o

n
s
 M

o
v
in

g
 A

v
e

ra
g

e

0 3000 6000 9000 12000 15000 18000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fig. 5: Moving average of the predictions (ws = 100) for the
Tomcat dataset. Green line represents target moving average
(th) and red dashed lines represent boundaries of the accept-
able interval.

Fig. 6: PDF curves for picking an unlabeled example (blue
curve) and for picking a defect-inducing example (red curve)
for retraining the classifier.

• If the skew is towards predicting the defect-inducing
class, the recovery training is performed with examples
sampled from an unlabeled pool, by (pseudo-)labeling
them as clean training examples. The unlabeled pool
stores all committed software changes that are currently
unlabeled. It is worth noting that only software changes
produced up to w (waiting time) days ago are unlabeled
(see Definition 5 in Section II). Clean examples older
than w days are not used as part of the recovery training
because (1) the model has already been trained on plenty
of examples of the clean class older than w days (as
this is overall a majority class) and (2) the most recent
examples may be representing a new concept still not
learned well enough by the tree, such that training on
them may improve predictive performance on the current
concept. Later on, once the real label of such examples
is revealed, they will be used again for training.

In the second case, as the clean class is a majority, it is more
likely that the examples sampled from the unlabelled pool
belong to the clean class. Therefore, the number of mislabelled
examples will typically be smaller than the number of correctly
labelled examples. Such mislabelling is thus likely to be a
smaller problem when compared to the benefits of training
with very recent software changes3, which can help to speed up
adaptation to concept drifts. This is a key difference between
the proposed method and existing ones such as ORB [8], OOB
and UOB [17], which need to rely solely on labelled examples
affected by verification latency for training. Besides that, since

3These changes will be much more recent than labelled changes due to
verification latency.

13

existing methods such as ORB, OOB and UOB only resample
the last training example rather than sampling from a pool,
they are also more sensitive to noise. This is because if this
last training example is noisy, replicating it several times will
hinder predictive performance.

Examples are repeatedly sampled from the corresponding
pool based on a probability density function and used for
recovery training until the average of the predictions for the
ws most recently committed software changes becomes larger
than the target moving average value th in the first case, and
smaller than th in the second case.

The probability density function was designed to prioritize
more recent examples, as defined by Equation 4 and illus-
trated in Figure 6. This is important since prioritizing recent
examples helps to recover from concept drifts. The probability
density function associated to the defect-inducing changes has
a longer tail, because training examples of this class arrive
less frequently, i.e., this class is typically a minority class in
JIT-SDP.

f(x, α, β) =
xα−1(1− x)β−1

B(α, β)
(4)

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(5)

Equation 4 is the probability density function of a Beta
distribution. It returns the relative likelihood of sampling an
example at location x of the pool, where x are the positions
of the examples in the pool, but scaled between 0 and 1. The
parameters α and β define the shape of the distribution and Γ
(Eq. 5) stands for the Gamma function. In practice, an example
at a given position x is sampled from the pool based on a
random number r, respecting the distribution defined by Eq.
4, if x is the closest position to r among all examples in the
pool.

After being triggered, PBSA prevents the concept drift
recovering mechanism from being triggered again for the
next at commit time steps. This is because, despite the use
of strategies to speed up recovery from concept drift, such
recovery will take some time to be reflected by the moving
average m⃗ay . This could cause PBSA to unnecessarily trigger
the recovery mechanism again for dealing with the same
concept drift, resulting in overfitting.

Algorithm 1 depicts PBSA. As input, it receives: th - a
target moving average of the predictions; p - the acceptable
percentage of deviation of avg(−→maŷ) from th; w - the wait-
ing time for receiving the true labels (in days); ws - the
window size for computing the moving averages; and at -
number of commit time steps before the concept drift recovery
mechanism can be triggered again. Defs and Unlabs are
the pools of defect-inducing and unlabeled software changes,
respectively. Labs is an array of labeled examples. New
training examples are inserted into Labs when (i) a software
change is found to be defect-inducing or (ii) when an unlabeled
change is labeled as clean as a result of the waiting time
w (Line 12). The examples in Labs are used for training in
Line 13, based on any existing online base learning algorithm.
In other words, the JIT-SDP model is continuously updated

at each iteration of the loop using any new labeled training
examples that may have arrived since the previous iteration.
Once the examples in Labs are used for training, they are
discarded (if they belong to the clean class) or moved to
Defs (if they belong to the defect-inducing class). The array
−→maŷ contains the last ws values of maŷ . If the condition in
Lines 15 or 24 is true, the concept drift recovery mechanism is
triggered and will then be ignored for at commit time steps as
aforementioned. Note that in lines 19 and 28, the classifier is
trained without using any resampling strategy, different from
line 13, when it may inherit the resampling strategy from the
base learner.

