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Abstract Just-in-Time Software Defect Prediction (JIT-SDP) operates in an
online scenario where additional training data is received over time. Exist-
ing online JIT-SDP studies used online Oza ensemble learning methods with
Hoeffding Trees as base learners to learn and update JIT-SDP models over
time in this scenario. However, it is unknown how these approaches compare
against offline learning approaches adapted to operate in online scenarios, and
how the use of any other online or offline base learners would affect online JIT-
SDP in terms of predictive performance and computational cost. We therefore
propose a new approach called Batch Oversampling Rate Boosting (BORB)
that is able to use offline base learners in an online JIT-SDP scenario. Based
on 10 open source projects, we provide a comprehensive evaluation of BORB
with 5 different base learners and the existing online approach Oversampling
Rate Boosting with 4 different base learners, both in within-project and cross-
project online JIT-SDP scenarios. The results show that offline learning can
lead to better predictive performance than the top performing online learning
approaches considered in our study, at a higher computational cost. Cross-
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project data was helpful to improve predictive performance both for offline
and online learning, but especially for online learning.

Keywords Within-project software defect prediction · cross-project software
defect prediction · online learning · offline learning

1 Introduction

Software systems are nowadays essential in our everyday lives. The structures
of these systems have been growing larger and ever more complex to fulfill the
increasing demands from various different sectors. Hence, ensuring the quality
of software systems has become a critical task. Improving software quality
highly depends on reducing the amount of software defects. Currently, one of
the most active research areas in the Software Engineering domain is Software
Defect Prediction (SDP) [8, 18, 27]. The main objective of SDP is to predict
which parts of the software are likely to contain defects so that resources
such as time and budget can be more effectively allocated to support software
quality assurance activities.

Early work on SDP typically focused on predicting defects in files or mod-
ules. In recent years, another branch of SDP has emerged that focuses on
predicting defect-inducing software changes. This is known as Just-in-Time
Software Defect Prediction (JIT-SDP). JIT-SDP predicts whether a change in
the code will induce defects or not as soon as it is committed to a software
repository. The main advantages of JIT-SDP over file level prediction are [22]:
(i) predictions are performed at fine granularity, helping to reduce the effort
required to fix the defects; (ii) the defect fixing task can be assigned to the
right developer as changes can be easily mapped to the person who commit-
ted them; and (iii) defect prediction is made immediately after committing
the change so that the code is still fresh in the developer’s mind, facilitating
code inspection.

Most of the existing JIT-SDP studies implicitly assume an offline scenario,
where a pre-existing training set is available beforehand and additional training
examples are never received anymore [21, 22]. However, in practice, JIT-SDP
operates in an online scenario, where software changes become labelled as
either clean or defect-inducing and become available as training data over
time. McIntosh and Kamei [30] showed that there can be fluctuations in the
importance of the characteristics of defect-inducing software changes over time,
which may be a result of concept drift during the software development process.
Concept drift can be described as a change in the data generating process,
affecting the underlying probability distribution of the data. It may negatively
impact predictive performance of the models, if they are predominantly built
on old data. To deal with this issue, it is important for models to be able to
learn and adapt to new data over time.

Both online and offline learning models can be used to learn additional
data received over time in online scenarios. Online learning models are models
that consider training examples one at a time, with the model parameters
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being updated after the presentation of each training example [3]. Therefore,
they naturally fit online scenarios, as they can be updated with each new
training example generated by the online scenario separately, without requiring
access to past data. Offline learning models are models that process the entire
training set in one go [3]. Even though they require the whole training set
to be available before learning commences and cannot process each training
example separately upon arrival, they can also be adapted for use in online
scenarios. This can be done by retraining the model on new data together with
(a sufficient amount of) past data. Both offline and online learning models need
to be combined with special strategies to deal with concept drift to be able
to address changes in the underlying data distribution. However, as online
learning models do not require retraining on past data, their training process
is usually faster. Such advantage can also become a weakness depending on the
problem being learned. In particular, as online learning models do not conduct
multiple learning passes through the data, they may present poorer predictive
power, for instance as a result of catastrophic forgetting [29].

Therefore, this paper aims at analyzing whether offline learning models
can improve predictive performance in online JIT-SDP scenarios compared
to online learning models, and whether this would be at the cost of higher
computational requirements. This investigation will be carried out both on
Within-Project (WP) and Cross-Project (CP) online JIT-SDP scenarios. In
particular, these two scenarios may lead to different conclusions in terms of
which type of learning models perform better, due to the different amounts of
training data used. The following research questions (RQs) are addressed:

RQ1 Can offline learning help to improve predictive performance compared to
online learning in online WP JIT-SDP scenarios? Which base learners usu-
ally perform best?

RQ2 How beneficial is CP data to improve predictive performance of offline
models compared to online models in online CP JIT-SDP scenarios?

RQ3 How high is the computational cost of offline learning in online JIT-SDP
scenarios compared to that of online learning models?

To answer the above research questions, we propose a new approach called
Batch Oversampling Rate Boosting (BORB) that is able to use different offline
base learners and can operate in the online JIT-SDP scenario by learning from
new training data. BORB is an offline version of the online JIT-SDP approach
Oversampling Rate Boosting (ORB) [7]. It translates the online resampling
concepts of ORB which have been previously shown to be useful for online
JIT-SDP scenarios [7] into an offline resampling approach. Therefore, in this
paper, offline learning implies using BORB, whereas online learning implies
using ORB, unless stated otherwise.

BORB and ORB approaches are compared using 5 and 4 different base
learners, respectively. The use of different base learners enables a more com-
plete investigation of offline and online learning, as different base learners
may lead to different conclusions. Our experiments based on ten open source
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projects show that offline learning (BORB) helped to improve predictive per-
formance compared to online learning (ORB) when using most base learners
with WP data. Even though CP data helped to improve BORB’s predictive
performance further, it was more helpful to improve ORB’s predictive perfor-
mance. The training process of online learning through ORB was less com-
putationally expensive than that of offline learning through BORB. However,
the magnitude of the differences in predictive performance and computational
cost between the top ORB and BORB approaches were not very large.

The contributions of this work are following:

– We provide the first comparison between offline base learners and online
base learners in a realistic online JIT-SDP scenario, revealing that offline
learning can slightly improve predictive performance compared to online
learning. Therefore, if researchers or practitioners have predictive perfor-
mance as a priority when choosing a JIT-SDP model, we recommend them
to consider offline JIT-SDP as a possible choice.

– We show how to adapt offline base learners so that they can use adaptive
resampling rates to deal with class imbalance in online scenarios for JIT-
SDP.

– We show that CP data can improve predictive performance. This happens
both when using offline BORB and online ORB, even though CP data
was particularly beneficial for online ORB. Therefore, we recommend re-
searchers and practitioners to consider adopting CP learning especially if
they are using online ORB.

– We show that online learning required less computational cost than offline
learning. Therefore, we recommend researchers and practitioners to con-
sider online learning if computational cost is a concern for them. This may
be a concern when there is a need for comparing several JIT-SDP models
to decide which one to adopt. However, it may not be a concern when
adopting a single online or offline JIT-SDP model over time as the cost of
these approaches becomes negligible in this context.

– While one may intuitively assume that it is better to use online learning
models for online JIT-SDP scenarios, we show that both online and offline
learning models can bring benefits in such realistic scenarios and are worth
further exploring.

This paper is further organized as follows. Section 2 presents related work.
Section 4 introduces the proposed approach. Section 5 presents the details
of the investigated datasets. Section 6 explains the experimental setup for
answering the RQs. Section 7 explains the results of the experiments. Section
8 presents threats to validity. Section 9 presents the conclusions and future
work.

2 Related Work

This section discusses online and offline models for JIT-SDP using both WP
and CP data. As our previous work [37, 38] also involves online CP JIT-SDP,
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there are some commonalities between the related work listed here and that
of those studies.

2.1 Offline WP JIT-SDP

Kim et al. [23] conducted one of the first studies on JIT-SDP. They proposed
an approach to classify software changes, as defect-inducing or not, based on
features extracted from the change metadata such as author name, commit
hour, code entropy, lines of comments, cyclomatic complexity, etc. Their ap-
proach achieved an accuracy rate of 78% on average in a study involving 12
open source software projects. Śliwerski et al. [35] investigated the connec-
tion among defects in a defect-tracking system and a control version system
in order to identify ‘fix-inducing changes’ (changes able to identify previous
defect-inducing changes). They investigated which properties of these changes
are correlated with inducing fixes. They showed, for example, that if the change
is large it is more likely to induce a fix. Eyolfson et al. [14] showed that com-
mits submitted during certain time of the day, day of the week and the daily
commit frequency of the developer may influence the “bugginess” of a commit.
Kamei et al. [22] performed a large scale investigation of JIT-SDP by build-
ing logistic regression models using 6 open source and 5 commercial projects.
They used 14 different features extracted from code changes to predict defect
inducing changes and achieved an average accuracy of 68% and an average
recall of 64%.

Other studies focused on the machine learning approach being used to cre-
ate JIT-SDP models. Chen et al. [10] considered JIT-SDP as a multi objective
problem by maximizing the number of identified defect-inducing changes and
minimizing efforts to fix them. They used logistic regression models to con-
duct the prediction using 6 open source datasets considering the 14 metrics
described in [22]. Their approach managed to identify 63.8% of the defect-
inducing changes on average when using only 20% of the software quality
team effort. Yang et al. [45] proposed a two-layer ensemble learning approach
TLEL. In the inner layer, they used Decision Trees and Bagging models to
create a Random Forest model. In the outer layer, they grouped many dif-
ferent Random Forest models using stacking [1]. They have also investigated
other base learners than Decision Trees, including Naive Bayes, Support Vec-
tor Machines, Linear Discriminant Analysis and Nearest Neighbor Classifiers.
They showed that ensembles of Decision Trees to create Random Forests per-
formed better than using other base learners in 5 out of 6 open source projects.
Their approach detected 70% of defect-inducing changes by reviewing 20% of
the code. The TLEL also achieved higher F1-score compared to three baseline
approaches – Deeper, DNC and MKEL. Yang et al. [46] proposed a deep learn-
ing method called ‘Deeper’ for JIT-SDP. They compared their approach with
the approach proposed by Kamei et al. [22] and showed that their approach
was able to discover 32.22% more defects, based on a study with 6 open source
datasets. Li et al. [26] investigated the impact of different combinations of base
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learners such as Support Vector Machines (SVMs), Logistic Regression (LR),
Random Forest (RF), Multi-layer Perceptron (MLP), Naive Bayes (NB) and
Decision Trees (DTs). They showed that the diversity of base learners plays
an important role for achieving promising performance.

