
manuscript No.
(will be inserted by the editor)

The impact of data difficulty factors on classification
of imbalanced and concept drifting data streams

Dariusz Brzezinski · Leandro Minku ·
Tomasz Pewinski · Jerzy Stefanowski ·
Artur Szumaczuk

Received: date / Accepted: date

Abstract Class imbalance introduces additional challenges when learning classi-
fiers from concept drifting data streams. Most existing work focuses on designing
new algorithms for dealing with the global imbalance ratio and does not consider
other data complexities. Independent research on static imbalanced data has high-
lighted the influential role of local data difficulty factors such as minority class de-
composition and presence of unsafe types of examples. Despite often being present
in real-world data, the interactions between concept drifts and local data difficulty
factors have not been investigated in concept drifting data streams yet. We thor-
oughly study the impact of such interactions on drifting imbalanced streams. For
this purpose, we put forward a new categorization of concept drifts for class imbal-
anced problems. Through comprehensive experiments with synthetic and real data
streams, we study the influence of concept drifts, global class imbalance, local data
difficulty factors, and their combinations, on predictions of representative online
classifiers. Experimental results reveal the high influence of new considered factors
and their local drifts, as well as differences in existing classifiers’ reactions to such
factors. Combinations of multiple factors are the most challenging for classifiers.
Although existing classifiers are partially capable of coping with global class im-
balance, new approaches are needed to address challenges posed by imbalanced
data streams.

Keywords class imbalance · concept drift · data difficulty factors · drift
categorization · stream classification

1 Introduction

Classification methods have impressively developed in the last decades. Although
most of the research in the field is concerned with batch learning from static data
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repositories, recent years have seen more and more studies directed at the analysis
of large data volumes dynamically generated in the form of data streams.

Compared to classifying static data, the task of learning from data streams
introduces limits on computational resources [23] and forces classifiers to act in
dynamic environments, where the data and target concepts change over time in a
phenomenon called concept drift [79]. Examples of real-life data streams include
spam categorization, weather predictions, and financial fraud detection [86]. Fur-
thermore, many practical applications make learning classifiers from streams even
more challenging by introducing additional data complexities. One such additional
challenge is class imbalance, a situation where at least one of the target classes,
called the minority class, is highly underrepresented in the data [34].

Separately, both concept drift and class imbalance have already received sub-
stantial research attention. Concept drift has been thoroughly analyzed in the
last two decades, in particular in the context of non-stationary data streams
[26, 18, 40, 33], resulting in drift taxonomies [79], detectors [26], evaluation tech-
niques [84, 85], and adaptive streaming classifiers [8]. Research on class imbalance
has also led to many novel methods, such as class resampling [21], specialized
classification methods [34] or dedicated classifier performance measures [11, 12].

Furthermore, several recent works on static imbalanced data highlight the im-
pact of local data difficulty factors on classification deterioration. These studies
have shown the influence of such factors as the decomposition of the minority
class concept into many sub-concepts [36, 37], class overlapping [29, 62], the pres-
ence of isolated rare groups of few minority class examples inside the majority
class region located far from the class boundaries [57, 55]. Importantly, it has
been shown that such data characteristics are common in real-world classification
problems [20, 46, 56, 58, 69, 81], and can be more influential to the overall classifier
performance than the global class imbalance ratio itself [37, 56].

Although class imbalance co-occurs with many practical data stream classifi-
cation tasks, the number of specialized proposals for imbalanced streams is still
relatively small, see e.g. [78]. Moreover, existing works on imbalanced stream clas-
sification mostly focus on re-balancing classes and reacting to changes affecting
the global imbalance ratio. These works do not consider the aforementioned lo-
cal difficulty factors manifested by changes in local class distributions and other
local drifts. However, imbalanced streams can also be affected by these difficulty
factors. For example, some minority classes can be fragmented into sub-concepts,
which appear and disappear with time, or change their positions in the attribute
space [38]. Moreover, drifting overlapping borderline regions between the minority
and majority classes have also been observed in tweet streams [42], introducing
additional difficulties for learning classifiers.

The conjunction of these data difficulty factors and concept drift may poten-
tially be more challenging for classifiers than the impact of each factor separately,
given that the classifier would need to adapt to local drifts based on very few
minority class examples. However, the role of streaming local difficulty factors
and local drifts has not been studied yet and is still an open research challenge.
We claim that better understanding of the interactions between concept drifts
and various difficulty factors in class imbalanced streams, will help diagnose and
remedy more complex difficulties in learning from real-world data streams. These
observations have led us to the following research questions:
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RQ1 What is the impact of different types of single local data difficulty factors and
single isolated drifts (i.e. drifts without the presence of other drifts in the data
stream) on the predictive performance of online classifiers? Is it possible to
identify which classifiers work better and when?

RQ2 What is the interaction between different types of local data difficulty factors
and global class imbalance? Which local factors or drifts are the most demand-
ing for classifiers at different imbalance ratios?

RQ3 Which complex scenarios integrating several data factors are the most harmful
for classification performance?

In this paper, we answer the presented research questions by carrying out a
comprehensive experimental study with five representative on-line classifiers ap-
plied to various synthetic and real-world data streams modelling the possible in-
teractions between the global class imbalance ratio, local data difficulty factors,
and concept drift. To the best of our knowledge, no such analysis has been previ-
ously done. To support our analysis and future work in the area, we also propose
a categorization of concept drifts for imbalanced data streams and provide a data
stream generator that takes into account all the presented factors. We pay special
attention to controlled experiments on a wide collection of synthetic datasets, as
these dissect the interactions between local data difficulties and classifier reactions
to drifts in particular moments in time. Our analysis highlights the main not-
yet-addressed challenges of imbalanced stream classification and discusses future
directions of research in the field.

2 Problem formulation

A data stream can be defined as a sequence of labeled examples S = {xt,yt}Tt=1,
where xt ∈ X , yt ∈ Y, X is the input space, Y is the output space, (xt,yt) ∼i.i.d.
pt(x,y), where pt(x,y) is the joint probability distribution underlying the data
stream at time stamp t, and T may be infinite. In this paper, we will consider data
streams where Y = {−,+}. Therefore, we will refer to y as a binary label y.

We will investigate data streams produced in non-stationary environments, i.e.,
data streams that may suffer concept drift. Formally, it is said that a concept drift
occurs if [23, 26, 40], for any two time stamps t and t+∆,

∃x : pt(x, y) 6= pt+∆(x, y).

In particular, we will look into data streams which suffer from class imbalance
at least during some period of time. A data stream is said to be imbalanced at a
given time stamp t if pt(−) � pt(+) or pt(+) � pt(−). The class that contains
less examples is called the minority class, whereas the remaining class is referred
to as the majority class. In non-stationary environments, pt(−) and pt(+) may
drift over time, therefore, the imbalance status of the problem may also change.
To quantify the amount of class imbalance in a stream (or part of a stream), we
will use the percentage of the cardinality of the minority class with respect to all
examples in the stream |Smin|/|S| · 100%.

We consider classification problems where unlabelled examples x are received,
and require their labels to be predicted. After some time, the true labels yt of such
examples are received and can be used to compose a training example (xt, yt).
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Many classification problems operate in such scenarios [23], with examples includ-
ing electricity price prediction, networks intrusion detection [49], software defect
prediction [13], and credit card assessment [65].

In order to solve such problems, we will adopt online supervised learning al-
gorithms. These algorithms work as follows [51]: assume that, at time stamp t, a
model ft−1 : X → Y created based on past examples from S is available, and a
new labelled example (xt, yt) becomes available. Online learning aims at building
an updated model ft : X → Y able to generalize to unseen examples of pt(x, y),
based on ft−1 and (xt, yt).

This online procedure differs from the so called chunk learning algorithms [40]
in that it learns each training example as soon as it is received, rather than waiting
for a whole chunk (block) of examples to arrive before updating the predictive
model or its evaluation. This avoids (1) potential delays in reacting to concept
drift, as there is no need to wait for a whole chunk of data before starting to react to
drifts, and (2) the need for choosing a chunk size, which is particularly challenging
in non-stationary environments [49]. It is also more adequate for applications with
high time and memory constraints than typical chunk-based approaches, as each
training example is processed once and only once.

3 Related work

3.1 Concept drifts

There are several different ways to categorize and characterize concept drifts in
classification problems. A common way is to refer to the components of the joint
probability distribution that are affected by the drift. The joint probability distri-
bution can be written as p(x, y) = p(x|y)p(y). Therefore, a concept drift affects
one or both of the following components [26, 78]:

– prior probabilities of the classes p(y) and
– class conditional probabilities p(x|y).

A joint probability distribution can also be written as p(x, y) = p(y|x)p(x). There-
fore, a concept drift also affects one or both of the following components: [26, 18]:

– unconditional probability distribution p(x) and
– posterior probabilities of the classes p(y|x).

A concept drift affecting p(x|y) or p(y|x) thus affects the relationship between the
input and output of the problem. A concept drift affecting only p(y) or p(x) does
not affect this relationship. In particular, it does not affect the true underlying
decision boundaries of the problem.

In terms of the joint probability distribution, drifts can be further characterized
by their severity or magnitude. Severity and magnitude are equivalent criteria that
have been defined as the amount of changes in the joint probability distribution
caused by a drift [50], and as the degree of difference between two points of time
[79], respectively. Several different distance measures can be used to characterize
drifts according to their severity or magnitude [32, 64, 50, 80], such as Kullback-
Leibler Divergence, Hellinger Distance and Total Variation Distance. The Hellinger
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Distance and the Total Variation Distance have the advantage of being symmetric.
As the Total Variation Distance is more efficient to compute, it has been favoured
in the literature [80]. It is defined as follows, where Z is a vector of discrete random
variables and dom(Z) is the domain of Z [80, 44]:

σt,u(Z) =
1

2

∑
z∈dom(Z)

|Pt(z)− Pu(z)|.

However, calculations of Hellinger Distance or the Total Variation Distance
for continuous random variables make strong assumptions about the probability
distributions, and so discretization of continuous random variables is recommended
when using these metrics [80].

Drifts affecting p(y|x) have been referred to as severe [50] or full-concept [79]
drifts if they change the p(y|x) of the whole input attribute space, whereas they
have been referred to as intersected [50] or subconcept [79] drifts if they change
the p(y|x) of only part of the attribute space.