In essence, PBSA monitors the classifiers’ outputs in order
to react to concept drift. It can be considered as a special
resampling strategy to react to concept drifts in the presence
of class imbalance and verification latency.

Algorithm 1: PBSA
input : th,p,ws,at

1 th1 = th - (th * p)
2 th0 = th + ((1 - th) * p)
3 Defs = ∅
4 Unlabs = ∅
5 Labs = ∅
6 −→maŷ = ∅
7 lastRecovTS = 0
8 while receiving new software changes - c⃗i do
9 ŷ = predict(c⃗i)

10 update(−→maŷ, ŷ)
11 update(Unlabs, c⃗i)
12 update(Labs)
13 trainOn(Labs)
14 update(Defs)
15 if avg(−→maŷ) > th0 & lastRecovTS < i− at then
16 while maŷ > th do
17 r = B(α, β).randSample()
18 idx = r × size(Unlabs) + 1
19 trainNoSampling(Unlabs[idx])
20 update(maŷ)
21 end
22 lastRecovTS = i
23 end
24 if avg(−→maŷ) < th1 & lastRecovTS < i− at then
25 while maŷ < th do
26 r = B(α, β).randSample()
27 idx = r × size(Defs) + 1
28 trainNoSampling(Defs[idx])
29 update(maŷ)
30 end
31 lastRecovTS = i
32 end
33 end

C. Experimental Setup

1) Performance Metrics: The objective of the experiments
is to evaluate PBSA’s reliability, which is defined in Section

14

II. It requires an evaluation of the magnitude of the predictive
performance and its stability over time.

As in Section V-A and in previous work [8], the perfor-
mance metrics used for the comparison are the recalls on
the clean (rec(0)) and defect-inducing (rec(1)) classes, the
g-mean (

√
rec(0)×

√
rec(1)) and the difference between the

recalls (|rec(0)−rec(1)|), calculated in a prequential way and
with a fading factor θ = 0.99 [8], [10], [17], [11]. The Scott-
Knott-A12 test and A12 effect sizes with respect to ORB are
also used to support the analysis.

In addition, the number of months Ξl where the difference
in recalls |rec(0) − rec(1)| surpasses a threshold l will also
be analyzed.

2) Parameters Choice: The proposed method can be used
with any online base learner. For this work, given its top
performance when compared with existing methods [8], ORB
was adopted as base learner for PBSA. ORB’s parameters
were assigned as in previous work [8]. In addition to ORB’s
parameters, the proposed method incorporates four parameters,
th, p, ws and at, as shown in Algorithm 1. The tested values
for these parameters were th = {0.2, 0.3, 0.4, 0.5, 0.6} and
p = {0.15, 0.25, 0.35}. Values in bold represent the values
used in the experiments. These values were chosen based on
a grid search carried out on a smaller number of executions
(5 repetitions) for each dataset up to the commit time step
5000. A single unique set of parameter values was chosen
based on the values that most often led to top g-mean across
all datasets. This is because, in practice, the best parameter
values may change over time and it is impossible to know
which values would lead to the best results before observing
the whole data stream of labeled examples 4. Since they were
not shown to be crucial parameters based on a preliminary
analysis, ws = 100 and at = 30 were used. Equation 5 also
relies on parameters, nevertheless, these parameters were also
not crucial, and thus fixed to α = 5 and β = 2. Based on
the chosen parameters, 30 runs were performed for PBSA on
each full data stream.

3) Open Science and Reproducibility: The code im-
plementing PBSA, the scripts used to run the exper-
iments, the datasets used in the experiments and csv
files with the results of all runs are available at
http://doi.org/10.5281/zenodo.6548768.

D. Analysis of the Average Predictive Performances

Cabral and Minku [8] showed that ORB overcame state-
of-art methods in terms of g-mean and |rec(0) − rec(1)|.
Those methods were also further analyzed and discussed in
Section V. Therefore, this section will focus on comparing
the proposed method against ORB.