Some studies have also suggested effort-aware prediction of defect-inducing
software changes, leading to approaches such as EALR [22], CBS [19] and
CBS+ [20]. However, the effort-aware components of these approaches require
a whole set of software changes to be available for sorting in order of inspection
priority. As being able to make predictions “just-in-time”, at commit time, is
one of the key advantages of JIT-SDP [22], it is unsuitable to wait for such
whole set of changes to be produced for sorting in JIT-SDP.

All of the above discussed studies considered JIT-SDP in an offline scenario
(i.e., all the learning algorithms used in these studies are offline and were not
retrained with new data over time). These studies did not take into account
the fact that the label of a training data may not be available immediately
after the software change submission, i.e., they overlook a problem known as
verification latency which consists in the delay for obtaining the class (or label)
of a software change. The chronology of the data was also disregarded. As a
result, in these works, future examples may have been used to train models
for predicting past data. Hence, these offline WP JIT-SDP studies are not
applicable in a realistic scenario.

2.2 Online WP JIT-SDP

Tan et al. [39] investigated JIT-SDP in a scenario where new batches of training
examples arrive over time and can be used for updating the classifiers. To
the best of our knowledge, even though previous work considered verification
latency in defect models that are updated online [24], Tan et al. were the first
work to consider this issue in JIT-SDP. Regarding the classifiers, they used
7 updatable algorithms based on Naive Bayes (Bayes, LWL), instance-based
learning (IBK, KStar), boosting (LogitBoost), nearest-neighbors (NNge), and
Support Vector Machines (SPegasos) to learn over time. In addition, they used
resampling techniques to tackle the inherent class imbalance problem. Based
on a study with one proprietary and six open source projects, the authors claim
that both resampling techniques and the updatable classification improve the
precision by 12.2-89.5%. In this work they mention that overlooking the data
chronology and the verification latency problem lead to a false impression
of higher predictive performance. Therefore, it is important to take the data
chronology and verification latency problem into account in order to reproduce
more realistic scenarios. However, their approach assumes that there is no
concept drift, i.e., that the defect generating process does not suffer variations
over time. Their approach also assumes a fixed gap of time between the training
and test examples, where no training examples can be produced. In practice,
some software changes may be found to be defect-inducing during that gap,
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but their use for training will be delayed by their approach. Moreover, they
have not compared online versus offline learning models in their work.

McIntosh et al. [31] performed a longitudinal case study of 37,524 changes
from the rapidly evolving QT and OPENSTACK systems and found that fluc-
tuations in the importance of the features of fix-inducing changes can impact
the performance of JIT-SDP models. They showed that JIT-SDP models typ-
ically lose predictive power after one year, possibly as a result of concept drift.
Hence, they suggest to continuously update the JIT-SDP model with recent
data.

Cabral et al. [7] proposed a method called Oversampling Rate Boosting
(ORB) to tackle a type of concept drift called class imbalance evolution, where
the proportion of examples of the defect-inducing and clean classes change over
time. Their work investigates an online JIT-SDP scenario taking verification
latency into account. They considered a waiting time (w days) after the commit
time to safely label the change as clean.If a defect is found within w days,
the change is labeled as defect-inducing and used for training. If no defect
associated to a change has been found in w days from its commit time, this
gives confidence that this change is clean and therefore be labeled and used
for training. If a change that has already been labeled as clean is found to
be defect-inducing after w days, the training example corresponding to that
change will be updated with the correct label and be presented again for
learning.

ORB has a resampling rate to tackle class imbalance evolution based on
the moving average over the predictions provided by the JIT-SDP model. In
[7] this mechanism has shown to be able to improve predictive performance
over JIT-SDP approaches that assume a fixed level of class imbalance. ORB
achieved better |R0 −R1| up to 45.38% and 63.59% compared to the state-of-
the art class imbalance evolution algorithms Undersampling Online Bagging
(UOB) and Improved Oversampling Online Bagging (OOB) [43], respectively.

2.3 Offline CP JIT-SDP

JIT-SDP classifiers require sufficient amount of training data to provide useful
predictions. Such data is not available at the beginning of a software project
as data arrives sequentially over time. Cross-Project (CP) JIT-SDP can over-
come this issue by using data from past projects to build the classifier. Several
studies investigated CP JIT-SDP. Kamei et al. [21] conducted one of the first
studies. They carried out an empirical evaluation of CP JIT-SDP performance
by using data from 11 open source projects. They investigated five CP JIT-
SDP approaches based on project similarity, three variations of data merging
approaches, and ensemble approaches where each model was trained on data
from a different project. All approaches employed random forests as base learn-
ers. They found that simple merging of all CP data into a single training set
and ensemble approaches obtained similar predictive performance to that of
WP models. Different from SDP at the component level, other more complex
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approaches, including similarity-based approaches, did not offer any additional
advantage compared to these. Another study [9] investigated CP JIT-SDP for
mobile platforms using 14 apps extracted from the CommitGuru platform [34].
They compared the CP performance of four different well-known classifiers and
four ensemble techniques. Naive Bayes performed best compared to other clas-
sifiers and some ensemble techniques. They did not check how CP compared
against WP results.

Chen et al. [10] considered JIT-SDP as a multi-objective problem to maxi-
mize the number of identified defect-inducing changes while minimizing the ef-
fort required to fix the defects. They proposed a multi-objective optimization-
based supervised method called MULTI to build logistic regression JIT-SDP
models. They used six open source projects. MULTI was evaluated on three dif-
ferent performance evaluation scenarios (cross-validation, cross-project-validation,
and timewise-cross-validation) against 43 state-of-the-art supervised and un-
supervised methods. They found that it can perform significantly better than
WP methods in terms of Accuracy and Popt metrics. Zhu et al. [47] proposed
a JIT-SDP approach called DAECNN-JDP based on denoising autoencoder
and convolutional neural networks. WP and CP defect prediction experiments
were performed on six large open source projects and DAECNN-JDP was
compared with 11 baseline models, including eight machine learning models,
EALR, Deeper and CNN-JDP. The results show that DAECNN-JDP achieved
better predictive performance than the baseline models for both CP and WP
JIT-SDP. However, the predictive performances of CP and WP approaches
were not compared against each other.

The studies above considered offline scenarios where the model is never
updated with new data and, hence, cannot deal with concept drift. They did
not take into account the chronology and verification latency of the data as
well. It is unknown whether their conclusions would hold in realistic online
JIT-SDP scenarios.

2.4 Online CP JIT-SDP

Tabassum et al. [37, 38] first investigated CP learning for online JIT-SDP
based on OOB [42] and ORB [7]. They proposed three online CP approaches
called AIO (that builds a single model by training with all WP and CP data
together), Filtering (that filters out CP instances dissimilar to target project)
and Ensemble (that builds an ensemble of models, where each model is trained
by data from a different project) based on Hoeffding tree as base learners. Their
study based on 10 open source and 9 proprietary datasets showed that their
online CP approaches (AIO and Filter) achieved up to 53.89%, 37.35% and
29.03% improvements in terms of G-Mean compared to a WP online approach.
They have also shown that enabling the CP approaches to be updated with
additional training data received over time in an online CP scenario leads to
better predictive performance than adopting an offline CP scenario, where only
CP data available before the target project commences is used for training.
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3 Background

This section explains the online JIT-SDP scenario adopted in this work and
some background required to understand it. It also explains the ORB approach
upon which BORB is based.

3.1 Definitions

Definition (Data Stream): A data stream is a potentially infinite sequence
of training examples S = {(x⃗i, yi)}∞i=1, where i is a natural sequential number
(time step) indicating the order with which the training examples were labeled,
x⃗i are the input features describing example i, and yi is the label of example
i. In JIT-SDP, the input features are features describing the software change,
as will be explained in Section 5. The label is defect-inducing or clean.

Definition (Online Scenario With Verification Latency): An online
scenario is a scenario where training examples are produced over time, forming
a data stream. JIT-SDP operates in an online scenario where the labels of the
software changes arrive with a delay, which is referred to as verification latency
[12]. Specifically for JIT-SDP, labelled examples can be produced following
the procedure defined by Cabral et al. [7]. When a change is committed to
the repository the developers hope it to be clean, but it may, instead, induce
a defect. To label this change as clean, we need to wait for a period of time
(waiting period w) to be confident that the change is really clean. If no defect
is reported to be associated to this change within w days, the change is labeled
as clean at the end of the waiting period, producing a training example. If, on
the other hand, a defect is found to be linked to this change during these w
days, the change is immediately labeled as defect-inducing, without having to
wait until the end of the waiting period. It may also happen that a change that
was initially labeled as clean is found to be defect-inducing after the w days.
When this happens, this change is relabeled as defect-inducing, producing
a new labeled training example of the defect-inducing class. This procedure
respects chronology, being able to capture a realistic scenario that reflects the
labelling procedure that would be observed in practice. The waiting period w
can be considered as a pre-defined parameter.

Definition (Online Learning): Given a data stream formed by training
examples ordered by the time they were produced S = {(x⃗i, yi)}∞i=1, an on-
line learning model is a model that is immediately updated whenever a new
training example (x⃗i, yi) ∈ S becomes available. Strict online learning models
must be able to process (learn) each training example once and only once. So,
the classifier is always updated with new examples, without requiring any re-
training on past examples. This is useful to speed up learning for cases where
storing and reprocessing past training examples may be computationally in-
feasible, e.g., for very large data streams, or data streams where the frequency
of incoming data is very large. However, some (non-strict) online learning al-
gorithms may access a memory containing past training examples to support
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the learning process. The classifier may also have strategies to speed up adap-
tation to changes (a.k.a., concept drifts) that may affect the underlying data
generating process.

Definition (Offline Learning): Consider a finite set τ = {(x⃗i, yi)}ni=1

containing n examples that are available for training at a given time. This set
can be referred to as a batch. Being a set and not a stream, the time order of
these examples is ignored. An offline learning model is trained on τ such that
the training and testing phases cannot intersect in time, i.e., the classifier is
only available to use when the training procedure has ended.

3.2 Discussion on Adopting Offline Learning in Online Scenarios

Even though the time order of the examples within τ is ignored by the offline
learning procedure, it is still possible to create a sequence of training sets τj ,
j ≥ 0, where each training set τj is updated with one or more new training
examples that may become available until the current time step. We refer
to the number of time steps that we wait before creating a new training set
as retraining period (rp). At every rp time steps, τj is created with all τj−1

training examples plus the new rp training examples. The batch τj is then
used to retrain the offline learning model from scratch. The larger the rp,
the longer we will have to wait before the predictive model can be retrained.
If a concept drift happens during this period, the outdated model is unable
to react to this drift until the new τj is created, potentially hindering the
predictive performance. On the other hand, the larger the rp, the higher the
computational cost of the approach, as the model is retrained from scratch
more often.

Despite the training process of the offline learning model ignoring the time
order of examples within a given training set, this process would still ensure
that only training data that is really available at a given point in time would
be used for training, i.e., the JIT-SDP online scenario described in this section
would still be respected.