Another common way to categorize drifts is based on their rate of change
[18], also known as speed [50]. Typically, drifts are categorized as abrupt (also
called sudden) if they cause sudden changes, or gradual if their underlying joint
probability distribution slowly evolves over time [18, 64]. Slow evolution can refer
to a period of time where two distinct distributions co-exist in the problem, with
the new distribution slowly taking over the old one [26, 50]. It can also refer to a
distribution that continuously and incrementally changes by limited amounts over
a period of time [64].

Other criteria such as recurrence, frequency, predictability and cyclical be-
haviour have also been used to categorize and characterize sequences of concept
drifts [50, 18, 26], rather than single concept drifts. It is worth noting that several
criteria can be used together to provide a richer description of concept drifts. For
example, a drift may be categorized as affecting the posterior probabilities of the
classes, being severe and gradual at the same time. However, none of the existing
criteria address the problem of changes concerning local and global data difficulty
factors of imbalanced streams.

3.2 Class imbalance and data difficulty factors

Research on class imbalance has resulted in numerous data preprocessing or algo-
rithmic methods for static data; see reviews in [6, 20, 34]. Moreover, recent studies
identified key data properties, which make imbalanced learning difficult. One such
property is the global imbalance ratio, defined as the percentage of examples in the
dataset that belong to the minority class (see Section 2). However, it has also been
observed that strong class imbalance does not always deteriorate classification per-
formance. It has led researchers to identify other data characteristics, called data
difficulty factors or data complexities, as the sources of classifiers deterioration.
Following the literature on static imbalanced data [20, 29, 46, 37, 56, 69], these
difficulty factors include:

1. the decomposition of the minority class concept into several sub-concepts,
2. the presence of small, isolated groups of minority examples located deep inside

the majority class region;
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3. the effect of strong overlapping between the classes,

The second factor above corresponds to the so called rare cases, which are
defined as isolated, very small, groups of minority examples (e.g., containing 1–3
examples) located more deeply inside regions of the majority class [55]. This is
different from the first factor, which refers to the decomposition of the minority
class into several larger sub-clusters containing more examples than rare cases
and corresponding to sub-concepts of the minority class [36]. Both of these may or
may not have overlapping between the classes, i.e., the third factor is not mutually
exclusive with the first two factors. In particular, rare examples may be very near
the examples of the majority class or mixed with them, presenting an overlap, or
there might be no overlap. Similarly, minority class sub-concepts may or may not
present overlaps near their decision boundaries [20].

Note that such difficultly factors deteriorate classification performance also in
standard, balanced classification tasks. However, when these data complexity fac-
tors occur together with class imbalance, the deterioration of classifier performance
is amplified and it affects mostly (or even only) the minority class [57].

Experimental studies on the role of the aforementioned factors have shown that
data complexities occur in most static imbalanced datasets, and may play a key role
in explaining the difference between the performance of various classifiers [56, 68].
In particular, proper handling of overlapping between classes and unsafe types of
minority examples inspired recent proposals of new informed pre-processing [4],
rule induction [54] and bagging ensemble generalizations [3], which outperformed
many well known methods.

However, research on these local data difficulty factors has concerned mostly
static data and there are few attempts to study them in data streams. In [76] data
streams with different types of examples have been considered, but only in the
scenarios with stationary underlying distributions. Other research concentrated
either on classifier modifications [78, 39] or evaluation measures [10]. To the best
of our knowledge, no existing work performed a comprehensive study of how con-
cept drifts affecting local data distributions impact the predictive performance of
various online class imbalance learning algorithms. There is also a lack of catego-
rization and characterization of drifts that take such local data distributions into
account, making systematic studies of the impact of such drifts difficult.

Below we further discuss the aforementioned difficulty factors and briefly de-
scribe their characteristics.

3.2.1 Decomposition of the minority class into sub-concepts

Experimental studies with various real-world imbalanced datasets show that the
minority class usually does not form a homogeneous region (single concept) in
the attribute space, but is often scattered into smaller sub-clusters (sub-concepts)
spread over the space (Fig 1b) [20, 34, 56, 81]. Japkowicz et al. named this
phenomenon within-class imbalance in contradiction to the global imbalance be-
tween classes. These authors initiated studies on the impact of class decomposi-
tion on performance of popular classifiers over several synthetic datasets [36, 37].
In their experiments the cluster forming the minority class distribution, initially
surrounded by the majority class examples, was successively split into several
sub-clusters, which were separated by the majority class regions. Their results
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demonstrated that increasing the split of the minority class was more influen-
tial than changing the global imbalance ratio, in particular for a smaller number
of examples. This was also independently studied for other more complex class
distributions [62, 68]. According to Japkowicz this may be associated with, so
called, small disjuncts, which originally referred to classification rules covering
too few examples, contributing to classification errors more than rules covering
more examples. The impact of small disjuncts arises particularly for the minor-
ity class. Identification of the minority class decomposition in real world static
data influenced several studies on their discovery and improved resampling tech-
niques or modifications of algorithms such as, e.g., cluster-based over-sampling
techniques [36, 69].

(a) Safe minority
class

(b) Sub-clusters (c) Borderline
region

(d) Rare cases and
outliers

Fig. 1: Minority class distributions with different difficulty factors. Minority exam-
ples depicted as filled (teal) circles, majority examples as hollow (white) circles.

3.2.2 Presence of rare minority examples

Occurrences of isolated minority examples located deeper inside regions of the
majority class was identified as another difficulty factor. These are small “islets”
of few examples (usually pairs, triplets) located quite far from the class boundaries
(Fig 1d). Following [55], they are called rare cases and due to their rarity they are
different from larger sub-concepts discussed in Section 3.2.1. As the minority class
is under-represented they cannot be treated as noise [41]. Moreover, studies such
as [56] have proved that if handled appropriately, e.g. by informed pre-processing,
rare examples can be used to improve the recognition of the minority class.

Note that also single minority examples can be located inside the minority
class or empty space region, playing the role of outliers [55]. However, their cor-
rect recognition is extremely difficult and most existing specialized methods treat
outliers as noise. Therefore, in further experiments with imbalanced streams we
focus our interest on rare cases only.

3.2.3 Overlapping between minority and majority classes

Other researchers considered difficulties linked to high overlapping between regions
of minority and majority class examples in the attribute space (e.g., Fig. 1c). This
difficulty factor is present in many real-life data and has been already identified
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in balanced classification problems. However, experimental studies have shown
that its role is even more influential for imbalanced data and the minority class
in particular [29, 68]. For instance authors of [29] have shown that an increasing
of overlapping region degraded performance of six popular classifiers much more
than changing the imbalance ratio. Furthermore they observed the higher impact
of the local imbalanced ratio in the overlapping region. Other researches also have
shown that usefulness of various resampling methods depends on the amount of
overlapping and that have to be dealt with appropriately while constructing new
methods [46, 56].

3.2.4 Types of minority examples with respect to their local characteristics

A related view on data difficulty factors leads to distinguishing different types of
minority examples based on the number of minority and majority class examples
near them [41, 43, 55]. One of the approaches to distinguishing types minority
examples [55, 56] analyzes class labels of examples in their local neighborhood
defined by either by k-nearest neighbours or kernels. In this approach, an example
of a given class is labeled as safe if most of its neighbours also belong to this class.
If the numbers of labels from both classes is similar, then the example is labeled
as a borderline one. If all of its neighbours are from opposite class the example is
treated as an outlier, otherwise it is a rare case. The advantage of adopting this
definition of safe, borderline, outlier and rare examples is that it is possible to
determine the proportion of minority class examples of each of these types in real
world data sets [55, 56].

3.3 Cluster transitions

Existing work on data stream clustering has attempted to model and monitor the
evolution of clusters (cluster transitions) in data streams [66, 67]. These transitions
can be external or internal transitions from a given time step ti to another time
step tj , where j > i. An external transition of a given cluster can be categorised as
a split into multiple clusters, cluster disappearance, emergence or absorption by
another cluster. An internal transition of a given cluster can be a size transition
where the cluster shrinks or expands, a compactness transition where the cluster
becomes more compact or diffuse, or a local transition where the center or the dis-
tribution of the cluster changes. Even though the work presented in [66, 67] is not
about concept drift in classification problems, it can potentially inspire new work
on class imbalanced data streams, in view of the data difficulty factors discussed
in Section 3.2. In particular, concept drifts such as decomposition of the minority
class concept into several sub-concepts could potentially be monitored and mod-
elled from a cluster perspective, where a given sub-concept could potentially be
modelled by a cluster of minority class examples.

3.4 Classifiers for imbalanced data streams

Compared to the number of machine learning approaches designed to tackle bal-
anced data streams [26, 18, 40, 33], there are relatively few approaches aimed
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to tackle class imbalanced data streams [78]. In both settings, different types of
concept drift require different strategies to be effectively and efficiently handled.
Active approaches, which rely on a concept drift detector to trigger adaptation,
tend to work well for abrupt drifts, but may struggle with gradual drifts. Passive
approaches, which continuously update the learning system with incoming data
in an attempt to tackle concept drift, are typically well suited for gradual drifts.
In this section, we discuss classifiers for imbalanced data streams from these two
perspectives. We give emphasis to approaches that perform online learning, which
are the focus of this work, and only briefly discuss chunk learning algorithms.

Recursive Least Square Adaptive Cost Perceptron (RLSACP) [30] is a per-
ceptron-based online passive approach. It uses a loss function that is both cost-
sensitive and time-decayed, to tackle both class imbalance and concept drifts af-
fecting p(y|x), respectively. The cost associated with each class can vary over time,
enabling these approaches to also cope with concept drifts affecting p(y). The On-
line Neural Network (ONN) [31] is a similar approach, however, it assumes a fixed
imbalance ratio and cannot cope with concept drifts affecting p(y). Finally, En-
semble of Subset Online Sequential Extreme Learning Machine (ESOS-ELM) [52]
is a perceptron-based passive-active learning approach that can operate in chunk
or online mode, so long as an initialization chunk is provided. It trains an ensemble
of ELMs based on a resampling technique to deal with class imbalance. Each ELM
is associated with a weight that is updated over time. ESOS-ELM uses G-mean,
which is an appropriate performance metric for class imbalanced problems, to up-
date the weights over time. The ensemble is reset upon a threshold-based concept
drift detection. ESOS-ELM also maintains a memory of batch models. Old models
can be recovered from the memory to deal with recurrent concepts.