Table V shows the predictive performance results for
ORB and PBSA. Figure 3 in the supplementary material
contains plots to facilitate visualization of the g-mean and
|rec(0) − rec(1)| obtained by these approaches. Table 1 in

4Note that, after the whole data stream of labeled examples is observed,
predictions to its software changes would not be necessary anymore. There-
fore, in practice, it would be unreasonable to choose the best parameter values
only after observing the whole data stream.

TABLE V: Performance results for ORB and PBSA methods.
Dataset Classifier rec(0) rec(1) |rec(0) - rec(1)| g-mean

Fabric8 ORB 60.35 68.36 20.59 60.93
PBSA 66.37[b] 61.42[-b] 14.46[b] 61.20[s]

Jgroups ORB 62.65 56.73 17.79 57.76
PBSA 65.64[b] 52.94[-b] 16.32[b] 57.68[-b]

Camel ORB 60.74 70.41 17.03 63.63
PBSA 68.60[b] 66.99[-b] 11.67[b] 66.72[b]

Tomcat ORB 59.43 64.37 16.08 60.18
PBSA 66.33[b] 58.04[-b] 14.62[b] 61.19[b]

Brackets ORB 61.68 77.15 36.01 63.66
PBSA 65.56[b] 74.25[-b] 24.93[b] 65.49[b]

Neutron ORB 79.89 81.12 13.98 79.93
PBSA 74.96[-b] 86.44[b] 19.53[-b] 79.88[-b]

Spring
Integration

ORB 74.33 44.31 37.30 52.20
PBSA 75.61[b] 43.58[-b] 36.31[b] 52.16[-b]

Broadleaf ORB 61.60 67.00 19.17 61.97
PBSA 66.48[b] 62.55[-b] 12.41[b] 62.65[b]

Nova ORB 75.44 79.78 20.28 75.57
PBSA 75.15[-b] 82.93[-b] 13.63[b] 77.72[b]

NPM ORB 55.25 63.95 31.74 54.26
PBSA 61.83[b] 56.11[-b] 16.57[b] 56.87[b]

Wins ORB 2 8 1 3
PBSA 8 2 9 6

p-values 2.2e-16 2.2e-16 2.2e-16 2.2e-16

the supplementary material also contains a comparison that
includes the other approaches OOB, UOB and OOB-SW. The
analysis shows that the proposed method obtained a larger
number of significantly better results in all metrics but rec(1).
The difference between the recalls, |rec(0) − rec(1)|, is a
particularly important performance metric, as explained in
Section V. Table V shows that PBSA reduced the overall
|rec(0) − rec(1)| by a maximum of 47% and a minimum of
2.7% in comparison with ORB. However, for Neutron, PBSA
performed worse in terms of this metric. PBSA operates by
maintaining the detection rate close to a pre-defined value (i.e.,
th). Specifically for Neutron, further experiments shown that
a smaller value for th, such as 0.2, produces classifiers with
much better and stabler performances.

Table V also shows that PBSA predominantly obtained
a better rec(0) than ORB (by a maximum of 13% and
a minimum of -0.4%, except for the Neutron dataset), in
detriment of rec(1). Still, the magnitude of the improvement
in rec(0) is mostly larger than the respective deterioration
in rec(1). It is worth mentioning that the ORB’s worse
performance in terms of rec(0) means a high rate of false
alarms. This may add a significant, and unnecessary, workload
to the test team, besides reducing practitioners’ trust in the
method. For instance, software developers at Facebook prefer a
conservative lower bound on fix detection [27] when using the
tools Infer [28] and Sapienz [29]. In a scenario where the cost
of analyzing the source code is high, the recommendation is to
prioritize rec(0). Other authors [30], [31] also emphasize the
problem of wasting effort on a large number false alarms. For
safety critical applications, rec(1) may be prioritized. Table 1
in the supplementary material expands the comparisons of the
proposed method against methods present in Section V.