As the data stream generated by the software changes submitted to a
software repository is not a high frequency stream, it may be computationally
acceptable to store past changes and rebuild classifiers from scratch when
new training sets become available. Moreover, managing the whole historical
data stream enables us to access all the benefits of offline learning over online
learning. In particular, by ignoring the time order of examples, offline learning
models frequently process the training set several times, which can help to
produce stronger (more accurate) classifiers. In face of verification latency,
revisiting all software changes labeled so far allows us to delete any training
examples whose label was incorrectly assigned as clean for software changes
that have now been found to be defect inducing. This prevents the classifier
to learn noisy information, different from online learning models such as ORB
[7], where the mislabeled training example is definitely incorporated into the
classifier. Nevertheless, a potential disadvantage of using offline learning for
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online scenarios is that this could make it more difficult to deal with certain
types of change in the defect generating process, as each given training set may
contain a mix of examples produced by different defect generating processes.

3.3 The ORB Approach

Cabral et al. [7] tackled the problem of the class imbalance evolution over time
when dealing with online JIT-SDP. They showed that this evolution negatively
impacts the predictive performance by making the classifier to become highly
skewed towards one of the classes during different periods of the project. They
also considered the verification latency problem for receiving the class labels.
Their proposed Oversampling Rate Boosting (ORB) approach was able to im-
prove the predictive performance in comparison to algorithms that assume a
fixed imbalance ratio over time and to the existing class imbalance evolution al-
gorithms Undersampling Online Bagging (UOB) and Improved Oversampling
Online Bagging (OOB) [43].

Algorithm 1 Oversampling Rate Boosting (ORB) [7]
Input: Ensemble size n, incoming training example d, parameters of the adjustment function
(th, l0, l1,m), noise mechanism parameter o, decay factor θ′, window size ws

1: for each training example d(t) = (x(t), y(t)), t← 0 to ∞ do
2: Obtain the ensemble prediction y(t) for x(t)

3: Compute the average ma(t) over the predictions on the most recent ws examples,
including d(t)

4: Update the proportions ρ
(t)
0 and ρ

(t)
1 of each class using Eq. 1

5: for i← 0 to n do
6: λ = 1
7: if y(t) == 1 and ρ

(t)
1 ¡ ρ

(t)
0 then

8: λ = ρ
(t)
0 /ρ

(t)
1

9: end if
10: if y(t) == 1 and ρ

(t)
0 ¡ ρ

(t)
1 then

11: λ = ρ
(t)
1 /ρ

(t)
0

12: end if
13: Set k ∼ Poisson(λ)
14: Calculate OBF (t) (ma(t), th, l0, l1,m) using Eq. 2 or Eq. 3
15: k = k . OBF (t)

16: Run noise safety mechanism with parameter o
17: /* Depending on the noise safety mechanism outcome, update the ith Hoeffding

tree with k copies of dt */
18: Update(HTi, k, dt)
19: end for
20: end for

ρ(t)c = θ′ρ(t−1)
c + (1− θ′)(y(t) == c) , (1)

Algorithm 1 shows the pseudocode of the ORB approach. It is important
to note that the ORB is built upon the OOB [43] approach. Thus, in Algo-
rithm 1, the numbered black lines correspond to the original OOB while the
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blue lines correspond to the ORB. ORB calculates the moving average of the
predictions ma(t) using a time window of size ws. JIT-SDP is a binary problem
where 0 represents the clean class and 1 represents the defect-inducing class.
Calculating the moving average allows us to detect a bias in the predictions
towards any particular class. Depending on this bias, the resampling rate of
one of the classes is boosted (increased).

As JIT-SDP is a class imbalanced problem, an effective classifier would
provide class imbalanced predictions. So, ORB is set to make the predictions
rate as close as possible to a parameter th that represents the desired imbalance
ratio of the predictions. For example, if ma(t) is close to 1, it means that the
classifier is producing many false alarms, then the resampling rate for the
class 0 (clean class) will be increased in order to reduce the classifier’s skew,
making it closer to the desired skew th. The adjustment in the resampling rate
is made through boosting factors computed according to Equations 2 and 3.
The final oversampling rate is then the product between obf0 or obf1 and the
resampling rate k necessary to balance the classes computed by OOB. These
boosting factors are responsible for adding an extra emphasis to one of the
classes in order to yield balanced predictions.

OBF
(t)
0 (P0) =


(

mma(t)
−mth

(m−mth)
∗ l0

)
+ 1, if ma(t) > th

1, otherwise
(2)

OBF
(t)
1 (P1) =


(

m(th−ma(t))−1
(mth−1)

∗ l1
)
+ 1, if ma(t) ≤ th

1, otherwise
(3)

In equations 2 and 3, P0 and P1 are sets of hyperparameters containing
the parameters: m - determines the growth of the exponential function, th
- stands for the threshold that indicates the desired class imbalance in the
predictions; mat - the predictions moving average at time t; l0 and l1 - control
the maximum boosting factor values.

In short, if ma(t) ≤ th, this suggests that less than th% of the commits are
being classified as defect-inducing. Hence, the resampling rate of the defect-
inducing class should be boosted. If ma(t) > th, then more than th% of the
commits are classified as defect-inducing. Hence, the resampling rate of the
clean class should be boosted. For further details regarding the ORB, please
refer to [7].

4 Proposed Approach

To investigate the influence of offline learning in online JIT-SDP scenarios we
propose a novel approach called Batch Oversampling Rate Boosting (BORB),
which consists of an adaptation of Oversampling Rate Boosting (ORB) [7]. Our
RQs require us to isolate the effects of offline vs online learning as much as
possible, so that we can analyze the potential benefit of offline learning without
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Algorithm 2 BORB’s testing and training procedure
Input: data stream S, ORB parameters (th, l0, l1,m), window size ws, training sample size
n, retraining time period rp, number of training iterations it, waiting time period w

1: θ ← 0.5 ▷ decision threshold adopted by the classifier
2: X ← ∅ ▷ set of software changes received so far
3: for x(t) ∈ S do ▷ x(t) change (example) committed at timestep t
4: if clf is already trained then
5: c⃗← ∅
6: for i← (ws − t) to t do
7: c⃗← c⃗ ∪ score(clf, θ, x(i))
8: end for
9: θ ← quantile(c⃗, th)
10: ŷ(t) ← pred(clf, x(t), θ)
11: else
12: ŷ(t) ← 0 ▷ for this problem, class 0 refers to the clean class
13: end if
14: X .add(x(t))
15: τ ← updateTrainingSet(τ , X , w) ▷ update the training set with any new label
16: if modulo(t, rp) == 0 then ▷ an entire training procedure is performed
17: clf ← restart(clf) ▷ restart or instantiate a new classifier
18: obf0 ← 1
19: obf1 ← 1
20: for i← 0 to it do
21: S ← skewedSample(τ, obf0, obf1, n)
22: clf ← train(clf, S)
23: ma← 1

ws

∑t
j=t−ws

pred(clf, x(j), 0.5)

24: obf0 ← OBF0(ma, th, l0,m)
25: obf1 ← OBF1(ma, th, l1,m)
26: end for
27: end if
28: end for

being affected by other mechanisms that one may design to further improve
predictive performance of the state-of-the-art. Therefore, such adaptation was
designed to be as similar as possible to the ORB approach, but using core
offline learning mechanisms instead of online ones.

BORB is an offline learning algorithm which periodically rebuilds its JIT-
SDP models incorporating newly labeled training examples. This is achieved
by updating the training set with the most recently labeled examples. The
updated training set, containing all training examples received so far, is then
used as a batch for retraining the JIT-SDP model from scratch based on an
offline learning algorithm. Different from the offline learning approaches pre-
sented in Section 2.1, such training process ensures that only training examples
whose labels are already available with respect to the dataset chronology can
be used for training (i.e., it takes the verification latency problem into account
and follows the online JIT-SDP scenario explained in Section 3).

Overall, BORB and ORB share the following similarities:

– Both methods use resampling to deal with class imbalanced based on the
same oversampling rate boosting function (Equations 2 and 3).
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– They are both capable of detecting when the classifier is performing badly
based on the rule involving ma and th explained in Section 3.3 and to
react to it by adjusting the resampling rate based on the above mentioned
oversampling rate boosting function.

– They are both able to take into account verification latency through the
waiting time strategy from [7].

– They both ensure that the online scenario explained in Section 3.1 is re-
spected. In particular, both of them ensure that only training examples
that are already available at a given point in time can be used for training
at this point in time.

Their key differences are related to replacing the core online mechanisms
of ORB by core offline ones:

– Being an offline learning approach, BORB stores and can learn multiple
times past data, while ORB sees each training example only once.

– Being an offline learning approach, BORB collects the training examples
into a training set. As such, the order of examples within this set is not
respected when training on them, even though the online scenario explained
in Section 3.1 is respected.

– When collecting new training examples over time, BORB is able to note
if these examples correspond to previously seen training examples whose
label has changed due to a late detection of a defect associated to them.
Therefore, BORB can replace the old mislabelled clean examples by the
new corresponding defect-inducing ones. ORB is able to learn the new
defect-inducing example, but is unable to remove the old example which
has already been learned.

– BORB is periodically retrained to enable offline learning models to be used,
whereas ORB learns each training example separately.

Algorithm 2 presents BORB’s pseudocode. For each new incoming software
change (x(t)) received at timestep t, the base learner clf , if already trained,
provides a class prediction (line 10). Note that clf is not useful until τ con-
tains at least one labeled software change from each class (clean and defect-
inducing). Before that, all provided predictions are assigned to the clean class.

Different from online learning models, BORB stores all historical software
changes in X . As new class labels arrive (following the procedure described
in Section 3 and using waiting period w), they are immediately used to cre-
ate training examples corresponding to their respective software changes in X
(line 15). These training examples are added to the training set τ . If a given
new defect-inducing class label corresponds to a software change that was pre-
viously labeled as clean, the previous training example in τ is replaced by the
new one with the defect-inducing label. The base learner is periodically reset
whenever the modulo operation between the timestep (t) and the parameter
rp is zero (line 16), and the training set τ is used to retrain it (lines 16 to 27).

BORB tackles the class imbalance problem at two different moments: in
the test phase by picking a presumable adequate classifier prediction threshold
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(lines 5 to 9) and in the training phase by means of an oversampling mecha-
nism (lines 16 to 27). For the testing phase, BORB considers that classifiers
usually make predictions based on a prediction threshold θ. The value of θ
is typically set to 0.5. If the score given by the classifier is smaller than 0.5,
class 0 is predicted. Otherwise, class 1 is predicted. However, this threshold
can potentially be adjusted to help dealing with class imbalance. BORB does
that in lines 5 to 9. In particular, c⃗ (line 7) stores the prediction scores over the
last ws software changes. The decision threshold θ to be adopted by the base
learner is a quantile in c⃗ corresponding to a hyperparameter th. This hyper-
parameter represents the proportion of the predictions that is targeted to be
defect-inducing predictions (th). E.g., if th = 0.5, θ = median(c⃗). As JIT-SDP
is a class imbalanced problem, the target proportion should normally be less
than 0.5.