Oversampling (OOB) and Undersampling (UOB) Online Bagging [76] are two
online passive resampling-based ensemble approaches that can be trained with
any type of online base classifier. They are extensions of the Online Bagging [60]
algorithm, which uses each incoming training example to update each classifier
k times. The value k is drawn from a Poisson(1) distribution for each classifier
independently. The use of the Poisson(1) distribution enables Online Bagging to
be a good approximation of Breiman’s Bagging [7] algorithm. However, Bagging
is not prepared to handle class imbalance. Instead of using Poisson(1), OOB
and UOB use Poisson(λ), where λ is set as p̂majt /p̂mint for OOB and p̂mint /p̂majt

for UOB, where p̂majt and p̂mint are the estimated prior probabilities of the class
considered to be a majority and a minority at time t, respectively. This will result in
oversampling being applied to tackle class imbalance in OOB, and undersampling
in UOB. The probabilities are estimated based on a time-decayed function. This
enables OOB and UOB not only to deal with class imbalance, but also to deal with
concept drifts affecting p(y). These approaches can be generalized to multi-class
settings [77] and combined with drift detectors to become active approaches that
tackle concept drifts that affect p(y|x) [78].

A few different concept drift detection methods have also been proposed for
class imbalanced data streams. They monitor performance metrics suitable for
class imbalanced problems and trigger when the metric significantly deteriorates.
Drift Detection Method for Online Class Imbalance learning (DDM-OCI) moni-
tors the time-decayed Recall on the minority class [75], Linear Four Rates (LFR)
monitors a time-decayed confusion matrix, whereas Prequential Area Under the
Curve Page Hinkley (PAUC-PH) monitors the area under the ROC curve.
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Several chunk-based approaches have been proposed based on the storage of
old minority class examples to help overcoming class imbalance [1, 27, 28, 82, 14,
15, 35, 45]. Some of these approaches train components by combining all minority
class examples seen so far with majority examples from the most recent chunk
[27, 28, 82, 45]. Other approaches filter out past minority class examples based on
their similarity to the minority class examples of the current data chunk [14, 15], or
based on their age [35]. Some other chunk-based approaches tackle class imbalance
by using standard offline re-sampling techniques to create a new offline learning
classifier for each new data chunk [17, 47]. Yet another recent proposal promotes
a reinforcement mechanism to increase the weights of the base classifiers that
perform better on the minority class and decrease the weights of the classifiers
that perform worse [83].

Contrary to all the aforementioned algorithms which focus on global class
imbalance, few data stream mining studies attempted (explicitly or implicitly) to
tackle local difficulty factors. Some works have proposed approaches that attempt
to deal with local data distributions, however, none of them took into account
drifting difficulty factors. For example, Lyon et al. [48] discussed the problem of the
minority class decompositions into smaller sub-clusters, and claimed that Hellinger
Distance Trees may better classify such data than standard VFDT. The role of
the class decomposition was also considered in a chunk-based ensemble SCUT-DS
[59]. Moreover, Ren et al. [63] proposed a clustering-based oversampling technique
to reduce the risk of increasing class overlapping. Finally, an attempt to handle
several types of difficulty factors was recently presented in [39], where the difficulty
of incoming examples is exploited in the online learning of a cost sensitive tree. As
more difficult examples are presented more times during training, the trees shift
towards concentrating on more difficult examples.

4 Proposed categorization of concept drifts for class imbalanced data

As discussed in Section 3.2, local data difficulty factors strongly influence the abil-
ity of classifiers to cope with static class imbalanced data. In particular, depending
on the underlying distribution of the minority examples, standard classifiers with
no strategies to deal with class imbalance can perform either quite well or very
poorly. Therefore, it is likely that the extent to which the class imbalance and
concept drift issues are exacerbated when combined together in non-stationary
environments also depends on the underlying distribution of the minority class,
and how it changes over time. The conjunction of local data difficulty factors and
concept drift may be potentially more challenging for classifiers than the impact
of each of these factors separately when dealing with non-stationary data streams.

However, existing literature on categorization and characterization of concept
drifts in streaming classification problems does not take these local data difficulties
into account. Recall that most research about imbalanced streams is concerned
with the role of the global imbalance ratio only, either for static or changing class
proportions. Given the major role that local data difficulty factors may play in class
imbalanced data streams, existing concept drift categorizations may not be enough
for evaluating class imbalance learning in non-stationary environments. They may
not capture all aspects that make a concept drift particularly challenging or easy
to solve. Therefore, we propose an extended concept drift categorization that takes
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local data difficulty factors into account. This extended categorization should open
up the path for further research on classifiers for class imbalanced data streams in
non-stationary environments, enabling systematic studies under different relevant
drifting conditions.

We will concentrate on extending the criteria for categorizing and characteriz-
ing single concept drifts. It is worth reiterating that any drift can be categorized
and characterized using several different criteria at the same time. In particular,
both existing criteria (e.g., those mentioned in Section 3.1) and our proposed cri-
teria (Sections 4.1 and 4.2) can be used together to describe drifts. The proposed
categorization is graphically depicted in Fig. 2.

Fig. 2: Imbalanced stream drift categorization. Each criterion (left column) is ac-
companied by a list of possible drifts (right column). The minority class is depicted
as filled (colored) circles, the majority class as hollow (white) circles.
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4.1 Proposed drift criteria for general problems

4.1.1 Locality of drift region

We start the proposed categorization by distinguishing the locality of the data
streams. For that, we need a definition of a “local region”, which makes use of the
definition of a “partitioning” shown below:

Definition 01 (Partitioning) Consider a bounded d-dimensional attribute space
X and output space Y and a given posterior probability distribution p(y|x), where
x ∈ X and y ∈ Y. A partitioning P of X is a set of bounded regions R1, · · · ,Rn
such that (a) ∀i 6= j : Ri ∩ Rj = ∅; (b) ∪ni=1Ri = X ; (c) ∀y ∈ Y, ∀x, x′ ∈ Ri :
|p(y|x) − p(y|x′)| < τ , where τ ∈ R is a threshold; and (d) all examples that can
possibly be sampled from a given region Ri are connected to each other through a
d-dimensional grid, where the granularity of this grid is infinitely small for real
attributes, and is discrete for discrete attributes.

For example, in Fig. 2, the four plots under the heading “Drift region” are com-
posed of two regions each, whereas the right side plot under the heading “Class
composition” is composed of four regions. The criterion (d) ensures that a region
is not formed by disconnected components. For instance, the three blue regions
in the right side plot under the heading “Class composition” are three different
regions, rather than a single region.

The definition above has been partly inspired by [66]’s definition of clustering.
However, it differs in several aspects. First, our partitioning is a partitioning of
the attribute space, whereas clustering is about clusters of examples sampled from
a given unconditional probability distribution. Second, we include criterion (c),
which is absent from the clustering definition. This criterion is important because
we are dealing with classification problems, and so a given region must have the
vast majority of its examples associated to a given class. And third, we consider a
grid that binds together all examples that can be possibly sampled from the region.
This grid means that a given region cannot be composed of several disconnected
areas of the attribute space. Any neighbourhood operator can be used to connect
points in a grid. For instance, for a 2-dimensional space, the classic Moore or Von
Neumann neighbourhoods [73] could be adopted.

Definition 02 (Local Regions) Given a partitioning P, a region Ri ∈ P is a

local region if V (Ri) << V (X ), where V ()̇ is the geometric volume.

For example, in Fig. 2, the orange regions in the two plots under the heading
“Drift region: Global” are not local regions, whereas the orange regions in the two
plots under the heading “Drift region: Local” are local regions.

Even though existing literature [79, 38, 24, 50] has considered concept drifts
that affect the probability distributions associated with the whole problem space,
or to part of the problem space, it has not taken locality into account. Specifically,
when the drifts affect only part of the problem space, existing studies have not con-
sidered whether these drifts affect a local region of the space or not. Such locality
is a general criterion, but is likely to be particularly important for characterizing
drifts in class imbalanced data streams. For instance, if we have drifts that affect
small portions of the space associated with the minority class, this may be very
difficult to track.



Impact of data difficulty factors on drifting imbalanced data streams 13

Based on the locality of the region affected by the drift, a concept drift can be
categorized as local region drift, global drift or global-local region drift (Fig. 2). A
local region drift is a concept drift that affects the joint probability distribution
(p(x, y)) of one or more local regions. If the drift affects regions of the space that
are not local regions, it is referred to as a global drift. An example of local region
drift in a real world data stream can be found in Fig. 6 of Sun et al.’s work [71],
whereas several synthetic data streams widely adopted by the data stream mining
community (e.g., Hyperplane [70]) present global drifts. A global-local region drift
affects both specific local regions and non-local regions of the input attribute space.

When a drift is a local region drift, other criteria for characterizing and cate-
gorizing drifts such as severity and rate of change can be used to either describe
the changes suffered by each local region separately, or to describe the changes as
a whole. For example, the severity of the change caused by a local drift to a given
local region can be characterised by the volume of the intersection between the
old and the new position of this local region. A smaller/larger intersection means
higher/lower severity. And, according to the rate of change, a certain local region
may be changing slowly, while others may be changing fast. Or, all regions may
be changing fast. The combination of the locality criterion with the rate of change
for a specific local region may be a particularly useful combination of criteria to
describe drifts. For instance, a given local region may change incrementally in a
way that this region “moves” through the attribute space. Local region drifts can
also be further characterized by the number and size of the affected local regions.

4.1.2 Class composition

Class composition refers to how examples of each class are spread over the input
attribute space. Specifically, it corresponds to checking whether the class exam-
ples belong to a homogeneous region or not. A homogeneous class composition
means that examples of the class are concentrated in a single local region (see the
earlier discussion on single minority concepts in Section 3.2.3). A heterogeneous
class composition means that examples of the class are spread over multiple lo-
cal regions. Note that here we refer to local regions that are sub-concepts larger
than regions of rare minority examples (rare example types are considered in a
subsequent criterion). Up until now, class composition has been mainly considered
in the literature on static imbalanced data, where it referred to the split of the
minority class into several rare sub-concepts [37, 69].