Figure 1 discussed in Section V shows two large perfor-
mance drops in datasets Camel and Tomcat. As discussed
in that section, these drops were caused by, among others,
concept drifts in p(y|x). Table VI presents the performance
of ORB and PBSA for these specific time intervals (commit
time step 25500 to 27000 for Camel and 17400 to 18878 for
Tomcat). In these periods, PBSA enhanced ORB’s g-mean by

15

C
a
m
e
l

C
a
m
e
l

C
a
m
e
l

C
a
m
e
l

Sp
rin
g-
In
te
gr
at
ion

Sp
rin
g-
In
te
gr
at
ion

Sp
rin
g-
In
te
gr
at
ion

Sp
rin
g-
In
te
gr
at
ion

Fabric8 Fabric8

Fabric8 Fabric8

JG
ro
up
s

JG
ro
up
s

JG
ro
up
s

JG
ro
up
s

To
m
ca
t

To
m
ca
t

To
m
ca
t

To
m
ca
t

Brackets

Brackets

Brackets

Brackets

Neutron Neutron

NeutronNeutron

B
ro
a
d
le
a
f

B
ro
a
d
le
a
f

B
ro
a
d
le
a
f

B
ro
a
d
le
a
f

N
o
va

N
o
va

N
o
va

N
o
va

NPM
NPM

NPM
NPM

Recall(0) Recall(1)

Diff.

Recalls

Gmean

ORB PBSA

Fig. 7: Performance comparison for the average results of each
metrics for ORB and PBSA classifiers.

11% and 27% for Camel and Tomcat, respectively. Regarding
|rec(0)−rec(1)|, the achieved reductions were 32% and 52%
over ORB, respectively. This substantial improvement may be
explained by the concept drift recovering mechanism present
in PBSA.

TABLE VI: PBSA and ORB predictive performances during
the large drops in Camel and Tomcat datasets depicted in
Figure 1 around timesteps 26000 and 18000, respectively.

Dataset Classifier rec(0) rec(1) |rec(0) - rec(1)| gmean

Camel ORB 40.48 (2.61) 80.52 (1.95) 40.34 (3.54) 55.00 (2.18)
PBSA 49.46 (2.39) 76.78 (1.38) 27.32 (3.17) 61.28 (1.49)

Tomcat ORB 25.20 (2.35) 76.92 (2.39) 51.82 (3.96) 42.03 (1.91)
PBSA 43.62 (2.73) 66.94 (2.13) 24.93 (3.69) 53.41 (1.60)

Standard deviations are shown in brackets. Values in bold are statistically
better according the paired Wilcoxon Signed-rank test.

RQ2.1: The proposed PBSA achieved top ranked average
predictive performance in terms of all metrics but rec(1)
compared to the state of the art. Improvements were larger
especially in terms of |rec(0) − rec(1)|, where PBSA’s per-
formance was from 2.7% (minimum) to 47.8% (maximum)
better, except for Neutron. PBSA outperformed ORB in terms
of rec(0) by a maximum of 13% and, in the worst case, was
outperformed by 0.4% (except for Neutron), demonstrating
that PBSA throws less false alarms than ORB. Improvements
were particularly large during periods affected by concept
drifts in p(y|x⃗).

E. Analysis of the Stability of the Predictive Performance

This section will further examine (i) the standard deviation
of the predictive performance through time and (ii) periods of
large class imbalance in the predictions Ξs.

1) Classifiers’ Stability: Table VII presents the standard
deviations through time of the performance metrics for all
methods. According to paired Wincoxon Signed-rank test,
PBSA obtained a much larger number of better results than
ORB for all metrics. PBSA overcame ORB in terms of rec(0)
in 9 out of 10 results with a maximum of 42%, in terms
of rec(1) in 8 out of 10 results with a maximum of 34%,
in terms of |rec(0) − rec(1)| in 9 out of 10 results with a
maximum of 36% and in terms of g-mean in 7 out of 10
results with a maximum of 22%. The A12 effect size of the
difference in standard deviations was almost always large.
The aforementioned improvement in stability can be visually
assessed in Fig. 8. For almost all metrics and datasets, PBSA
obtained higher stability (i.e., smaller standard deviations).
For the datasets Neutron and Spring-Integration, ORB slightly
outperformed PBSA. In Table 2 in the supplementary material,
the PBSA stability is further compared to the methods in
literature.

TABLE VII: Performance stability for ORB and PBSA meth-
ods.