For the training phase, similar to ORB [7], BORB deals with class im-
balance based on oversampling as follows. The oversampling rate is used to
decide whether and by how much to oversample examples of a given class
for training the base learner. The oversampling rate is adjusted based on the
predictions given to the most recent test software changes. This enables ad-
justments on the base learners without having to wait for the labels of these
software changes. In particular, a proportion ma of predictions given to the
defect-inducing class over the most recent ws software changes is determined
(line 23). This proportion is compared to the same hyperparameter th used in
the test phase. If ma indicates that BORB is predicting the defect-inducing
class more/less often than the target proportion th, we need to oversample
the clean/defect-inducing class, so that BORB focuses more on learning how
to identify examples of this class. The idea is that if S (i.e., a sample of the
training set) is skewed towards the defect-inducing class, the classifier should
also incorporate this skewness in its predictions.

The iterations from lines 20 to 26 are responsible for updating the base
learner based on the oversampling rate. The function skewedSample (line
21) retrieves the sample S containing n training examples from τ , based on
the oversampling rate, which is determined according to the factors obf0 and
obf1, as detailed in Algorithm 3. Therefore, many training iterations will be
performed on different training sets S in order to make the base learner con-
verge to a skew respecting th. The idea is that if ma (line 23) gets more distant
from th, the obfs are adjusted so that S contains the necessary class imbalance
to make the base learner accumulate new biased information such that at the
last training iterations ma approaches th.

As an illustrative example of the impact of skewedSample function, con-
sider using a Multilayer Perceptron (MLP) as a base learner and th = 0.4
(i.e., classes proportions (0.6:0.4)). If in the first epoch of the MLP the base
learner average prediction for the last ws test examples is 0.7, th = 0.4 and
ma = 0.7 will be used to compute obf0 and obf1. The factors obf0 and obf1
will result in a new sample S containing training examples with the class
proportions ( obf0

obf0+obf1
: 1 − obf0

obf0+obf1
), which will then be used for the sec-

ond training epoch. Since in the first training epoch ma > th, in the second
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Algorithm 3 skewedSample function
Input: n - the number of examples in the training set S, obf0 and obf1 - the absolute values
for computing the desired proportions of clean and defect-inducing examples in S, τ(lab)
1: S ← ∅
2: for i← 0 to n do
3: r = rand(0, obf0 + obf1) ▷ r is a random number between 0 and obf0 + 0bf1
4: if r < obf0 then
5: S ← S ∪ pickRandom(τ, 0) ▷ S is incremented with a random example of the

clean class from τ
6: else
7: S ← S ∪ pickRandom(τ, 1) ▷ S is incremented with a random example of the

defect-inducing class from τ
8: end if
9: end for

Return: S

a) b)

o
b
f

ma

o
b
f

ma

Fig. 1: Oversampling rate boosting function [7] for two different set of pa-
rameters. The x-axis is the average of the last Ws test examples while the
y-axis depicts the resulting oversampling boosting factor (obf) according to
Equations 2 and 3.

training epoch the proportion of examples from class 0 will be larger than the
proportion of examples of class 1 (i.e., the oversampling rate for class 0 will
be boosted). Eventually, repeating this process for many epochs will lead to
the base learner’s average predictions to be close to the target th.

As in ORB, Equations 2 and 3 [7] compute obf0 and obf1 (lines 24 and 25 of
Alg. 1), respectively. Figure 1 presents the behaviour of these equations. Figure
1 a) shows the obf0 and obf1 curves generated by the parameters (th = 0.4,
l0 = 5, l1 = 12, m = 1000 and ma ∈ 0..1) while in Fig. 1 b) the parameters
l0 = 9 and m = 10. Due to different values for parameter m, in Fig. 1 a), when
ma ≈ th, obf0 and obf1 are less impacted than in Fig. 1 b). As in JIT-SDP
the class 0 (clean class) is usually the majority class, it is advisable to use obf
upper limits values (l0) lower than the ones for defect-inducing class (l1).

We investigated BORB for both WP and CP learning, respecting the online
scenario introduced in Section 3. For WP learning, the JIT-SDP model is
trained with data from the target project only. For CP learning, the JIT-
SDP model is trained both with data from the target project (WP data) and
from all other available projects (CP data). Hence, for CP learning, BORB
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Table 1: An overview of the projects (adapted from [38])

Project Total #Defect- %Defect- Median Defect Time Period Main
Changes inducing inducing Discovery Language

Changes Changes Delay (days)
Tomcat 18960 5223 27.55 200.58 27-03-2006 - 06-12-2017 Java
JGroups 18434 3185 17.28 117.12 09-09-2003 - 05-12-2017 Java
Spring-Int 8750 2333 26.66 415.12 14-11-2007 - 16-01-2018 Java
Camel 30739 6360 20.69 27.73 19-03-2007 - 07-12-2017 Java
Brackets 17572 4143 23.58 14.69 07-12-2011 - 07-12-2017 JavaScript
Nova 48989 12430 25.37 88.56 28-05-2010 - 28-01-2018 Python

Fabric8 13483 2736 20.29 36.57 13-04-2011 - 06-12-2017 Java
Neutron 19689 4689 23.82 82.51 01-01-2011 - 27-12-2017 Python
Npm 7920 1407 17.77 111.51 29-09-2009 - 28-11-2017 JavaScript

BroadleafCommerce 15010 2531 16.86 42.58 19-12-2008 - 21-12-2017 Java

model is trained with both CP and WP data together similar to the All-in-One
approach from [37, 38]. This means that any benefits of CP data mentioned
in this study refer to the benefits obtained from combining both CP and WP
data. This is reasonable in online scenarios, as both CP and WP data become
available over time during the course of a project [38].

5 Datasets

We have used ten open source datasets extracted from open source GitHub
repositories, which were made available by Cabral et al. [7] at https://

zenodo.org/record/2594681. Table 1 shows details about these datasets.
All datasets were extracted based on CommitGuru [34]. The change metrics
include 14 metrics (input features) that can be divided into five groups: i)
diffusion of the change, including input features NS (number of modified sub-
systems), ND (number of modified directories), NF (number of modified files),
Entropy (distribution of modified code across each file), ii) size of the change,
including input features LA (lines of code added), LD (lines of code deleted),
LT lines of code in a file before the change), iii) purpose of the change, in-
cluding input features FIX (whether or not the change is a defect fix), iv)
history of the change, including input features NDEV (number of develop-
ers that changed the modified files), AGE (average time interval between the
last and the current change), NUC (number of unique changes to the modi-
fied files) and v) experience of the developer that made the change, including
input features EXP (developer experience), REXP (recent developer experi-
ence), SEXP (developer experience on a subsystem). These software change
metrics have been shown to be adequate for JIT-SDP in previous work [22]
and have been adopted in previous online JIT-SDP work [7, 37, 38].

6 Experimental Setup

This section explains the experimental setup for answering the RQs introduced
in Section 1. To perform the analysis for RQ1, we compare the predictive per-
formances of BORB-WP and ORB-WP [7] approaches; for RQ2, we compare

https://zenodo.org/record/2594681
https://zenodo.org/record/2594681
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the predictive performances of BORB-WP, BORB-CP and ORB-CP [37, 38]
approaches; and for RQ3, runtimes for BORB-WP, BORB-CP and ORB-CP
are compared. Our analyses are based on various online and offline base learn-
ers, as listed in Section 6.1. For RQ1 and RQ2, we compared all approaches
against a dummy classifier that predicts defect-inducing or clean uniformly at
random. This is because being able to outperform a dummy classifier in terms
of overall predictive performance means the JIT-SDP model was able to learn
relevant JIT-SDP knowledge.

Given a certain project P , we are interested in using JIT-SDP to predict
the software changes of P as defect-inducing or clean. Such predictions should
respect chronological order according to the scenario explained in Section 3.
Chronology is determined based on author timestamp, as recommended in
[15].

When creating a predictive model for a given project P , WP approaches
make use of only WP data from P for training. CP approaches make use of
data from all projects for training, including P . The training procedure of
all approaches at a given timestamp t ensures that only training examples
that have already been labeled by timestamp t based on their chronology and
waiting period are used for training, as explained in Section 3.1 [7]. Waiting
period of 90 is used as in previous studies [7, 38] for open source data.

All approaches have been executed 30 times on each data set. A replication
package can be found in the JIT-SDP-NN repository, https://github.com/
dinaldoap/jit-sdp-nn. The datasets generated during and/or analysed dur-
ing the current study are available in the JIT-SDP-DATA repository, https:
//github.com/dinaldoap/jit-sdp-data.

6.1 Base Learners

This section lists all the base learners that are investigated with the BORB and
ORB approaches in this study. Altogether, our base learners were selected so as
to: (1) cover a variety of different types of learning approaches for both offline
and online learning (function-based, probabilistic and tree-based), as we wish
to check what kind of online/offline model is most beneficial for JIT-SDP, (2)
make the evaluation fair in the sense that we will select both online and offline
approaches that are expected to achieve good results (in particular including
Logistic Regression and Iterative Random Forest for fairness towards offline
learning [10, 22, 26] and Oza Bagging of Hoeffding Trees and Naive Bayes for
fairness towards online learning [7, 38, 40]) and (3) include the use of base
learners that are the same as much as possible between online and offline
learning (Logistic Regression and Multilayer Perceptron).

Overall, the following base learners were adopted by the ORB and BORB
approaches in our experiments:

– ORB: Logistic Regression, Multilayer Perceptron, Naive Bayes and Oza
Bagging of Hoeffding Trees.

https://github.com/dinaldoap/jit-sdp-nn
https://github.com/dinaldoap/jit-sdp-nn
https://github.com/dinaldoap/jit-sdp-data
https://github.com/dinaldoap/jit-sdp-data
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– BORB: Logistic Regression, Multilayer Perceptron, Naive Bayes, Iterative
Random Forest and Iterative Hoeffding Forest.

6.1.1 Offline Base Learners

– Logistic Regression (LR): Logistic regression is a well known offline linear
classifier [25]. Its training requires iterating through all the training data
multiple times (epochs), and it has been successfully used for offline JIT-
SDP in previous work [10, 22]. LR approaches can be affected by multi-
collinearity. To cope with that, the LR approach used in our experiments is
regularized with elastic net, and the overall effect of elastic net is grouping
correlated coefficients and selecting the groups that are relevant for the
model.