Such minority class decomposition was found to have a greater effect on clas-
sification performance than the global imbalance ratio [36, 37, 69, 81]. Given the
impact that class (de-)composition can have on the difficulty of class imbalanced
problems, it should also be considered in data streams. This was reflected in recent
studies, which demonstrate that the detection of sub-concepts in streaming chunks
can improve classifier performance [63]. Furthermore, class composition may also
change over time in real world problems. For example, in trend topic data streams
several distinct groups of opinions on the same topic may appear as time goes
on [38]. Changes of example clusters have also been observed in unsupervised
streams [66, 67]; see earlier discussion in Section 3.3.

We propose to use class composition as a general criterion to describe concept
drifts. We refer to drifts that break down homogeneous classes into heterogeneous
ones as class split drifts, drifts that merge several different local regions together
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as class merge drifts, and drifts that both break down and merge local regions
as class split-merge drifts (Fig. 2). Such drifts can be characterized by a list of
local regions with their corresponding p(y|x) before and after the drift. Evidence
of class merge drifts in real world problems can be found in [71], suggesting that
class split type of drifts may also occur in real world problems.

4.2 Proposed drift criteria for class imbalanced problems

4.2.1 Imbalance ratio

This criterion corresponds to the prior probabilities of classes, representing the
proportion of examples expected to be received from each class. Previous studies
[78, 76] have taken this criterion into account when designing experiments to evalu-
ate learning approaches for class imbalanced data streams. However, this criterion
has not been explicitly emphasized as part of a concept drift taxonomy before.

We consider two situations: static imbalance ratio if the class proportions do not
change over time, and dynamic imbalance ratio if the imbalance ratio changes. For
example, it is known that the imbalance ratio in problems such as software defect
prediction [13] and tweet topic classification [71] can vary over time, requiring
specific learning algorithms able to cope with such variations. It is even possible
for the role of the minority and majority classes to swap [13, 71], i.e., for the
majority to become a minority and vice-versa (Fig. 2).

The above-mentioned drifts can be characterized by a vector containing prior
probabilities of each class before and after the drift. Such a description can be
further generalized for the case of multi-class classification.

4.2.2 Distribution of minority class examples with respect to their types

As discussed in Section 3, the distribution of different types of minority class
examples can influence classifiers learning from imbalanced data. Following the
method from [55, 56] the type of the minority example can be identified based on
the analysis of class labels of other examples in its local neighbourhood. Depending
on the number of examples from the opposite class, minority examples are labeled
as safe, borderline, rare or outlying [56], as explained in Section 3.2.4. In case of
streams, this analysis could be done with neighbours inside a sliding windows.

Although types of examples have been used to improve classifiers for static
data, they were rarely considered in data streams [39, 42]. However, it has been
shown that the number of minority class examples of particular types may vary
over time in real-world problems, such as the analysis of tweet streams [42]; more
examples of challenging and drifting class distributions in real-world streams will
be presented in Section 5.

Following the above discussion, streams can be categorized as ones with static
or dynamically changing example type distributions.

Minority class example type distribution drifts can be characterized through
a vector containing the proportion of the minority examples belonging to safe,
borderline, rare and outlier examples before and after the concept drift. It is worth
noting that these drifts cover changes of single example types, such as increasing
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the proportion of borderline examples at the cost of safe examples, as well as
changes of many types at once (Fig. 2).

5 Experimental evaluation of the influence of data factors and drifts
on online classifiers

5.1 Experimental Aims and Setup

We experimentally study the impact of the discussed data difficulty factors and
drifts on the performance of selected online stream classifiers. Compared to earlier
studies on imbalanced streams, where only global factors like changes of the imbal-
ance ratio were considered, here we pay more attention to local data characteristics
and local drifts.

Our series of experiments is organized along the following research questions,
which have been preliminary introduced in Section 1:

RQ1 What is the impact of different types of single data difficulty factors and iso-
lated, single drifts on the predictive performance of selected online classifiers?
Is it possible to identify which classifiers work better and when?

RQ2 What is the interaction between the different types of local data factors and
global class imbalance? Which local factors or drifts are the most demanding
for classifiers at different imbalance ratios?

RQ3 Which complex scenarios integrating several data factors and drifts are the
most harmful for classification performance? Is it possible to determine which
components (single factors or drifts) in these scenarios are the most influential?

In order to examine these issues, we carried out most of the experiments in a
controlled framework based on synthetic generated data. Using a synthetic data
stream generator, each data factor can be modeled and parametrized according
to different planned scenarios. This is important because it allows us to obtain a
detailed understanding of when and under what circumstances classifiers work well
or fail. Moreover, we also supplement this study with experiments on real-world
imbalanced streams, where most of the considered data difficulty factors of drifts
were identified.

For the purposes of the synthetic data experiments, we have implemented an
imbalanced data stream generator. A detailed description of the generator is given
in Section A of the supplementary materials.1 The source code of a MOA [2]
compatible implementation of the generator is available at: https://github.com/
dabrze/imbalanced-stream-generator.

The synthetic data stream characteristics are controlled by modifying param-
eters referring to the criteria proposed in this paper. The list of parameter values
(stream elements) used to create streams for this study is listed in Table 1. The
generated streams where named according to a naming convention of their ele-
ments (Split, Move, Merge, Borderline, Rare, Im, StaticIm), introduced in Section
B of the supplement.

1 Supplementary materials at: https://doi.org/10.6084/m9.figshare.12098127.v2

https://github.com/dabrze/imbalanced-stream-generator
https://github.com/dabrze/imbalanced-stream-generator
https://doi.org/10.6084/m9.figshare.12098127.v2
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Table 1: Elements with their parameters used to generate streams

RQ Stream parameter (element) Used parameter values

Streams with single factors or drifts

RQ1

Class composition (CD) {Split[N], Move[N], Merge[N]: for N ∈ {3, 5,
7}}

Example types (TD) {Borderline[N], Rare[N]: for N ∈ {20, 40, 60,
80, 100}}

Imbalance drift; minority ratio
after drift (ID)

{Im[N]: for N ∈ {50%, 40%, 30%, 20%, 10%,
5%, 3%, 2%, 1%}}

Static imbalance; minority ratio
throughout the entire stream (SI)

{StaticIm[N]: for N ∈ {50%, 40%, 30%, 20%,
10%, 5%, 3%, 2%, 1%}}

Combined stream scenarios

RQ2,
RQ3

Class composition (CD’) {Split[N]: for N ∈ {1, 5}}

Example types (TD’) {Borderline[N], Rare[N], Border-
line[M]+Rare[M], for N ∈ {20, 40, 60,
80, 100} and M ∈ {20, 40}}

Imbalance drift (ID’) {Im[N]: for N ∈ {50%, 10%, 1%}}

Static imbalance (SI’) {StaticIm[N]: for N ∈ {50%, 10%, 1%}}

Fig. 3: Schematic of the experimental setup.

To answer research questions RQ1–RQ3, a comprehensive set of data streams
was generated as follows:

1. Streams with single factors or drifts (RQ1, discussed in Section 5.2)
– First we modeled the occurrence of a single element (data factor or drift)

in isolation from other data stream aspects. All single values of elements
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from lists CD, TD, ID or SI were used to generate data streams. If drifts
were modeled (CD, TD, ID), then the stream starts as fully balanced, with
only safe examples, and one cluster of ‘minority’ examples surrounded by
examples from the ‘majority’ class.

– Moreover, we considered imbalance ratio changes, where we started from
a static imbalanced stream and generated streams corresponding to all
combinations of ratio values from the product SI × ID.

2. Streams with pairs of elements (RQ2, Section 5.3)
– Streams with global imbalance were generated as pairs of elements from

(SI’ or ID’) x (TD’ or CD’)
– Combinations of values from the product TD’ × CD’

3. Complex scenarios consisting of triples or more elements (RQ3, Section 5.4)
– The set of streams was created as a Cartesian product: SI’ × ID’ × CD’
× TD’, excluding streams with mutually exclusive characteristics such as
StaticIm1 and Im1, and streams where the global share of minority class
was increasing with time.

The diagram summarizing these generation scenarios, their relations to re-
search factors and corresponding categories is presented in Fig. 3.

The above described scenarios resulted into generating 385 synthetic streams
(224 static and 161 drifting). For their full list, see the online supplementary ma-
terials. All the generated data streams consisted of 200,000 examples. If a concept
drift is present in a stream, it spans from example number 70,000 to 100,000. In
case of combined drift, they occur all together in this time period. If the imbalance
ratio is not directly stated, the stream is balanced. If no minority class composition
or examples type details are given, the minority concept is defined as a singular
cluster of safe-type examples surrounded by majority class examples uniformly
distributed in the attribute space.

In addition to synthetic streams, four real-world datasets [5, 72, 74, 53] with
various imbalance ratios and local data difficulty factors were used. The real
streams range from 8,000 to 50,000 examples and were evaluated as difficult for
learning classifiers in previous studies [42, 9]. Reproducible experimental scripts
are available at: https://github.com/dabrze/imbalanced-stream-generator.

The experiments compare the predictive performance of five online classi-
fiers quite often used in the related literature: Oversampling Online Bagging
(OOB) [76], Undersampling Online Bagging (UOB) [76], ESOS–ELM (ESOS) [52],
Online Bagging (OB) [61], and Hoeffding Tree (VFDT) [19]. OOB, UOB and ESOS
were selected as representative specialized classifiers for imbalanced streams which
use different strategies and are based on different methods. OB represents a non-
specialized data stream ensemble exploiting online bagging (which was an inspi-
ration for OOB and UOB). VFDT serves as a reference for single classifiers.

All ensembles used 15 Hoeffding Trees as component classifiers. For OOB,
UOB, OB and VFDT we used MOA implementations with default parameter val-
ues suggested by the algorithms’ authors. Note that we used the standard version
of VFDT classifier2 without any drift-related mechanisms. ESOS was implemented
for this study and, as proposed by the algorithm’s authors, utilized artificial neu-
ral networks with 70 hidden neurons. The size of the initialization batch for the
OS-ELM classifiers in ESOS was set to 100 examples with an evaluation period

2 Trees were induced with the moa.classifiers.trees.HoeffdingTree class from MOA

https://github.com/dabrze/imbalanced-stream-generator
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of 1000 examples, and the drift detection threshold coefficient set to 0.9, as rec-
ommended in [52]. With the exception of ESOS-ELM, which by design employs a
basic performance-tracking drift detector, the other considered classifiers are not
integrated with any drift detectors as the ones provided by MOA are not suitable
for dealing with class imbalance and are thus outside the scope of our experimental
study.