Dataset Classifier rec(0) rec(1) |rec(0) - rec(1)| g-mean

Fabric8 ORB 15.31 18.35 22.75 16.08
PBSA 11.30[b] 16.89[b] 20.52[b] 15.32[b]

Jgroups ORB 14.09 13.36 17.36 10.71
PBSA 11.45[b] 11.28[b] 16.22[b] 9.66[b]

Camel ORB 14.58 11.87 19.45 10.80
PBSA 8.86[b] 11.39[b] 13.57[b] 9.42[b]

Tomcat ORB 15.48 10.00 18.04 9.66
PBSA 10.98[b] 8.93[b] 12.37[b] 7.4[b]9

Brackets ORB 16.25 25.29 23.81 18.57
PBSA 11.27[b] 22.35[b] 22.77[b] 18.98[-b]

Neutron ORB 7.42 12.51 11.34 6.14
PBSA 8.58[-b] 13.07[*] 9.91[b] 6.81[-b]

Spring
Integration

ORB 18.74 21.39 28.91 17.57
PBSA 17.38[b] 23.34[-b] 32.12[-b] 18.33[-b]

Broadleaf ORB 15.01 14.49 18.74 12.64
PBSA 10.27[b] 12.52[b] 16.09[b] 11.64[b]

Nova ORB 15.13 15.57 17.93 13.96
PBSA 9.15[b] 15.16[b] 14.50[b] 13.46[b]

NPM ORB 22.87 19.98 26.96 14.80
PBSA 13.28[b] 13.20[b] 17.20[b] 11.88[b]

Wins ORB 1 1 1 3
PBSA 9 8 9 7

p-values 2.2e-16 2.2e-16 2.2e-16 2.2e-16

2) Large Class Imbalance in the Predictions Periods (Ξ):
According to Table V, for some datasets such as Camel,
Tomcat, Nova and NPM, when comparing PBSA to ORB,
it is possible to notice considerable improvements on the
performance stability considering |rec(0)−rec(1)|. Moreover,
as presented in Fig. 4, many Ξs present in ORB (e.g., in
Fabric8 (commit time step 4.7k to 6.5k and 6.5k to 10k),
in Camel (commit time step 3k to 6k and 25.5k to 29k)
and in NPM (commit time step 0.4k to 3.4k)) were totally
or partially eliminated by PBSA. These results further illus-
trate the improvements in stability obtained by PBSA, which
had a positive effect on the standard deviations presented
in Table VII. For Brackets, PBSA obtained a long Ξ, but
|rec(0) − rec(1)| was considerably decreased in comparison
to ORB. Nevertheless, new Ξs were introduced by PBSA,
however, these new Ξs tended to be less accentuated (i.e.,
smaller l) than the ones present in ORB.

Figure 9 presents the average and standard deviation of the
amount of time (in months) comprised in Ξl with l longer
than month periods in x axis. It illustrates how detrimental

16

C
a
m
e
l

C
a
m
e
l

C
a
m
e
l

C
a
m
e
l

Sp
rin
g-
In
te
gr
at
ion

Sp
rin
g-
In
te
gr
at
ion

Sp
rin
g-
In
te
gr
at
ion

Sp
rin
g-
In
te
gr
at
ion

Fabric8 Fabric8

Fabric8 Fabric8

JG
ro
up
s

JG
ro
up
s

JG
ro
up
s

JG
ro
up
s

To
m
ca
t

To
m
ca
t

To
m
ca
t

To
m
ca
t

Brackets

Brackets

Brackets

Brackets

Neutron Neutron

NeutronNeutron

B
ro
a
d
le
a
f

B
ro
a
d
le
a
f

B
ro
a
d
le
a
f

B
ro
a
d
le
a
f

N
o
va

N
o
va

N
o
va

N
o
va

NPM
NPM

NPM
NPM

Recall(0) Recall(1)

Diff.

Recalls

Gmean

ORB PBSA

Fig. 8: Stability comparison for the average standard deviations
through time of each metrics for ORB and PBSA classifiers.

increases in |rec(0) − rec(1)| resulting from poor stability
can be in PBSA and ORB. In addition, the secondary y axis
shows the percentage of the project duration corresponding to
the number of months shown in the main y axis. For example,
for Fabric8, ORB spent an average of around 35 months in
Ξl with l larger than 10, which corresponds to almost 50%
of the project duration. The larger the number of months (or
percentage), the longer the Ξs are. Longer Ξs associated to
larger magnitudes l are particularly detrimental.

According to Fig. 9, the PBSA performed better than ORB
for minimizing Ξs, in 7 out of 10 datasets. ORB overcame
PBSA in two datasets (JGroups and Neutron). For the Spring-
integration dataset, both methods performed poorly.