– Multilayer Perceptron (MLP): MLP is an Artificial Neural Network that
consists of three layers of interconnected nodes [17], being able to model
any function. Training also requires iterating through all the training data
multiple times (epochs) based on the backpropagation algorithm. It has
been included here for being a universal approximator, able to model any
function. MLP approaches can also be affected by multi-collinearity. To
deal with that, the MLP adopted in our experiments is regularized with
dropout. This avoids collinearity by disabling some input features on each
step of backpropagation algorithm.

– Iterative Random Forest (IRF): IRF consists of an ensemble of CART
decision trees [5]. It is similar to a Random Forest [4], but the decision trees
are trained with different subsets of the training data to encourage more
diversity. It was included here as previous work has shown that diversity
is important in ensembles for JIT-SDP [26].

– Iterative Hoeffding Forest (IHF): IHF is the same approach as IRF, but
using online Hoeffding trees as the base learners instead of CARTs. As
the iterative ensemble approach itself is an offline learning approach, we
classify this approach as an offline learning approach. We have adopted
it with BORB in this study so that we can evaluate the benefits of the
approach BORB itself compared with ORB, without being affected by the
benefits of the offline decision tree over the online one. This evaluation can
be conducted by comparing BORB-IHF against ORB-OHT.

6.1.2 Online Base Learners

– Logistic Regression (LR): despite Logistic regression being an offline al-
gorithm, it is possible to set the number of epochs to one so that the
algorithm becomes online. The downside of using logistic regression as an
online learning algorithm is that the resulting model is likely to become
weaker, i.e., to have poorer predictive performance.

– Multilayer Perceptron (MLP): similar to LR, it is also possible to set the
number of epochs for training MLPs to one, so that MLPs become online
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learning models. The downside is similar to that of LR, i.e., its predictive
performance may considerably reduce when a single epoch is used.

– Näıve Bayes (NB): NB is a well known Bayesian classifier that can be
trained through one pass over the training data. This approach is inherently
online, as the equations used to update the model parameters can process
each training example separately. It is included here because it has been
successfully used in component-based software defect prediction [40].

– Oza Bagging of Hoeffding Trees (OHT): Oza Bagging is an online version of
the Bagging ensemble learning algorithm. It requires a single pass through
the training data to learn it. It is typically run with Hoeffding Trees, which
are online decision trees suitable for large complex datasets [13]. Different
from LR and MLP, it is not possible to make offline decision trees into on-
line approaches by changing any of their hyperparameter values. Hoeffding
Trees are a specific type of decision trees that can learn through a single
pass through the training data. Due to its theoretical foundations on the
Hoeffding bound, Hoeffding trees are able to produce online models with
strong performance guarantees, reason why this approach is being adopted
in this and in previous JIT-SDP work [7, 37, 38].

6.2 Performance Metrics

The metrics adopted for measuring predictive performance are Geometric
Mean (G-Mean) of Recall0 and Recall1, where Recall0 is the recall on the
clean class and Recall1 is the recall on the defect-inducing class. Different
from biased metrics such as Matthews Correlation Coefficient, F1-Score, Ac-
curacy, Precision and G-Mean of Precision and Recall, the G-Mean of Recall0
and Recall1 adopted in our work is a metric that is not biased by class imbal-
ance [48], being suitable for class imbalanced problems such as JIT-SDP. For
simplicity, we will refer to this metric simply as G-Mean from here onward. We
have also chosen G-Mean instead of AUC because AUC incorporates several
threshold values that are not meaningful in practice and makes comparison be-
tween approaches difficult, hence discouraged in the context of software defect
prediction [36].

While computing the metrics in a prequential way, a fading factor is used
to track changes in predictive performance over time as recommended for
problems that may suffer concept drift [16]. As mentioned in our previous

study [37], if the current example belongs to class i, Recall
(t)
i = θRecall

(t−1)
i +

(1 − θ)1ŷ=i, where i is zero or one, t is the current time step, θ is a fading
factor set to 0.99 as in [7], ŷ is the predicted class, and 1ŷ=i is the indicator
function, which evaluates to one if ŷ = i and to zero otherwise. If the current

example does not belong to class i, Recall
(t)
i = Recall

(t−1)
i . Also, G-Mean(t) =√

Recall
(t)
0 ×Recall

(t)
1 . It is worth noting thatRecall0 = 1−FalseAlarmRate,

i.e., false alarms are taken into account through Recall0 and G-Mean.

minkull
Highlight
There is a mistake in this formula. The correct formula, which has been used in the implementation, is:

R_i(t) = \theta R_i(t-1) + 1(\hat{y}=i)'
N_i(t) = \theta N_i(t-1) + 1
Recall_i(t) = R_i(t) / N_i(t)
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The performance metric used to measure the computational cost is the
amount of time in seconds used to train and test the JIT-SDP models.

6.3 Statistical Tests and Effect Size

Scott-Knott procedure [33] is used to compare the performance obtained by
all BORB and ORB approaches across datasets, ranking the models and sep-
arating them into subgroups. The use of statistical tests across datasets has
been recommended by Demsar to reduce problems with multiple comparisons
[11]. Each group of observations compared through the test corresponds to
one learning approach run across all projects (data streams) as illustrated in
points (1) and (2) of Figure 2. Therefore, given that we use 19 approaches (in-
cluding the dummy approach) and 10 projects in our experiments, there are
19 groups with 10 observations each in the test. As recommended by Menzies
et al. [32], this test uses non-parametric bootstrap sampling. This makes this
a non-parametric test which is adequate for comparison across data sets [11].
Scott-Knott.A12 is used both to compare predictive performance in terms of
G-Mean and computational cost in Seconds, but for the computation cost we
remove the dummy approach, leading to 18 groups. This is because a compari-
son of computational cost against the dummy approach would be meaningless,
as this approach does not spend any time on learning (there is no learning)
and provides extremely fast predictions (it simply predicts randomly, rather
than making predictions based on a predictive model). To rule out insignifi-
cant differences in performance, this test uses A12 effect size [41]. Approaches
are placed in separate groups by Scott-Knott test only if the A12 size is sig-
nificant [32]. We will refer to Scott-Knott based on Bootstrap sampling and
A12 as Scott-Knott.BA12 in this paper. Smaller Scott-Knott.BA12 rankings
are better rankings.

We also report the A12 effect sizes against the dummy approach for each
learning approach on each dataset individually to support the analysis of pre-
dictive performance, as illustrated in Point (3) of Figure 2. Symbols [*], [s], [m]
and [b] represent insignificant (A12 < 0.56), small (A12 ≥ 0.56), medium (A12
≥ 0.64) and large (A12 ≥ 0.71) A12 effect size. Presence/absence of the sign
“-” in the effect size means that the corresponding approach was worse/better
than the corresponding WP approach.

6.4 Hyperparameter Tuning

Random search is used for hyperparameter tuning as suggested in [2] [28],
which show that random search performed similar or better compared to grid
search for hyperparameter optimisation. For each hyperparameter of each con-
figuration of a classifier, a random value is chosen regarding the probability
distribution specified (either uniform or log-uniform, depending on the hy-
perparameter being tuned). ORB and BORB (meta-models) are associated
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Fig. 2: Overview of Experiments. (1) Training and testing of a given learning
model Mi on each Project Pj ’s data stream, where 1 ≤ j ≤ N and N = 10 is
the number of projects. (2) Group of observations corresponding to learning
approach Mi created for the Scott-Knott.BA12 test. (3) A12 effect sizes com-
puted against a dummy approach.

with OHT, IHF, LR, MLP, NB and IRF (base learners). So, the overall con-
figuration of the classifier includes the BORB, ORB and the base learner’s
hyperparameters. The first 3000 training examples from each data stream are
used for hyperparameter tuning for both WP and CP approaches. For BORB
and ORB approaches with each dataset, base learner and hyperparameter
configuration, 3 executions have been performed for tuning purposes. For each
dataset and classifier, 128 configurations were evaluated. More details of the
investigated hyperparameter values are given in Table 1 in the appendix. It is
worth noting that the application of log as a preprocessing step is considered
as a hyperparameter choice when using MLP and LR as base models, as they
can be affected by skewed distributions.

7 Experimental Results

Tables 2, 3, 4 and 5 present the average G-Mean with standard deviation
and A12 effect size against the dummy classifier for the BORB and ORB ap-
proaches with different base learners, using WP and CP data. Table 6 presents
the corresponding Scott-Knott.BA12 ranking of BORB and ORB approaches
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with different base learners. Tables 7, 8, 9 and 10 present the average runtime.
Table 11 presents the corresponding Scott-Knott.BA12 ranking. Section 7.1 fo-
cuses on the comparison between WP approaches to answer RQ1; section 7.2
focuses on the comparison between CP and WP approaches to answer RQ2;
and section 7.3 focuses on the computational cost analysis of each approach
to answer RQ3.

7.1 RQ1: Can offline learning help to improve predictive performance in
online WP JIT-SDP scenarios? Which base learners usually perform best?

To answer RQ1, we compared the predictive performances of offline (BORB)
and online (ORB) approaches with different base learners for WP data. As ex-
isting online WP JIT-SDP studies have never explored any other base learners
except OHT, it is interesting to know whether using different base learners
would improve the predictive performance not only of offine WP approaches,
but also of online WP approaches.

From Table 6, we can see that offline WP approaches in general outper-
formed online WP approaches, being better ranked. In particular, BORB-
MLP-WP, BORB-LR-WP and BORB-IRF-WP achieved similar predictive
performance to each other, and better than the other BORB-WP and ORB-
WP approaches. However, interestingly, when using the exact same base learner,
NB for ORB and BORB, BORB-NB-WP did not outperform ORB-NB-WP.
This suggests that BORB’s adaptive resampling mechanism is not necessarily
better than ORB’s adaptive resampling mechanism, and that BORB’s abil-
ity to enable offline base learners to be adopted is the likely reason for the
generally better results obtained by the offline WP approaches.

When comparing BORB-MLP-WP against ORB-MLP-WP and BORB-
LR-WP against ORB-LR-WP, it is thus clear that the single epoch used by the
online base learners MLP and LR is the likely reason for the poorer predictive
performance results obtained by ORB, rather than the different resampling
mechanisms used by ORB and BORB. Such single epoch resulted in similar or
worse predictive performance even than the dummy classifier, which is a very
poor result.

When comparing BORB-IHF-WP and BORB-IRF-WP against ORB-OHT-
WP, the offline IHF and IRF are also the likely the reason for the better pre-
dictive performance achieved by BORB. Nevertheless, the ranking of these
tree-based ORB and BORB approaches is not far from each other – BORB-
IHF-WP and BORB-IRF-WP were ranked second and ORB-OHT-WP was
ranked third. This confirms our hypothesis mentioned in Section 1 in that
OHT may be better suited for achieving good predictive performance in on-
line JIT-SDP learning than MLP and LR.