The classifiers were evaluated using two performance measures — Recall and
G-mean. Recall (also called Sensitivity or True Positive Rate – TPR) is the cor-
rect recognition rate for the minority class. G-mean is the geometric mean of
recall (TPR) and specificity (True Negative Rate – TNR), defined as Gmean =√
TPR · TNR. Recall and G-mean were selected from a larger list of measures

[11, 34] mainly due to their complementary nature and easy interpretation. Recall
focuses only on the minority class, allowing us to see when the recognition of the
minority class drops. In contrast, G-mean captures the balance between recogni-
tion ratios of both classes. Therefore, by analyzing both measures it can be noticed
whether one class was recognized more often at the cost of the other. For example,
if Recall improves but G-mean deteriorates, this means that the recognition of the
minority class has improved at the cost of the recognition rate of the majority
class. Moreover, G-mean is skew-invariant, meaning that G-mean’s interpretation
remains the same for all possible class imbalance ratios [11, 12], being particularly
relevant for studying drifting imbalance ratios.

Both Recall and G-mean were calculated prequentially [25] using a sliding
window of 1000 examples. Each analyzed stream was visualized as a line plot with
the number of processed examples on the x-axis, value of Recall/G-mean on the
y-axis, and the drift region plotted over a gray background. To increase readability,
the line plots were smoothed using a moving average of 20 data points.

Moreover, measure values averaged over entire streams (mean performance
values) are presented in a tabular form, which constituted the base for carrying
out a ranked Friedman test [16] to compare classifier performance. Due to the
large number of experiments, here we only present the most representative plots;
the reader is referred to the online supplementary material and code repository
for additional results.

5.2 Experiments with single drifts or data difficulty factors

5.2.1 Static imbalance between classes

The fully balanced stationary stream without any difficulty factors was quite easy
to learn, with most classifiers achieving, on average, 0.99 G-mean and Recall (for
detailed values see Supplementary Tables S3 and S4). Average classifier perfor-
mance on stationary imbalanced streams with minority class ratios 10%, 20%,
30% and 40% were nearly the same (Fig. 4). For all the aforementioned minority
class ratios, classifier performance plots looked very similar — performance values
rise fairly quickly up to a certain level and remain stable until the end of the
stream.

The situation changes for higher class imbalance (i.e., minority class ratio ≤
5%). With 3% or 5% of minority class examples, plots of OOB, UOB, and ESOS
achieved similar G-mean values to those obtained for higher minority class ratios
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Fig. 4: Comparison of the effect of static imbalance (the same minority class ra-
tio over the entire stream) on average classifier performance; G-mean and Recall
averaged over entire streams for a given classifier on a given stream.

(i.e. the aforementioned less imbalanced streams). However, OB’s and VFDT’s G-
mean was worse (at most 0.830–0.850). An even bigger classifier distinction can be
seen for the two highest tested class imbalance ratios (1% and 2% minority exam-
ples in the stream). Here, the non-specialized OB and VFDT classifiers performed
dramatically worse — plots of their G-mean dropped down to ∼0.100, whereas
minority class Recall was as low as 0.020 for OB. The remaining (specialized)
classifiers still achieved fairly high G-mean values when the imbalance ratio was
2% (0.947, 0.956, 0.876 for OOB, UOB, and ESOS respectively). However, for the
imbalance ratio of 1%, the recognition of the minority class (Recall) was worse
even for the specialized classifiers (e.g., OOB’s average Recall was 0.815). Fig-
ure 4 shows how average G-mean and Recall averaged over entire streams changed
between data streams with different static imbalance ratios.

The statistical comparison of classifier performance on all static imbalanced
streams, using G-mean and Recall averaged over entire streams, was carried out
with the Friedman test followed by the Nemenyi post-hoc test (Table 2). The test
resulted in the following rankings: OOB � UOB � OB � VFDT � ESOS (G-
mean) and UOB � OOB � OB � ESOS � VFDT (Recall). Importantly, OOB
is significantly better than all the remaining classifiers except UOB on G-mean,
whereas UOB is significantly better than all but OOB.

5.2.2 Drifts of imbalance ratios

Next, we analyzed streams that were initially balanced and then the single global
imbalance ratio drift was modeled. If the minority class ratio after the drift re-
mained ≥ 10%, then all the analyzed classifiers achieved similar results to those
obtained for stationary imbalanced streams discussed in the previous section. For
lower minority class ratios, OB and VFDT performance dropped to slightly lower
values (in particular for 1% and 2% minority ratios).
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Table 2: Mean Friedman test ranks for comparing classifier performance using G-
mean and Recall averaged over entire streams (see them in Supplementary Tables
S3 and S4) on different sets of data streams involving single data difficulty factors.
All tests were significant with p-values < 0.0001. Best value (lowest rank) and
values which were found to be not statistically different from the best value ac-
cording to the Nemenyi post-hoc test are highlighted in bold. Column CD shows
the critical distance of the Nemenyi post-hoc test at significance level α = 0.05.

Data stream set Metric OOB UOB OB VFDT ESOS CD

static imbalance

G-mean

1.18 2.35 3.00 3.94 4.53 1.51
class ratio changes 1.17 2.25 3.59 3.95 4.03 0.77
sub-cluster merge 1,33 3,17 1,67 3,83 5,00 2,68
sub-cluster move 1,00 2,83 2,17 4,00 5,00 2,68
sub-cluster split 1,33 3,00 1,67 4,00 5,00 2,68
borderline examples 1,70 2,80 1,50 4,00 5,00 2,01
rare examples 1,80 3,90 2,40 2,30 4,60 2,01

static imbalance

Recall

2.29 1.12 3.59 4.35 3.65 1.51
class ratio changes 2.30 1.06 4.13 4.23 3.28 0.77
sub-cluster merge 2,17 2,17 2,17 4,17 4,33 2,68
sub-cluster move 1,17 3,00 2,00 4,17 4,67 2,68
sub-cluster split 1,33 3,00 1,67 4,17 4,83 2,68
borderline examples 2,30 3,20 2,40 4,90 2,20 2,01
rare examples 3,80 3,90 3,70 2,00 1,60 2,01

On the other hand, scenarios in which the stream initially had ≤ 10% minority
examples which then went down to 1–2%, were more demanding. In such scenarios,
UOB, OOB and even ESOS still perform quite well, whereas VFDT and OB
performed poorly after the drift. Figure 5 shows such a case with the minority
class ratio changing from 10% to 1%. Moreover, Fig. 6 presents the performance
of classifiers (x-axis) on different minority ratio drifts (y-axis).

Fig. 5: G-mean (left) and Recall (right) of the analyzed classifiers on stream Sta-
tIm10+Im1, where there is a class ratio drift changing the minority class ratio
from 10% to 1%.
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Fig. 6: Comparison of the effect of decreasing minority class ratios (left) and
class swaps (right) on average classifier performance; G-mean averaged over entire
streams for a given classifier on a given stream.

Interestingly, scenarios which involved class swapping (e.g. 1% or 2% → 60%)
were less demanding. Specialized classifiers consistently and fairly quickly im-
proved their performance from the beginning of the stream, whereas OB and
VFDT started with close-to-zero G-mean and Recall values only to improve up to
similar values as OOB or UOB after the drift.

Looking at Fig. 6, one can notice that streams with the minority class ratio
over 5% are sufficiently well recognized by all classifiers. It is also clear that non-
specialized classifiers (OB and VFDT) were much more susceptible to global class
imbalance than specialized learners (OOB, UOB, ESOS). Finally, it seems that the
difficulty of imbalance ratio drifts depends on the number of minority examples
available before the drift. If a classifier had enough examples to learn the minority
concept prior to the drift, the effect of the drift was smaller.

The observed relations were confirmed by the statistical analysis of the av-
eraged values of both measures done with the Friedman and Nemenyi tests at
significance level α = 0.05. The classifier rankings (Table 2) were the same as for
the stationary imbalanced streams, but the difference between average ranks of
the best performing OOB/UOB and the remaining classifiers was much higher.

5.2.3 Changing class composition

In this group of experiments, we considered three balanced scenarios with changes
in class composition: 1) stationary streams with a class decomposed into 3, 5 or
7 sub-clusters, 2) a drift of sub-clusters gradually moving in the attribute space
to new random positions3, 3) a drift splitting splitting one concept into multiple

3 The new random positions were generated in such a way to ensure that they would not
result in the sub-clusters overlapping with each other – see details in the description of the
generator in the supplement.
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sub-clusters, and 4) several sub-clusters merging into one concept. Note that, even
though such class compositions have been discussed in the context of class im-
balanced data streams in Section 4, they are also applicable to a given balanced
class as done in the current section. Such balanced scenarios constitute baseline
cases – a corresponding classifier that is successful in dealing with class imbal-
ance would present predictive performance as good as the ones obtained in these
scenarios when faced with corresponding imbalanced scenarios. In Section 5.3, we
will discuss these data difficulty factors in imbalanced data streams.

Stationary streams with a class decomposed into sub-clusters were difficult for
the analyzed classifiers. All classifiers incrementally improved G-mean (or Recall)
to rather high values ∼0.982, except for ESOS which reached a slightly smaller
G-mean of 0.943. However, to achieve this level of predictive performance, the
classifiers required more examples than in the scenarios with the global imbalance
ratio from Section 5.2.2. Moreover, the more sub-clusters the worse the observed
classifier performance.

Scenarios involving a single drift of sub-clusters gradually moving in the at-
tribute space were more demanding and the decrease of the performance measures
was clearly visible. However, although G-mean initially dropped from 0.975 down
to 0.940, the classifiers recovered quite well after the drift. The effects of moving
sub-clusters were only slightly stronger when the number sub-clusters was larger.

The impact of splitting one cluster into 3, 5, or 7 sub-clusters was similar to
cluster movement. For example, splitting a class into 5 sub-clusters resulted in a
decrease of G-mean of OOB/UOB from 0.989 before the drift to 0.919/0.901 after
the drift, and from 0.963 down to only 0.750 respectively for ESOS (Fig. 7). It is
worth noting that all the analyzed classifiers only partly recovered from this type
of drift.