RQ2.2: Given the class imbalance and concept drift challenges
faced by JIT-SDP, creating a classifier able to keep a stable
performance throughout the whole project is, so far, virtually
impossible. Nevertheless, based on a realistic analysis, the pro-
posed PBSA was able to produce a more stable performance in
comparison to the state of the art (e.g., up to 42%, 34%, 36%
and 22% stabler than ORB in terms of the standard deviation
of rec(0), rec(1), |rec(0)−rec(1)| and g-mean through time,
respectively). This better stability associated to the top average
predictive performance results shown in RQ2.1 render PBSA
the most reliable JIT-SDP classifier to date.

VII. TREATS TO VALIDITY

Internal Validity: as with any real world data stream prob-
lem, it is impossible to prove that concept drift really did occur
in JIT-SDP, since we have no access to the true underlying
probability distribution. To mitigate this threat, we have col-
lected strong evidence of the different types of concept drifts

Fig. 9: Average number of months comprised in Ξl with l in
the x axis. Blue area corresponds to the PBSA whereas the
red one corresponds to ORB.

based on statistics collected from the data and information
on the models generated from such data. There is a non-
zero chance that rules such as those in Eq. 1 and 2 became
inadequate as a result of overfitting instead of concept drift.
Nevertheless, as explained in Section V-B, there is a good
number of training examples supporting these rules, mitigating
this threat. Another threat is the sensitivity of machine learning
methods to their parameters. To mitigate this problem, a grid
search based on the first 5,000 examples of each dataset was
performed. In addition, preliminary experiments have shown
that the proposed method is not too sensitive to the parameters
α and β.

Construct Validity: The rules presented in Section V-B have
been used as proxies for the posterior probability distribution
p(y|x⃗) associated to a portion of the input space. We have
also used the values of the input features of the software
changes as a proxy for the distribution p(x⃗). There may be
inaccuracies resulting from noise. The predictive performance
was assessed by the recalls for each class and their geometric
mean, which are insensitive to class imbalance, and by the
difference between the recalls, which enables us to assess
how well the methods are dealing with class imbalance. These
metrics were computed using fading factors as suggested by
Gama et al. [12], enabling us to track changes in predic-
tive performance over time. In addition, the stability of the
classifier was measured by the overall standard deviation for
each metric and experiment. External Validity: This work was
conducted on ten open source GitHub projects. As with other
machine learning studies, the results may not generalize to
other projects.

17

VIII. CONCLUSIONS AND FUTURE WORK

JIT-SDP has shown to be a problem affected by all several
types of concept drift. In the projects analyzed in this study,
gradual drifts in p(x) and p(x|y) usually happened along
the whole project while drifts in p(y|x) abruptly appeared
in occasions where the projects were already mature. These
concept drifts have shown to be very detrimental to the
predictive performance, particularly, due to their combination
with the verification latency problem. These issues suggest
the use of online methods able to learn labeled training
examples as soon as they become available. Furthermore, the
analysis also suggests that strategies able to employ unlabeled
data to train the classifier may be necessary for improving
predictive performance through time. Making these issues
explicit contributes to better cope with the development of
new JIT-SDP methods.

Based on these observations, we proposed a new method
called PBSA that makes use of information about the predic-
tions given to unlabeled software changes in order to trigger
adaptation to suspected concept drifts. This approach was
able to obtain a more stable and high (i.e., reliable) JIT-
SDP classifier. Improvements in reliability are crucial for the
adoption of JIT-SDP classifiers in practice.

Future work includes the proposal of online methods to
automatically tune parameters of JIT-SDP approaches over
time, experiments with other projects (including proprietary
projects) and base learners, and investigation of whether fea-
ture normalisation strategies could help dealing with concept
drift by addressing feature trends observed over time.

REFERENCES

[1] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-
in-time defect prediction,” in QRS, 2015, pp. 17–26.

[2] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “Multi: Multi-objective effort-
aware just-in-time software defect prediction,” IST, vol. 93, pp. 1 – 13,
2018.

[3] X. Yang, H. Yu, G. Fan, K. Shi, and L. Chen, “Local versus global mod-
els for just-in-time software defect prediction,” Scientific Programming,
vol. 2019, pp. 1–13, 06 2019.

[4] L. Qiao and Y. Wang, “Effort-aware and just-in-time defect prediction
with neural network,” PLOS ONE, vol. 14, p. e0211359, 02 2019.