When comparing the offline approach BORB-MLP-WP (ranked 2nd when
considering all approaches investigated in this paper) against the online ap-
proach ORB-OHT-WP (ranked 3rd), we can see from Tables 2 and 3 that the
absolute improvements in predictive performance obtained by BORB-MLP-
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WP varied from 2.76% (for Nova) to 23.19% (for Spring-Integration), varying
from small to moderate improvements and with median of with a median of
6.36%. Both these approaches performed better than the dummy approach
with large effect size [b], except for Spring-Integration, where ORB-OHT-WP
performed worse than the dummy with large effect size [-b].

From Fig. 3, it is visible that the best 3 BORB-WP approaches (MLP,
LR and IRF as shown in blue, orange and green, respectively) performed on
average very similar to each other, and comparatively better than the best
ORB-WP approach (OHT as shown in black). Previous work [38] showed that
WP approaches can suffer with low performance in the very beginning of a
project, when there is lack of sufficient data. This initial period of low perfor-
mance can be seen in most datasets for ORB-WP. BORB-WP approaches also
suffered in such initial period, but was sometimes able to improve the G-Mean
during the initial period (e.g., for Npm and Neutron).

Apart from the initial period, some other large performance drops can be
observed in Camel, Npm and Spring-Integration (Fig. 3c, 3h and 3i) for ORB-
WP. For these datasets, all 3 BORB-WP approaches managed to maintain
stable performance during the drop periods. Hence, BORB-WP with MLP,
LR and IRF are the best options compared to ORB-WP when considering the
predictive performance.

It is worth noting that, if JIT-SDP often had concept drifts affecting the
relationship between input features and the label (clean or defect inducing),
retraining with all historical data as done by BORB-MLP-WP, BORB-LR-
WP and BORB-IRF-WP would likely be detrimental to the predictive perfor-
mance. This is because different portions of the training set would correspond
to different relationships. The models would thus try to learn a mix of relation-
ships, being unable to learn any of the individual relationships well enough.
However, we have found in previous work [6, 37] that, despite sometimes hap-
pening, changes in such relationship are much less common than changes in the
values of the input features. Therefore, retraining with historical data multiple
times may offer some benefits, as shown in this section.

RQ1: Offline learning helps to improve average G-Mean in the online WP
JIT-SDP scenario. BORB-WP with MLP, LR and IRF ranked the best, and
performed better than the top ORB-WP approach, which used OHT. In partic-
ular, the top offline approach BORB-MLP-WP achieved up to 23.19% absolute
improvement in G-mean against the top online approach ORB-OHT-WP.

7.2 RQ2: How beneficial is CP data to improve predictive performance of
offline models compared to online models in online CP JIT-SDP scenarios?

Previous studies [37, 38] investigated the use of CP data for online JIT-SDP
and found that, with the use of CP data, online learners are exposed to more
data and are able to improve the predictive performance of the JIT-SDP model
compared to using only WP data. These studies also showed that CP data was
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Table 2: Average G-Mean for BORB-WP

Dataset BORB-NB-WP BORB-MLP-WP BORB-LR-WP BORB-IRF-WP BORB-IHF-WP
Tomcat 29.87(0.57) [-b] 69.08(0.23) [b] 69.58(0.04) [b] 68.54(0.48) [b] 66.55(0.32) [b]
JGroups 52.4(0.41) [b] 64.81(0.22) [b] 62.78(0.08) [b] 63.2(0.31) [b] 60.88(0.41) [b]
Spring-Int 41.18(0.83) [-b] 64.27(0.46) [b] 65.55(0.14) [b] 63.84(1.2) [b] 49.94(1.57) [s]
Camel 48.29(0.19) [-b] 69.97(0.13) [b] 70.42(0.06) [b] 69.91(0.16) [b] 65.18(0.17) [b]

Brackets 61.21(0.08) [b] 72.09(0.1) [b] 71.32(0.05) [b] 70.98(0.09) [b] 66.39(0.37) [b]
Nova 62.31(0.52) [b] 80.62(0.07) [b] 79.79(0.03) [b] 79.9(0.11) [b] 78.74(0.07) [b]

Fabric8 55.32(0.22) [b] 62.8(0.53) [b] 64.46(0.08) [b] 65.3(0.48) [b] 63.75(0.3) [b]
Neutron 35.74(0.19) [-b] 83.39(0.1) [b] 82.12(0.03) [b] 81.54(0.24) [b] 82.14(0.16) [b]
Npm 44.6(0.22) [-b] 64.45(0.42) [b] 65.89(0.11) [b] 62.38(1) [b] 58.21(0.72) [b]

Broadleaf 54.5(0.25) [b] 70.73(0.21) [b] 70.13(0.1) [b] 68.77(0.73) [b] 65.57(0.26) [b]

Table 3: Average G-Mean for ORB-WP

Dataset ORB-OHT-WP ORB-NB-WP ORB-MLP-WP ORB-LR-WP
Tomcat 64.27(0.41) [b] 48.33(6.77) [*] 49.21(4.92) [-*] 46.68(0.59) [-b]
JGroups 60.89(0.48) [b] 55.47(1.11) [b] 46.6(4.85) [-b] 47.21(0.55) [-b]
Spring-Int 41.08(0.7) [-b] 50.24(1.92) [m] 39.71(8.32) [-b] 37.82(0.93) [-b]
Camel 53.17(0.8) [b] 51.9(1.86) [b] 48.64(4.47) [-s] 48.27(0.37) [-b]

Brackets 67.81(0.36) [b] 61.39(1.9) [b] 42.42(12.67) [-m] 44.7(0.57) [-b]
Nova 77.86(0.2) [b] 68.63(1.24) [b] 43.5(12.56) [-b] 46.31(0.32) [-b]

Fabric8 63.27(0.71) [b] 56.68(1.67) [b] 40.6(11.88) [-b] 42.92(0.88) [-b]
Neutron 77.03(0.47) [b] 39.99(5.4) [-b] 49.14(11.45) [-*] 49.52(0.51) [-b]
Npm 57.45(0.83) [b] 45.45(1.8) [-b] 48.77(5.02) [-s] 49.9(0.66) [*]

Broadleaf 64.25(0.83) [b] 55.7(2.32) [b] 46.61(5.92) [-b] 46.76(0.53) [-b]

Table 4: Average G-Mean for BORB-CP

Dataset BORB-NB-CP BORB-MLP-CP BORB-LR-CP BORB-IRF-CP BORB-IHF-CP
Tomcat 46.84(0.67) [-b] 68.76(0.18) [b] 69.59(0.14) [b] 69.11(0.12) [b] 65.38(0.25) [b]
JGroups 43.83(0.62) [-b] 64.63(0.25) [b] 63.11(0.06) [b] 63.28(0.34) [b] 60.93(0.32) [b]
Spring-Int 44.13(1.39) [-b] 72.38(0.17) [b] 72.32(0.05) [b] 72.12(0.13) [b] 70.14(0.4) [b]
Camel 46.57(0.57) [-b] 70.42(0.11) [b] 69.96(0.03) [b] 69.51(0.07) [b] 66.74(0.19) [b]

Brackets 55.86(1.31) [b] 77.57(0.1) [b] 78.15(0.04) [b] 77.64(0.1) [b] 72.11(0.2) [b]
Nova 54.62(1.11) [b] 81.5(0.06) [b] 81.56(0.02) [b] 81.46(0.05) [b] 77.87(0.08) [b]

Fabric8 50.35(1.24) [s] 68.34(0.15) [b] 66.76(0.07) [b] 68.47(0.14) [b] 65.21(0.29) [b]
Neutron 70.82(1.77) [b] 82.8(0.08) [b] 83.49(0.07) [b] 83.34(0.07) [b] 80.77(0.19) [b]
Npm 48.29(1.37) [-b] 66.77(0.39) [b] 67.37(0.1) [b] 66.14(0.17) [b] 62.58(0.27) [b]

Broadleaf 50.02(0.99) [*] 71.26(0.14) [b] 71.54(0.05) [b] 71.04(0.12) [b] 70.38(0.25) [b]

Table 5: Average G-Mean for ORB-CP

Dataset ORB-OHT-CP ORB-NB-CP ORB-MLP-CP ORB-LR-CP
Tomcat 66.66(0.28) [b] 49.94(2.41) [-*] 48.16(3.87) [-m] 49.63(0.69) [-b]
JGroups 60.95(0.44) [b] 52.07(1.78) [b] 46.79(4.38) [-b] 47.6(0.61) [-b]
Spring-Int 70.36(0.61) [b] 52.2(3.87) [b] 48.3(4.36) [-s] 49.37(1.04) [-m]
Camel 69(0.25) [b] 55.66(1.53) [b] 47.54(5.64) [-b] 49.26(0.29) [-b]

Brackets 75.94(0.37) [b] 64.15(3.88) [b] 49.38(7.4) [-*] 48.55(0.43) [-b]
Nova 79.9(0.21) [b] 69.52(4.62) [b] 48.95(10.99) [-s] 49.49(0.23) [-b]

Fabric8 69.28(0.44) [b] 54.87(3.88) [b] 48.55(3.1) [-m] 49.77(1.02) [-s]
Neutron 81.94(0.25) [b] 79.04(3.35) [b] 51.53(8.11) [s] 49.55(0.43) [-b]
Npm 65.18(0.6) [b] 43.32(4.03) [-b] 47.41(3.76) [-b] 48.31(0.98) [-b]

Broadleaf 71.41(0.34) [b] 52.84(5.57) [b] 50.36(4.05) [-s] 48.24(0.88) [-b]

Standard deviations are shown in brackets. Symbols [*], [s], [m] and [b] represent insignifi-
cant, small, medium and large A12 effect size against the Dummy approach (which always
gets 50% G-Mean). Presence/absence of the sign “-” in the effect size means that the cor-
responding approach was worse/better than the corresponding Dummy approach.
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Table 6: G-Mean ranking of approaches based on the Scott-Knott.BA12 test

Ranking Approach
1 BORB-MLP-CP BORB-LR-CP BORB-IRF-CP
2 ORB-OHT-CP BORB-MLP-WP BORB-LR-WP BORB-IRF-WP BORB-IHF-CP
3 BORB-IHF-WP
4 ORB-OHT-WP
5 ORB-NB-CP
6 ORB-NB-WP
7 Dummy BORB-NB-WP ORB-LR-CP BORB-NB-CP ORB-MLP-CP
8 ORB-LR-WP ORB-MLP-WP

BORB approaches are shown in yellow, the Dummy approach is shown in red, and the
ORB approaches are shown in white background. Scott-Knott.BA12 was run for all BORB
and ORB-based WP and CP approaches together. The groups’ rankings retrieved by
Scott-Knott.BA12 are shown in the ranking rows, with smaller numbers indicating better
rankings.

helpful to maintain stable predictive performance during the periods when the
WP models typically suffered sudden performance drops [37]. From section
7.1, we found that BORB’s offline learners outperformed ORB’s online learn-
ers with WP data. In particular, some offline models iterate over the training
data several times, simulating the existence of a larger data set. It is unknown
whether incorporating CP data with BORB would further improve predictive
performance for offline models. Moreover, no other base learners were explored
for online CP JIT-SDP except OHT. It is not known whether CP data would
still be useful for JIT-SDP using other online base learners. Hence, it is im-
portant to investigate the use of CP data not only for offline models, but also
for other online models than OHT.