Fig. 7: G-mean (left) and Recall (right) of the analyzed classifiers on stream Split5,
in which the minority class is gradually split into 5 sub-clusters.

Finally, a drift merging many sub-clusters did not pose a significant chal-
lenge for the analyzed classifiers. The plots showed that classifiers started off with
slightly lower performance values, followed by a small decrease in classifier per-
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formance, but then recovered quite quickly and achieved values of G-mean and
Recall comparable to those achieved on stationary streams.

Fig. 8: Comparison of the effect of class composition drifts on average classifier
performance in balanced data streams; G-mean averaged over entire streams for a
given classifier on a given stream.

Figure 8 compares the effect of different class composition drifts on G-mean
averaged over entire streams (for detailed values see the Section C of the supple-
ment). It can be noticed that all the class composition drifts have similar, rather
low, impacts on G-mean since the performance drops were only temporary.

The rankings of classifiers according to the Friedman and Nemenyi tests per-
formed over averaged values were slightly different compared to previous scenarios
(Table 2). In particular, UOB was better than OOB on Recall, and also partially
on G-mean, and ESOS performed generally better than OB and VFDT.

5.2.4 Distribution of example types

Similar to Section 5.2.3, in this group of experiments, we analyzed balanced sta-
tionary streams with a given percentage of either borderline or rare types of exam-
ples for a given class. Outlier examples were discarded from our analysis as they
demonstrated to be extremely difficult for static data and rare cases were already
very difficult for the considered stream classifiers.

Classifier performance plots showed that the presence of both types of exam-
ples always decreases G-mean and Recall. However, the effect depends on the type
and proportion of difficult examples (Table 3). Increasing the proportion of bor-
derline examples reduces G-mean values in comparison to a stream with only safe
minority examples, but the deterioration is relatively small (e.g. for OOB G-mean
drops from 0.982 (0% borderline) to 0.963 (100% borderline)). On the other hand,
the proportion of rare examples showed to be clearly more influential, and even
proportions of rare examples as small as 20% lead to G-mean decreasing to ∼0.88
for all classifiers, whereas streams with 100% of rare examples exacerbate the effect
leading to G-means ∼0.55. Similar trends were observed for Recall.

Similar trends were observed when the difficult examples were not present from
the start of the stream, but appeared as part of a concept drift. To show that the
classifiers recovered from such drifts, in Table 4 we present the values of G-mean
directly after the drift (post) and at the end of the stream (end). For the drifts of
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Table 3: The impact of borderline and rare type minority examples in balanced
stationary streams on G-mean values of classifiers; G-mean averaged over entire
streams for a given classifier on a given stream.

Configuration N OOB UOB OB VFDT ESOS

Safe stream 0% 0.982 0.981 0.981 0.979 0.947

Borderline[N] 20% 0.973 0.973 0.973 0.971 0.953
static 40% 0.969 0.968 0.969 0.966 0.949

60% 0.967 0.966 0.967 0.965 0.944
80% 0.964 0.964 0.965 0.962 0.940

100% 0.963 0.963 0.963 0.961 0.938

Rare[N] 20% 0.885 0.883 0.884 0.883 0.852
static 40% 0.766 0.765 0.766 0.766 0.737

60% 0.633 0.632 0.633 0.643 0.620
80% 0.535 0.519 0.530 0.546 0.529

100% 0.566 0.554 0.563 0.530 0.517

Table 4: The impact of type of examples on G-mean of classifiers. The → symbol
shows the values of G-mean after the drift (post) and at the end of the stream
([post]→[end]).

Type N OOB UOB OB VFDT ESOS

Before drift 0% 0.989 0.989 0.990 0.988 0.965

Bordeline[N] 20% 0.972→0.975 0.972→0.974 0.972→0.975 0.970→0.972 0.962→0.961
drift 40% 0.962→0.971 0.962→0.969 0.963→0.970 0.960→0.968 0.961→0.959

60% 0.955→0.969 0.955→0.968 0.955→0.968 0.948→0.967 0.959→0.956
80% 0.954→0.967 0.955→0.966 0.954→0.966 0.945→0.964 0.955→0.951

100% 0.959→0.967 0.956→0.966 0.956→0.967 0.950→0.962 0.955→0.948

Rare[N] 20% 0.919→0.886 0.919→0.886 0.919→0.886 0.918→0.884 0.901→0.861
drift 40% 0.833→0.771 0.832→0.769 0.832→0.772 0.832→0.772 0.816→0.751

60% 0.707→0.638 0.707→0.634 0.707→0.635 0.709→0.651 0.697→0.628
80% 0.530→0.521 0.527→0.491 0.528→0.509 0.546→0.539 0.531→0.530

100% 0.496→0.558 0.459→0.547 0.466→0.559 0.504→0.529 0.516→0.527

borderline examples, one can notice that G-mean decreases slightly more than in
analogous static streams and that all classifiers slightly recovered after the drift.
In contrast, drifts which introduced rare examples were definitely more influential
and the classifiers did not recover after the drift.

Figure 9 compares the G-mean performance of classifiers on a stream with an
increasing number of borderline (left) and rare (right) examples from 0% to 40%.
Introducing borderline examples had visible yet limited effect on all the analyzed
algorithms’ performance, with classifiers such as UOB and OOB reacting slightly
better to these drifts compared to other methods. However, the proportion of rare
examples showed to be clearly more influential than the number of borderline
examples. In this case we can notice much stronger deterioration of performance,
with nearly no recovery. Similar observations were made for Recall.

We have also analysed the values of G-mean and Recall averaged over entire
streams and grouped in sub-categories corresponding to different types of examples
(for detailed values see Supplementary Tables S3 and S4). The results of Fried-
man and Nemenyi tests (presented in Table 2) confirm our observations, ranking
OOB/UOB highest in terms of G-mean. Interestingly, UOB performed slightly bet-
ter on borderline scenarios, whereas OOB was marginally better on data streams
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(a) Increasing number of border examples (b) Increasing number of rare examples

Fig. 9: Classifier G-mean on streams (a) Borderline40 and (b) Rare40, which re-
spectively have ratios of borderline and rare examples within the minority class
increasing from 0% to 40%.

with rare examples. In both cases, however, the differences between OOB and
UOB were not statistically significant. In terms of Recall, ESOS achieved highest
Friedman ranks on both rare and borderline data streams, followed by UOB. It
is also worth noting that, on data streams with rare examples, all classifiers had
fairly similar ranks and were mostly not significantly different from each other
according to the Nemenyi test, which might suggest they all had similar problems
with classifying these streams.

Finally, Fig 10 shows the comparison of the impact of different example type
distributions with respect to G-mean averaged over entire streams. This compari-
son confirms that the proportion of rare examples has the biggest impact on clas-
sifier performance. It can also be noticed that static difficulty factors are slightly
more demanding than drifting ones, since their effect is not temporary.

Fig. 10: Comparison of the effect of minority example type distribution on average
classifier performance; G-mean averaged over entire streams for a given classifier
on a given stream.
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RQ1: There are considerable differences in the impact of single difficulty fac-
tors and drifts. The presence of rare examples demonstrated the highest de-
terioration of classifier performance, both in static and drifting streams. The
effect of static and dynamic global imbalance was also influential, but depends
on the imbalance ratio: 1–2% minority class ratio strongly affected the classi-
fiers, whereas 5–40% had almost no effect. The decomposition of the a given
class, either by splitting/merging sub-clusters or moving them, temporarily de-
creases the performance of all classifiers. The impact of borderline examples
in a given class is slightly less important than local drifts in the composition
of a given class. The reactions of the studied classifiers to single drifts vary.
Specialized classifiers (OOB, UOB, ESOS) coped well with static class im-
balance, especially OOB and UOB, but were unable to learn rare examples
or fully recover from changes in class composition. Non-specialized classifiers
(OB, VDFT) did not cope well with high class imbalance and local drifts.

5.3 Impact of pairs of elements in the stream

To study the impact of different types of data difficulties and class imbalance
(RQ2), we have analyzed pairs of elements in the generated streams. We have
studied various difficulty factors paired with moderate and high class imbalance
ratios, and considered combinations of factors referring to the minority class split
and the distributions of minority example types.

5.3.1 Interactions between local data factors and the global class imbalance ratio

We have examined how different global imbalance ratios interact with the most
influential drifts identified in the previous subsection. As it was explained in sub-
section 5.1, two representative imbalance ratios were chosen 1% (as the most in-
fluential one) and 10% (having a moderate impact). Firstly, these static global
imbalance ratios were combined with a drift on either the class composition or
distributions of the minority example types.

The general observation from analyzing the plots of classifier performance is
that class imbalance amplifies the effect of other difficulty factors. This amplifica-
tion is especially visible on streams involving high static imbalance.

For instance, the combination of a static 1% minority class ratio with a mi-
nority class split into 5 sub-clusters (StatIm1+Split5 stream, Fig. 11) resulted in
three widely different post-drift G-mean values for the specialized classifiers —
UOB: 0.519, OOB: 0.271, ESOS: 0.741. In comparison, in the scenario where the
split was performed on a balanced stream these classifiers achieved G-mean of
∼0.900 (Fig. 7). Note that there is worse recovery after the stronger drifts and
even no recovery for OB and VFDT. Similar trends were observed for pairs in-
volving high static imbalance ratios combined with moving sub-cluster as well as
rare and borderline types of minority examples.

In contrast, pairs involving combinations of drifting class imbalance ratios, i.e.
streams that started off as balanced and class imbalanced appeared in conjunction
with a drift, were slightly less demanding. For instance, let us consider UOB in
the stream Im1+Split5. Its G-mean values changed as follows: 0.988 (the moment
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Fig. 11: G-mean (left) and Recall (right) of the analyzed classifiers on stream
StatIm1+Split5 stream, which has a 1% minority class ratio and a minority class
split into 5 sub-clusters.

before the drift) → 0.892 (after the drift) → 0.919 (at the end of the stream). For
comparison, G-mean values for UOB in StatIm1+Split5 were: 0.978 → 0.519 →
0.895. Similar differences between the effect of static and dynamic imbalance were
observed for OOB. More results showing G-mean values in characteristic moments
in the streams are presented in Section D of the supplement.