[5] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE TSE, vol. 39, no. 6, pp. 757–773, 2013.

[6] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE TSE),
vol. 44, no. 5, pp. 412–428, 2018.

[7] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalanced data,” in ICSE, 2015, pp. 99–108.

[8] G. G. Cabral, L. L. Minku, E. Shihab, and S. Mujahid, “Class imbal-
ance evolution and verification latency in just-in-time software defect
prediction,” in ICSE, 2019, pp. 666–676.

[9] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using cross-
project models,” EMSE, vol. 21, no. 5, pp. 2072–2106, 2015.

[10] S. Tabassum, L. Minku, D. Feng, G. Cabral, and L. Song, “An inves-
tigation of cross-project learning in online just-in-time software defect
prediction,” in ICSE, 2020, pp. 1–1.

[11] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE TNNLS, 2018.

[12] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, 2014.

[13] G. Catolino, D. Di Nucci, and F. Ferrucci, “Cross-project just-in-
time bug prediction for mobile apps: An empirical assessment,” in
MOBILESoft, 2019, p. 99–110.

[14] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
CSMR, 2010, pp. 107–116.

[15] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level fault
prediction using software clustering,” in ASE, 2013, pp. 640–645.

[16] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons for defect
prediction and effort estimation,” IEEE TSE, vol. 39, no. 6, pp. 822–834,
2013.

[17] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE TKDE, vol. 27,
no. 5, pp. 1356–1368, 2015.

[18] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and risk
prediction of software commits,” in FSE, 2015, pp. 966–969.

[19] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in ACM SIGKDD, 2001, pp. 97–106.

[20] “The impact of class imbalance in classification performance metrics
based on the binary confusion matrix,” Pattern Recognition, vol. 91, pp.
216–231, 2019.

[21] “Facing imbalanced data recommendations for the use of performance
metrics,” in ACII, 2013.

[22] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of
the role of imbalanced learning for software defect prediction,” IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1253–1269,
2018.

[23] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine Learning, vol. 90, no. 3, pp. 317–346,
2013.

[24] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, “Negative
results for software effort estimation,” EMSE, vol. 22, no. 5, pp. 2658–
2683, 2017.

[25] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” JEBS,
vol. 25, no. 2, pp. 101–132, 2000.

[26] N. Mittas and L. Angelis, “Ranking and clustering software cost
estimation models through a multiple comparisons algorithm,” IEEE
TSE, vol. 39, no. 4, pp. 537–551, 2013.

[27] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in SCAM,
2018, pp. 1–23.

[28] “A tool to detect bugs in java and c/c++/objective-c code before it ships,”
https://fbinfer.com/, accessed: 2020-04-16.

[29] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and
I. Zorin, “Deploying search based software engineering with sapienz at
facebook,” 08 2018.

[30] D. Bowes, S. Counsell, T. Hall, J. Petric, and T. Shippey, “Getting defect
prediction into industrial practice: the elff tool,” in ISSREW, 2017, pp.
44–47.

[31] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead,
“Does bug prediction support human developers? findings from a
google case study,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 372–381.

George G. Cabral received his PhD degree from the Federal University of
Pernambuco (Brazil) in 2014. He conducted his postdoc at the University
of Birmingham (UK) in 2019. Currently, he is an adjunct professor at the
Department of Computing at the Federal Rural University of Pernambuco
(Brazil). He serves as reviewer for reputable journals such as Neurocomputing
and Applied Software Computing. He has systematically served as committee
member in prestigious conferences such as ICSE and ASE. His research
interests include Novelty Detection, One-class Classification, Artificial Neural
Networks, Data Mining, Class Imbalance, Software Defect Prediction, Con-
cept Drift, Online Learning, etc.

Leandro L. Minku is an Associate Professor at the School of Computer
Science, University of Birmingham (UK). Prior to that, he was a Lecturer
in Computer Science at the University of Leicester (UK), and a Research
Fellow at the University of Birmingham (UK). He received the PhD degree
in Computer Science from the University of Birmingham (UK) in 2010. Dr.
Minku’s main research interests are machine learning for software engineer-
ing, machine learning for non-stationary environments / data stream mining,
class imbalanced learning, ensembles of learning machines and search-based
software engineering. Among other roles, Dr. Minku is Associate Editor-in-
Chief for Neurocomputing, Senior Editor for IEEE TNNLS, and Associate
Editor for EMSE and JSS.