To answer RQ2, we compare 4 approaches – ORB-WP, ORB-CP, BORB-
WP and BORB-CP. According to the Scott-Knott.A12 test shown in Table
6, BORB-CP with MLP, LR and IRF are the best ranked approaches and
outperformed all other BORB-WP, ORB-CP and ORB-WP approaches. Even
though BORB-IHF-CP is also a BORB-CP approach, it did not rank best
(instead it ranked second). Even though IHF is classified as an offline approach,
it uses online Hoeffding Trees as base learners (Section 6.1). It is possible that
using online Hoeffding Trees resulted into a weaker model for BORB.

When using the exact same base learner, NB, BORB-CP performed worse
than ORB-CP. This corroborates the results presented in Section 7.1, suggest-
ing that BORB’s offline resampling mechanism is not necessarily better than
that of ORB, and that its ability to enable the use of offline base learners is
the likely reason for the typically better predictive performance achieved by
BORB-CP approaches.

To address RQ2, we compare BORB-CP against BORB-WP approaches.
We can see from Table 6 that BORB-MLP-CP (ranked first) outperformed
BORB-MLP-WP (ranked second). Similarly, BORB-LR-CP also outperformed
BORB-LR-WP, BORB-IRF-CP outperformed BORB-IRF-WP and BORB-
IHF-CP outperformed BORB-IHF-WP. Only when using NB as the base
learner, BORB-CP did not outperform BORB-CP, but both of these ap-
proaches are using online base models and performed worse than the dummy
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(a) Brackets (b) Broadleaf

(c) Camel (d) Fabric8

(e) Jgroups (f) Neutron

(g) Nova (h) Npm

(i) Spring-Integration (j) Tomcat

Fig. 3: G-Mean for all datasets through time for best ranked BORB and ORB
approaches with WP data.
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(a) Brackets (b) Broadleaf

(c) Camel (d) Fabric8

(e) Jgroups (f) Neutron

(g) Nova (h) Npm

(i) Spring-Integration (j) Tomcat

Fig. 4: G-Mean for all datasets through time for best ranked BORB and ORB
approaches with WP and CP data.
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classifier, meaning that the comparison between the two of them is not nec-
essarily meaningful in this specific context. Therefore, these results show that
CP data is helpful to improve predictive performance when using offline learn-
ing for JIT-SDP. However, the magnitude of the improvements in predictive
performance were not very large. For instance BORB-MLP-CP (ranked 1st)
approach had absolute improvements in G-Mean from 0.45% (for Camel) to
8.11% (for Spring-Integration) with a median of 2.32% against BORB-MLP-
WP (ranked 2nd), and led to slightly worse G-Mean for some projects, as can
be computed based on Tables 4 and 2.

We also compare ORB-CP against ORB-WP approaches. We can see from
Table 6 that ORB-OHT-CP outperforemd ORB-OHT-WP, ORB-NB-CP out-
performed ORB-NB-WP, ORB-LR-CP outperformed ORB-LR-WP and ORB-
MLP-CP outperformed ORB-MLP-WP. Therefore, these results show that CP
data is helpful to improve predictive performance when using online learn-
ing for JIT-SDP, for all base learners investigated. When comparing the best
ORB-CP and ORB-WP approaches against each other (ORB-OHT-CP and
ORB-OHT-WP), we can see that the absolute improvements in G-Mean varied
from 0.06% (for JGroups) to 29.28% (for Spring-Integration) with a median
of 6.59%. Therefore, CP data was more helpful for improving predictive per-
formance in the context of online learning than offline learning.

Such larger increase in the competitiveness of the ORB approach when us-
ing CP data is also reflected in the magnitude of the differences in performance
of the best BORB-CP approach (e.g., BORB-MLP-CP) against the best ORB-
CP approach (ORB-OHT-CP). Even though BORB-MLP-CP was ranked bet-
ter than ORB-OHT-CP, the absolute improvements in G-Mean varied from
0.86% (for Neutron) to 3.68% (for JGroups), being always small. Moreover, for
some projects, BORB-MLP-CP obtained slightly worse G-Mean than ORB-
OHT-CP. Therefore, even though BORB-CP can achieve better rank in terms
of predictive performance than ORB-CP, the magnitudes of the differences in
predictive performance are not large.

It is also worth noting that all best ranked BORB-CP approaches (BORB-
MLP-CP, BORB-LR-CP and BORB-IRF-CP) outperformed the dummy clas-
sifier with large [b] effect size, for all projects. The best ranked ORB-CP ap-
proach (ORB-OHT-CP) also outperformed the dummy classifier with large [b]
effect size for all projects. Therefore, the weakness of ORB-OHT-WP, which
had performed worse than the dummy classifier for Spring-Integration, is over-
come when using CP data.

From Fig.4, it is also visible that performance of best BORB-CP and ORB-
CP were very similar. Both BORB-CP and ORB-CP were able to achieve
better predictive performance during initial portion of the data streams than
BORB-WP and ORB-WP. For Spring-Integration, BORB-CP managed to pro-
vide stable performance by eliminating the drops suffered by BORB-WP (Fig.
4i). These results suggest that CP data can be useful for both BORB and ORB
during initial period of the project, and to help reducing drops in predictive
performance over time for ORB.
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RQ2: CP data was helpful to improve predictive performance for both offline
and online learning approaches. It helped to improve predictive performance
especially in the initial period of the projects for both BORB and ORB, and
continued to help attenuating drops in predictive performance over time for
ORB. Even though BORB-CP obtained better G-Mean rank than ORB-CP,
the magnitude of the absolute differences in G-Mean between the best BORB-
CP and the best ORB-CP approaches was not large. For instance, absolute
improvements obtained by BORB-MLP-CP over ORB-OHT-CP were of up to
only 3.68%.

7.3 RQ3: How high is the computational cost of offline learning in online
scenarios compared to that of online learning models?

An ideal JIT-SDP approach should not be computationally too expensive as
such approaches are not suitable to use in practice. Hence, while comparing
between offline and online JIT-SDP approaches, it is important to consider
computational cost (run time) along with the predictive performance. Typi-
cally, offline learners require multiple iterations of the training data leading to
higher computational cost compared to online learners. Offline CP approaches
could be even more computationally expensive than offline WP approaches
as they require retraining with larger amount of data from several projects.
An analysis of computational cost is required to understand how high these
computational costs may be and whether they are feasible for adoption in
practice.

Fig. 5a shows computational costs of BORB and ORB approaches for all
datasets. We can see that offline (BORB) approaches have higher computa-
tional cost than their online (ORB) counterparts. This is also reflected by
the Scott-Knott.BA12 tests shown in Table 11. For instance, ORB-NB-WP
is better ranked than BORB-NB-WP, ORB-LR-WP is better ranked than
BORB-LR-WP, ORB-MLP-WP is better ranked than BORB-MLP-WP. In
particular, the better ranking obtained by ORB-NB-WP compared to BORB-
NB-WP shows us that, even when using the exact same online base learner
NB, ORB is still faster than BORB. The same is valid when comparing ORB-
NB-CP against BORB-NB-CP. This means that the offline resampling and
retraining process required by BORB is slower than ORB’s procedures.

Moreover, the offline base learners MLP, LR, IRF and IHF adopted by
BORB are also themselves generally slower than their online base learner coun-
terparts. This is revealed by the magnitude of the differences in computational
cost between BORB and ORB when using these base models, which is usually
larger than the differences between BORB-NB and ORB-NB, as we can see
from Figure 5. For instance, the magnitude of the difference in the computa-
tional cost between BORB-MLP-WP and ORB-MLP-WP is much larger than
that between BORB-NB-WP and ORB-NB-WP. This is expected, as offline
learning models frequently have to iterate through the dataset (or portions of
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Table 7: Average run time in seconds for BORB-WP

Dataset BORB-IHF-WP BORB-IRF-WP BORB-LR-WP BORB-MLP-WP BORB-NB-WP
Tomcat 910.58 454.93 315 242.39 332.7
JGroups 715.85 852.89 294.09 660.12 100.01
Spring-Int 131 234.67 31.65 464.56 27.38
Camel 1716.91 1878.08 1409.7 1246.01 91.71

Brackets 220.21 137.98 185.63 305.66 301.64
Nova 1891.89 1811.11 2497.66 1228.41 136.09

Fabric8 516.39 671.02 139.03 92.02 209.79
Neutron 1699.08 1068.19 784.8 652.13 353.53
Npm 583.67 188.23 134.03 409.15 111.06

Broadleaf 710.65 465.07 214.11 260.27 243.71

Table 8: Average run time in seconds for ORB-WP

Dataset ORB-LR-WP ORB-MLP-WP ORB-NB-WP ORB-OHT-WP
Tomcat 61.94 83.7 52.48 178.4
JGroups 43.68 52.73 34.36 88.44
Spring-Int 33.66 38.77 25.82 124.14
Camel 148.73 170.75 128.25 489.43

Brackets 74.29 80.32 58.32 249.94
Nova 274.3 315.55 296.86 851

Fabric8 51.89 54.4 36.05 193.94
Neutron 101.13 110.94 71.44 167.34
Npm 26.97 30.93 21.9 47.63

Broadleaf 53.15 64.34 59.42 227.93

Table 9: Average run time in seconds for BORB-CP

Dataset BORB-IHF-CP BORB-IRF-CP BORB-LR-CP BORB-MLP-CP BORB-NB-CP
Tomcat 1092.86 1870.01 1146.12 3132.75 227.69
JGroups 728.93 1087.48 415.02 823.94 130.83
Spring-Int 1266.79 696.39 702.49 1109.44 86.17
Camel 3377.94 3280.28 3631.75 5758.18 549.3

Brackets 2445.16 1849.88 1994.94 3211.3 1396.35
Nova 6895.04 5650.16 5985.78 9761.95 679.11

Fabric8 788.67 1568.29 1356.3 2592.88 189.01
Neutron 1231.14 2496.1 1678.75 4460.94 896.24
Npm 1107.54 272.53 908.56 278.32 103.25

Broadleaf 852.48 1710.54 1929.85 3027.45 223.94

Table 10: Average run time in seconds for ORB-CP

Dataset ORB-LR-CP ORB-MLP-CP ORB-NB-CP ORB-OHT-CP
Tomcat 262.85 394.22 134.9 1646.8
JGroups 206.96 331.56 83.73 710.85
Spring-Int 205.72 362.32 85.34 523.09
Camel 364.98 499.95 240.91 964.85

Brackets 217.11 361.34 137.68 1275.75
Nova 578.34 744.04 494.33 2986.95

Fabric8 207.88 336.39 105.32 692.34
Neutron 267.73 425.42 177.64 1402.65
Npm 175.24 296.97 68.26 617.2

Broadleaf 239.91 407.53 144.37 823.43
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(a) Runtime for BORB and ORB for WP data

(b) Runtime for BORB and ORB for CP data

Fig. 5: Computational Cost Analysis for BORB and ORB

it) several times to build the predictive model, whereas the online base learners
require only one pass through the training examples.