The classifier performance plots for pairs with the imbalance drifts were more
similar to those obtained for scenarios containing only single difficulty factors. We
hypothesize that, compared to static imbalance, in scenarios involving class ratio
drifts the classifiers were capable of learning much more before the drift (on the
balanced portion of the stream). The main observation is that having a constantly
low proportion of minority class examples is much more challenging than having
a varying imbalance ratio with periods of relative class balance.

5.3.2 Interactions of class split with various types of examples

In this subset of experiments, drifts of a selected class split (5 sub-clusters) with
drifts of example type proportions were considered in balanced data streams. The
use of balanced streams here offers a baseline for further analyses on more complex
scenarios including multiple drifts and data difficulty factors presented in Section
5.4.

The general observation is that the most difficult scenarios combine the minor-
ity class split with rare examples. These scenarios always led to stronger deterio-
ration than pairs with the same percentage of borderline examples. For instance,
let us consider OOB and its G-mean values after the drift and at the end of the
recovery. In Split5+Rare20 the values in these moments are 0.853 and 0.861 while
in Split4+Borderline20 they are 0.897 and 0.927, respectively. Moreover, the larger
the proportion of rare examples after the drift, the larger the performance drop.
The classifier plot for Split5+Rare40 (Fig. 12) shows that all algorithms behave in
a similar way and are unable to recover after the drift. Moreover, when compared
against plots depicting scenarios containing only the split (Fig. 7) or only rare
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examples (Fig. 9b), it can be noticed that it is probably the proportion of rare
examples that has a bigger influence on the final performance of the classifiers.
Similarly, it was observed that combinations of minority class split and border-
line examples were more difficult than scenarios containing the respective single
difficulty factors.

Fig. 12: G-mean (left) and Recall (right) of the analyzed classifiers on balanced
stream Split5+Rare40, which has a drift introducing 40% rare type examples and
a minority class split into 5 sub-clusters.

5.3.3 The global comparison of pairs of difficulty factors

Similarly to the analysis made in Section 5.2, we performed a global comparison of
the impact of pairs of difficulty factors on classifier G-mean and Recall calculated
over entire streams. The most influential pairs are presented in Fig. 13.

Definitely combinations with rare examples lead to the largest decrease of
both measures for all classifiers (although OB and VFDT are the most affected).
One explanation is that high rarity corresponds to a very scattered distribution
of small islands of few minority examples. Together with the high imbalance it
makes the data less safe and difficult to learn. On the other hand, combinations
of rare examples with minority class splits were modeled with balanced streams,
therefore the impact of the same percentage of rare examples was visibly smaller.
As noticed in the earlier subsections, combinations of class imbalance drift with
borderline examples are less influential. For some of these borderline pairs even
OB and VFDT performed on par with OOB, UOB or ESOS.

Finally the Friedman test over stream-averaged values (Table 5) was performed
to compare the classifiers. The test indicates that UOB should be the preferred
classifier for streams involving combinations of high imbalance and an additional
difficulty factor. However, it should be noted that the difference between UOB
and OOB in terms of G-mean is not statistically significant. Interestingly, this
statistical analysis also shows that, contrary to most previous analyses, in case of
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Fig. 13: Comparison of the effect of pairs of factors classifier G-mean and Recall.
Scenarios ranked according to the median performance of all classifiers on a given
scenario. Borderline[N]/Rare[N]: denotes a drift to N% borderline/rare examples,
StaticIm[N]: N% minority examples before the drift, Im[N]: drift to N% minority
ratio, Split[N] splitting into N sub-clusters, +: combination of factors.

combining split and rare examples UOB substitutes OOB at the first position in
the ranking for G-mean, whereas ESOS takes the better rank for Recall.

RQ2: Pairing imbalance ratios (both static and drifts) with other factors am-
plifies the deterioration of classifier performance. Similar effects were ob-
served for combinations involving rare/borderline minority examples, as well
as changes in class composition. The presence of rare types of examples in
pairs is the most influential element. The strongest interactions occur for high
static imbalance (1%), however, moderate imbalance (10%) was also more
detrimental in pairs than as an isolated factor. High static imbalance is also
more influential than the analog imbalance ratio drifts.
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Table 5: Mean Friedman test ranks for comparing classifier performance using
the averaged G-mean on different data stream sets involving pairs of changes and
multiple data difficulty factors. All test were significant with p-values < 0.0001.
Best value (lowest rank) and values which were found to be not statistically dif-
ferent from the best value according to the Nemenyi post-hoc test are highlighted
in bold. Column CD shows the critical distance of the Nemenyi post-hoc test at
significance level α = 0.05.

Data stream set Metric OOB UOB OB VFDT ESOS CD

pairs: imbalance + move

G-mean

2.00 1.50 4.67 4.33 2.50 1.82
pairs: imbalance + join 2.00 1.50 4.33 4.17 3.00 1.82
pairs: imbalance + split 2.17 1.39 4.61 4.22 2.61 1.47
pairs: imbalance + borderline 2.18 1.25 4.25 4.60 2.73 0.97
pairs: imbalance + rare 2.35 2.03 4.48 3.53 2.63 0.97
pairs: split + borderline 1.82 1.88 4.28 4.02 3.00 0.87
pairs: split + rare 2.28 1.92 4.32 3.64 2.84 0.87
multiple factors 2.15 1.76 4.27 3.91 2.91 0.43

pairs: imbalance + move

Recall

2.92 1.42 4.67 4.33 1.67 1.82
pairs: imbalance + join 2.92 1.25 4.58 4.42 1.83 1.82
pairs: imbalance + split 2.83 1.39 4.72 4.17 1.89 1.47
pairs: imbalance + borderline 2.90 1.53 4.43 4.58 1.58 0.97
pairs: imbalance + rare 3.03 1.53 4.73 3.83 1.90 0.97
pairs: split + borderline 2.46 1.74 4.40 4.14 2.26 0.87
pairs: split + rare 2.90 2.04 4.60 3.54 1.92 0.87
multiple factors 2.82 1.76 4.51 3.95 1.96 0.43

5.4 Experiments with complex scenarios including multiple drifts

In case of complex scenarios involving multiple difficulty factors, the main gen-
eral observation is that starting the learning process from a highly imbalanced
stream (minority class ratio ≤ 10%) is more difficult than starting from a bal-
anced stream. For example, decreases of predictive performance in streams Sta-
tIm10+Split5+Im1+Rare[N] are higher than in Split5+Im1+Rare[N], for all per-
centages of rare examples N. Moreover, while analyzing particular plots one can
notice that the decrease in predictive performance is stronger than in scenarios
involving singular or paired difficulty factors. For instance consider a stream com-
bining a 10% → 1% drift of the minority class ratio with a minority class split
into 5 sub-clusters and a 0% → 40% increase of the proportion of rare examples
(Fig. 14). Note that OB and VFDT are practically incapable of recognizing the
minority class after the drift.

Furthermore, we compared complex drifting scenarios (where difficulties appear
during a drift) to corresponding static streams (where all the difficulties appear
from the beginning of the stream). A sample of this comparison is given in Table 6.
One can easily that G-mean values for static streams are much lower than for the
corresponding drifting streams. Moreover, there are quite strong differences in
classifier performance. Again OB and VFDT failed to handle multiple difficulty
factors, whereas UOB and ESOS work better. Similar observations were made for
other proportions of rare/borderline examples.

We have also analyzed averaged values of G-mean and Recall of classifiers for
various combinations of multiple drifts (Fig. 15). One can notice that, for all clas-
sifiers, scenarios involving various proportions of rare examples are at the top of
the ranking. Moreover, the impact of multiple combinations of factors was more
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Fig. 14: G-mean (left) and Recall (right) for stream StaticIm10 + Split5 + Im1
+ Rare40, which combines a 10% → 1% drift of the minority class ratio with a
minority class split into 5 sub-clusters and a 0%→ 40% increase of the proportion
of rare examples.

Table 6: G-mean values of classifiers averaged over entire data streams with high
imbalance, minority class split, and rare/borderline examples.

Mode Configuration OOB UOB OB VFDT ESOS

Static Split5+Im1+Borderline40 0.486 0.875 0.000 0.000 0.700
Static Split5+Im1+Rare40 0.430 0.688 0.000 0.050 0.540

Dynamic Split5+Im1+Borderline40 0.811 0.875 0.683 0.694 0.720
Dynamic Split5+Im1+Rare40 0.729 0.812 0.679 0.687 0.504

severe than that of pairs of factors (Fig. 13). Complex scenarios also intensified
the impact of minority class composition and resulted in larger performance differ-
ences between classifiers. Whereas pairs of difficulty factors differentiated classifiers
mostly at the ∼ 0.050 G-mean levels, complex scenarios show differences of up to
almost 0.400.

Moreover, the results of the Friedman test (Table 5) calculated on stream-
averaged performance values show that when multiple difficulty factors are present
in the stream, UOB is the best performing classifier in terms of both G-mean and
Recall.

RQ3: Scenarios involving more than two factors intensify the impact of other
data complexities. In multiple combinations, the impact of borderline exam-
ples is much more prominent when it co-occurs with other factors. Moreover,
the most complex scenarios decrease performance measures more than in sce-
narios involving singular or paired difficulty factors, and strongly distinguish
classifiers. Scenarios involving rare examples, minority class splits and high
imbalance ratios are the most challenging combinations.
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Fig. 15: Comparison of the effect of complex scenarios on G-mean and Recall of the
analyzed classifiers. Scenarios ranked according to the median performance of all
classifiers on a given scenario. Borderline[N]/Rare[N]: denotes a drift to N% bor-
derline/rare examples, StaticIm[N]: N% minority examples before the drift, Im[N]:
drift to N% minority ratio, Split[N] splitting into N sub-clusters, +: combination
of factors.

5.5 Real-world imbalanced data streams

The final set of experiments involved four real-world imbalanced streams (Ta-
ble 7). Although synthetic streams are better suited for performing controlled
experiments and analyzing the impact of particular difficulty factors, real-world
datasets are also useful to verify which of these difficulties and classifier reactions
can be expected in practical applications. As there are no benchmark imbalanced
data streams, we looked for datasets which at least partly contained the con-
sidered data difficulty factors. Finally, we have selected four binary classification
datasets, which cover a spectrum of applications involving tweets (Twitter [53]),
reviews (Tripadvisor [74]), product descriptions (Amazon [5]), and credit scoring
data (PAKDD [72]).