We can also observe that all CP approaches have higher computational cost
than their WP counterparts (note the different scale of the x-axis in Figures
5a and 5b). This is also confirmed by the Scott-Knott.BA12 results shown
in Table 11. For instance, ORB-OHT-CP has higher computational cost than
ORB-OHT-WP, whereas BORB-IRF-WP has higher computational cost than
BORB-IRF-CP. This is also expected, as CP training sets are much larger
than WP ones.
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Table 11: Runtime ranking of approaches based on the Scott-Knott test

Ranking Approach
1 ORB-NB-WP ORB-LR-WP
2 ORB-MLP-WP
3 ORB-NB-CP
4 ORB-OHT-WP BORB-NB-WP
5 BORB-NB-CP ORB-LR-CP
6 BORB-LR-WP ORB-MLP-CP BORB-MLP-WP
7 BORB-IRF-WP
8 BORB-IHF-WP
9 ORB-OHT-CP
10 BORB-IHF-CP BORB-LR-CP BORB-IRF-CP
11 BORB-MLP-CP

Overall, this shows us that offline learning is in general slower than on-
line learning, and that CP learning is in general slower than WP learning.
In practice, one would be interested in adopting an approach that has low
computational cost but high predictive performance. Therefore, we compared
the computational cost of the offline and online models that obtained the best
predictive performance.

The best offline approaches in terms of predictive performance are BORB-
MLP-CP, BORB-LR-CP and BORB-IRF-CP (Table 6). As they are all ranked
the same in terms of predictive performance, we pick the one with lowest
computational cost for this comparison. As both BORB-LR-CP and BORB-
IRF-CP have the same rank in terms of computational cost but have better
rank then BORB-MLP-CP (Table 11), we randomly pick BORB-LR-CP for
this analysis. The best online approach in terms of predictive performance was
ORB-OHT-CP (Table 6).

ORB-OHT-CP was ranked 9th in terms of computational cost, whereas
BORB-LR-CP was ranked 10th. The differences in computational cost varied
from 179.4 seconds (≈ 3 minutes for Spring-Integration) to 2998.83 seconds
(≈ 50 minutes for Nova) in total, as we can see from Tables 10 and 9. In other
words, ORB-OHT-CP was from 1.2 to 3.8 times faster. Such differences in
computational cost may be particularly relevant when conducting experiments
to choose an approach for adoption. To give an example, for the most time
consuming dataset Nova, ORB-OHT-CP required 2986.95 seconds (≈ 50 min)
for a single run. As such experiments require multiple runs to lead to more
reliable conclusions, one may opt for performing 30 runs, which would take
≈ 25 hours, just for this dataset. When using BORB-LR-CP, this amount of
time was approximately the double. If a company is performing experiments
with their projects to double check which approach would be better in their
context, they would need to perform similar experiments with several of their
past projects. If they can narrow down the set of approaches investigated
to include less computationally expensive ones, this could lead to significant



34 George G. Cabral et al.

savings in computational costs. Moreover, in the future, if one proposes an
approach to automatically tune hyperparameters over time, such approach
may also rely on running multiple models concurrently, again resulting in a
non-negligible computational cost.

That said, even though these are considerable computational costs when
conducting experimental studies to run, tune and compare multiple approaches,
when a given approach is chosen for adoption and we consider the duration of
the projects in practice (e.g., 10.7 years for Spring-Integration and 6.99 years
for Nova), this translates into a difference of only ≈ 0.05 to ≈ 1.18 seconds per
day. Therefore, both BORB-LR-CP and ORB-OHT-CP are feasible for adop-
tion in practice in terms of their computational cost per day, as illustrated in
Table 12.

Even though ORB-OHT-CP is ranked worse in terms of predictive per-
formance than BORB-LR-CP, the magnitudes of the differences in predictive
performance are not high. In particular, BORB-LR-CP’s predictive perfor-
mance was better with absolute differences in G-Mean varying from 0.13%
(for Broadleaf) to 2.93% (for Tomcat) with a median of just 1.96%. For one
dataset, ORB-OHT-CP had higher G-Mean than BORB-LR-CP (Fabric8).

Similar results would have been achieved if we had compared BORB-MLP-
CP against ORB-OHT-CP, but the magnitude of the differences in predictive
performance would have been slightly larger (BORB-MLP-CP obtained ab-
solute improvements of up to 3.68% over ORB-OHT-CP as shown in Section
7.2), and so would the differences in computational cost (ORB-OHT-CP runs
up to 5.97 times faster than ORB-OHT-CP). BORB-MLP-CP’s computational
cost would also be feasible for adoption in practice, being up to 3.83 seconds
per day.

Table 12: Computational Cost in Seconds for ORB-OHT-CP and BORB-MLP-
CP

Dataset
Duration

(year)
ORB-OHT-CP

Runtime Per

Year (ORB)

Runtime Per

Day (ORB)
BORB-LR-CP

Runtime Per

Year (BORB)

Runtime Per

Day (BORB)

Tomcat 6 1646.8 274.47 0.75 1146.12 191.02 0.52

JGroups 9.01 710.85 78.9 0.22 415.02 46.06 0.13

Spring-Int 10.7 523.09 48.89 0.13 702.49 65.65 0.18

Camel 6.65 964.85 145.09 0.4 3631.75 546.13 1.50

Brackets 14.25 1275.75 89.53 0.25 1994.94 140.00 0.38

Nova 6.99 2986.95 427.32 1.17 5985.78 856.33 2.35

Fabric8 7.68 692.34 90.15 0.25 1356.3 176.60 0.48

Neutron 8.17 1402.65 171.68 0.47 1678.75 205.48 0.56

Npm 10.18 617.2 60.63 0.17 908.56 89.25 0.24

Broadleaf 11.7 823.43 70.38 0.19 1929.85 164.94 0.45
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RQ3: The online CP approach ORB-OHT-CP was up to 3.8 times (5.97
times) faster than an offline CP approach BORB-LR-CP (BORB-MLP-CP)
that was top ranked in terms of G-Mean. Such differences in computational cost
may be particularly relevant when tuning and comparing approaches to decide
which ones to adopt in practice. However, once chosen, the computational
cost of both approaches can be considered feasible in practice, as their average
computational cost was up to 2.35 (3.83) second per day.

8 Threats to Validity

Internal validity: poor hyperparameter choices can affect the predictive per-
formance of machine learning models. To mitigate this threat, random search
was performed on a set of possible values for the hyperparameters of each ap-
proach and base learner based on the first 3000 training examples of the data
streams. It is worth noting that this leads to an overlap between the examples
involved in tuning and the examples used for testing in the beginning of the
data streams. Therefore, for all approaches, the predictive performance in the
beginning of the data streams is likely an overestimation of the predictive per-
formance that these approaches can achieve in practice. Verification latency
was also taken into account for all approaches respecting the chronology of
the software changes. Besides, each of the approaches with each dataset was
executed 30 times to mitigate the threats to internal validity.

Construct validity: the evaluation metrics used in this study were G-Mean,
Recall0 and Recall1. These are widely used metrics appropriate for class im-
balance learning [44] and were computed prequentially considering a fading
factor recommended in [16], that allows the model to give more importance to
the most recent data.

Statistical conclusion validity: Scott-Knott test with non-parametric boot-
strap sampling and A12 effect size were used to address conclusion validity.
This avoids concluding that approaches have differences even though the dif-
ference in the predictive performance is very small which is presented by in-
significant effect size.

External validity: this study used 10 open source projects from GitHub
repositories. These projects are based on different programming languages
and have different characteristics (e.g. number of commits per day, starting
date, number of modified files). The results obtained by this study may not
generalise for projects with different characteristics to those used in our study.
The conclusions about offline learning drawn by this study are based on the
proposed approach BORB. Other offline learning approaches may lead to dif-
ferent conclusions. Similarly, other offline base learners than the ones used in
our study may also lead to different conclusions.
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9 Conclusion

This study investigated whether offline JIT-SDP can offer any benefits in terms
of predictive performance when applied to online JIT-SDP scenarios com-
pared to online JIT-SDP approaches, and whether such benefits may come
at the cost of higher computational requirements. For that, we proposed a
new offline approach called BORB that can apply adaptive resampling to deal
with class imbalance in JIT-SDP when applied to online JIT-SDP scenarios.
These approach’s predictive performance and computational cost were com-
pared against the existing online approach ORB when using various different
base models on 10 open source projects.

Overall, our experiments suggest that, if one is focused on achieving the
best possible predictive performance, it is worth considering offline learning
through BORB using CP data as a possible choice, as it obtained slightly bet-
ter predictive performance than ORB approaches while having an acceptable
computational cost. If one is interested in saving computational cost, we rec-
ommend considering ORB using CP data with OHT as a possible choice, as
it obtained better computational cost with just slightly worse predictive per-
formance. Such saving in computational cost (and thus also in energy) may
be relevant if multiple of such approaches are required to be run concurrently,
e.g., when performing experimental studies to run, tune and choose among
multiple models.

Future work can consider how to further improve predictive performance
in JIT-SDP. In particular, the finding that offline models can be successfully
applied to online JIT-SDP scenarios through BORB opens up the possibility of
investigating other offline base learners such as deep learning approaches that
may lead to even better predictive performance. However, even though the
computational cost of the offline learning approaches adopted in the current
study was feasible for adoption in practice, other more complex offline base
learners such as deep learning may require a much higher computational cost,
such that future work could also consider how to improve the computational
cost of BORB. Future work could also evaluate BORB and ORB with addi-
tional projects. Finally, hyperparameter tuning in online JIT-SDP scenarios is
still an open issue. Novel approaches for automatically tuning such hyperpa-
rameters are desirable and may benefit from faster JIT-SDP models such as
ORB to be computationally feasible.

Data Availability Statements

A replication package can be found in the JIT-SDP-NN repository, https://
github.com/dinaldoap/jit-sdp-nn. The datasets generated during and/or
analysed during the current study are available in the JIT-SDP-DATA repos-
itory, https://github.com/dinaldoap/jit-sdp-data.

https://github.com/dinaldoap/jit-sdp-nn
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https://github.com/dinaldoap/jit-sdp-data
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