The occurrence of minority class types and imbalance ratios were estimated in
successive blocks of examples in the streams. Types of minority examples were es-
timated with the method proposed in [56], which analyzes labels of the neighbours
of examples (see the method’s brief description in Section 3.2.4). We have also
estimated the number of sub-clusters and their positions in the attribute space
over time. To achieve this, we clustered minority class examples in each successive
block using the affinity propagation algorithm (parameterized as proposed in [22])
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Table 7: Real-word datasets’ characteristics. The minority class ratio, as well as
the percentages of safe, borderline, rare, and outlier examples given as min–max
ranges based on estimations of blocks of 2,000 examples. The ranges show the
amplitude of global imbalance and minority class composition drifts.

Amazon [5] PAKDD [72] Tripadvisor [74] Twitter [53]

Examples 8,000 49,997 20,491 9,090
Classes 2 2 2 2
Features 30 34 30 30
Estimated clusters 12–16 25-36 20–31 20–27
Minority ratio 12–16% 18–23% 20–34% 13–19%
Safe 0–1% 0–5% 30–45% 1–7%
Borderline 11–29% 25–37% 33–39% 20–34%
Rare 35–43% 36–41% 12–19% 29–35%
Outlier 30–51% 23–36% 9–18% 29–45%

and removed clusters smaller than six examples. Then, we visualized the relative
positions of cluster exemplars using PCA precomputed on the entire dataset and
applied to minority cluster representatives in each block.

As Table 7 shows, the selected streams all showcase multiple data difficulties.
Interestingly, all datasets contain all types of minority examples, with a relatively
high number of outliers. More precisely Amazon, PAKDD, and Twitter have very low
proportions of safe examples, with minority examples mostly attributed to rare and
outlier example types. Tripadvisor has a higher proportion of safe and borderline
examples. Importantly, an analysis of the minority class over subsequent blocks of
examples has shown that the global imbalance ratio, example type proportions,
and minority class composition vary over the course of the streams. This is reflected
by the minimum and maximum ratios shown in Table 7, and by plots presented
in Figs. 16c– 16f4. Although, these real-world streams are partly similar to the
scenarios with multiple data factors discussed in the precious section, they should
be considered as even more difficult ones, due to the very low number of safe
examples. Furthermore, discovering a quite high number of clusters may indicate
quite strong decomposition of classes, which also change over streams; see Table 7.
It constitutes additional difficulties for learning classifiers.

Figure 16 shows the G-mean and Recall of the analyzed classifiers on the PAKDD

dataset. There is a very clear (∼0.500) difference in G-mean between specialized
(OOB, UOB, ESOS) and non-specialized (OB, VFDT) classifiers. However, the
G-mean values are generally much lower than those seen on synthetic streams,
even though the stream is not that highly imbalanced. We could hypothesize that
the difficulty of classifying real-world imbalanced data does not lie in the global
imbalance ratio alone. Indeed, the PAKDD dataset has a drifting global imbalance
ratio (Fig. 16c), has a very low proportion of safe minority examples (Fig. 16d),
and minority sub-cluster appeared and disappear over time (Fig. 16e–16f). It is
also worth noting that ESOS performs particularly well, compared to previous
experiments on single factors, even in the presence of a drift visible around the
15k example. ESOS is indeed the only classifier equipped with a drift detector.

4 Similar plots for other real-world data streams are provided in Section E of the supplement.
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Fig. 16: PAKDD (a) G-mean, (b) Recall, (c) minority ratio (d) example type pro-
portions, (e) sub-cluster count, (f) PCA-visualized sub-cluster positions with color
representing time and point sizes representing cluster sizes.

Interestingly, similar classifier reactions could be observed for the most complex
synthetic streams (e.g., Fig. 14).

Plots for the remaining real-world datasets showed similar patterns. Due to the
much lower number of safe examples, classifier G-mean values were generally lower
than those observed for synthetic streams. Moreover, the gap between specialized
and non-specialized classifiers was always substantial (Fig. 17). The remaining real-
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world dataset also suffered from drifting global class imbalance (Supplementary
Fig. S6), changing example type proportions (Supplementary Fig. S7), and chang-
ing minority sub-clusters (Supplementary Fig. S8). On the Tripadvisor dataset,
the classifiers obtained higher measure values than on the remaining real world
streams. This is consistent with the fact that Tripadvisor contains a higher pro-
portion of safe examples and is less imbalanced (Table 7). Amazon proved to be
the most difficult stream. Poor classifier performance could be explained by a very
unsafe distribution of the minority class types. This is the only data with nearly
no safe examples and the highest number of rare examples and outliers. It is also
the dataset with the highest class imbalance ratio and the estimated minority sub-
clusters show strong movement over time (Supplementary Fig. S8). As a result,
VFDT and OB were unable to learn classes from this relatively short stream. Fur-
thermore, all the analyzed real-world streams were affected by more drifts than
it was considered in the synthetic streams. Finally, it is also interesting to notice
that, even though ESOS needed more time to achieve its final performance level
it performed better than OOB and UOB (or came close second) for all of the real
streams.
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Fig. 17: Classifier G-mean for the Tripadvisor, Amazon, and Twitter datasets.
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Table 8 presents averaged values of performance measures calculated over entire
streams. For both G-mean and Recall UOB ranked first, followed by ESOS. Due
to the small number of datasets, the statistical significance of these differences
cannot be evaluated. However, the difference between mean performance on each
dataset (effect size) is large when one compares specialized (OOB, UOB, ESOS)
and non-specialized (OB, VFDT) classifiers.

Table 8: Average classifier performance values on the real-world data streams.

Data stream Metric OOB UOB OB VFDT ESOS

Amazon

G-mean

0.241 0.394 0.021 0.021 0.402
PAKDD 0.542 0.549 0.013 0.059 0.530
Tripadvisor 0.764 0.731 0.656 0.627 0.771
Twitter 0.600 0.654 0.155 0.075 0.598

Averaged Friedman ranks 2.25 1.75 4.38 4.63 2

Amazon

Recall

0.086 0.708 0.002 0.002 0.391
PAKDD 0.386 0.663 0.001 0.007 0.444
Tripadvisor 0.699 0.658 0.468 0.431 0.716
Twitter 0.435 0.574 0.040 0.019 0.561

Averaged Friedman ranks 2.75 1.5 4.38 4.63 1.75

Real-world streams: The analyzed datasets resembled the most complex scenar-
ios in that they combine drifting class imbalance and drifts of unsafe minority
examples. However the number of drifts is higher. Moreover, the real-world
datasets contained a high percentage of outlier examples, making them even
harder. As in the complex synthetic scenarios, specialized classifiers clearly
outperformed non-specialized classifiers. UOB and ESOS ranked highest in
terms of average G-mean and Recall, with the latter learning at a slower
pace, but being less susceptible to drifts.

6 Conclusions

The main goal of this paper, was to highlight the importance of other difficulty
factors than the global imbalance ratio in drifting imbalanced data streams. To
this end, we have proposed a new categorization of concept drifts for imbalanced
streams, which includes criteria of imbalance ratio, locality, class composition, and
minority example distribution. To the best of our knowledge, the three latter cri-
teria were not previously adopted to systematically characterize concept drifts.
Moreover, we have developed and made publicly available a data stream generator
that follows the proposed drift categorization. Finally, using 385 generated syn-
thetic streams and four real-world datasets we have carried a comprehensive set of
experiments to study the impact of drifts and difficulty factors on the performance
of online stream classifiers.

The obtained experimental results led to the following main observations:
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– Specialized imbalanced stream classifiers (OOB, UOB, ESOS-ELM) coped well
with global class imbalance (except the highest ones), whereas non-specialized
classifiers (OB, VFDT) performed worse.

– Among the single data difficulty factors, complex distributions of minority ex-
amples in balanced data streams were more challenging than static imbalanced
data streams. In particular, experiments with rare type examples were the only
scenarios where the classifiers did not recover from in any way. Interestingly,
all classifiers were fairly robust to larger proportions of borderline examples in
balanced data streams.

– High imbalance ratios amplified the detrimental effect of other difficulty factors.
– All classifiers were able to successfully benefit from temporary periods of less

extreme class imbalance or less challenging data difficulty factors, improving
overall predictive performance compared to cases where high levels of class im-
balance or challenging data difficulty factors were present from the beginning.

– Rare examples were the most influential stream characteristic when combined
with other factors. Out of the analyzed classifiers, UOB was the best choice
for complex streams with multiple difficulty factors.

– Real-world datasets combine multiple data difficulty factors, being more dif-
ficult than synthetic streams. In particular, the proportion of safe minority
examples in the analyzed datasets was very low and the minority ratio and
class composition drifted quite frequently over time. Real-world streams dis-
tinguished classifiers similarly to complex synthetic scenarios with multiple
elements in streams, albeit with a larger performance gap between special-
ized and non-specialized classifiers. UOB and ESOS would be the classifiers of
choice for real-world datasets.

Future research for imbalanced data stream classifiers should focus on other
difficulty factors than just global class imbalance. None of the analyzed classifiers
were able to cope with rare examples and outliers combined with minority class
splits. This calls for new online methods that take into account the composition
and the types of examples of the minority class. The need for research in this area
is further emphasised by the fact that real world data streams are likely to involve
more complex scenarios, as demonstrated in this study.

The methodological similarity between the proposed class composition criterion
and stream cluster transitions types [66, 67], suggests that stream clustering meth-
ods could be instrumental in tracking minority class evolution. The characteristic
of different minority example types could be taken into account by differentiat-
ing resampling methods based on whether examples are safe, borderline, rare or
outlying. This could be achieved by separate minority example memories, similar
to minority class buffers known from block-based classifiers [14, 15]. We also note
that currently drift detectors monitor only classifier performance, whereas they
could potentially track minority class composition and changes of example type
proportions. Finally, another challenge is to generalize the proposed categorization
and design classifiers for multiple imbalanced classes.
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20. Fernández A, Garćıa S, Galar M, Prati RC, Krawczyk B, Herrera F (2018)
Learning from Imbalanced Data Sets. Springer
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